Crystal Engineering and its Chemistry: An Architectural Approach for Cocrystallization

Page: [251 - 264] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: In the field of crystal engineering, cocrystallization is a unique technique by the help of which physicochemical properties like melting point, solubility, dissolution, etc of the APIs can be modified without changing the intrinsic structure of APIs.

Objective: Crystal packing of a solid is modified by crystal engineering techniques which involve modification of intermolecular interactions that help to regulate breaking and creation of noncovalent bonds. Non-covalent interactions such as hydrogen bonding, van der Waals forces, π-π stacking are primarily responsible for the formation of cocrystals. Cocrystals are solid crystalline materials consisting of two or more molecules present in the similar crystal lattice. It is a method of formation of mainly hydrogen bonds between the drug molecule and coformer. This technique can be applied to almost all APIs which have low aqueous solubility. There are several active pharmaceutical ingredients available, which have therapeutic efficacy against several lifethreatening diseases. Among those APIs, which have poor aqueous solubility and low oral bioavailability (BCS class II and class IViv), cannot be efficiently developed into a suitable dosage form.

Conclusion: Therefore, this survey gives a united record of the reasoning for plan of cocrystals, past endeavors, later improvements and future viewpoints for cocrystallization research which will be incredibly helpful for the formulation scientists of the pharmaceutical industry.

Keywords: Crystal engineering, cocrystals chemistry, hydrogen bonding, supramolecular synthon, solubility, dissolution.

Graphical Abstract

[1]
Desiraju, G.R.; Parshall, G.W. Crystal engineering: The design of organic solids; Mater. Sci. Monogr, 1989, p. 54.
[2]
Schmidt, G.M.J. Solid State Photochemistry; Ginsburg, D., Ed.; Verlag Chemie: Weinheim, 1976.
[3]
Pepinsky, R. Crystal engineering-new concept in crystallography. Physical Review. AMERICAN PHYSICAL SOC: USA, 1955, 100(3), 971.
[4]
Banerjee, R.; Bhatt, P.M.; Desiraju, G.R. Solvates of sildenafil saccharinate. A new host material. Cryst. Growth Des., 2006, 6(6), 1468-1478.
[http://dx.doi.org/10.1021/cg0601150]
[5]
Shan, N.; Zaworotko, M.J. The role of cocrystals in pharmaceutical science. Drug Discov. Today, 2008, 13(9-10), 440-446.
[http://dx.doi.org/10.1016/j.drudis.2008.03.004] [PMID: 18468562]
[6]
Cheney, M.L.; Weyna, D.R.; Shan, N.; Hanna, M.; Wojtas, L.; Zaworotko, M.J. Coformer selection in pharmaceutical cocrystal devel-opment: A case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J. Pharm. Sci., 2011, 100(6), 2172-2181.
[http://dx.doi.org/10.1002/jps.22434] [PMID: 21491441]
[7]
Vandecruys, R.; Peeters, J.; Verreck, G.; Brewster, M.E. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int. J. Pharm., 2007, 342(1-2), 168-175.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.006] [PMID: 17573214]
[8]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012, 195727.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[9]
Aakery, C.B.; Salmon, D.J. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm, 2005, 7(72), 439.
[http://dx.doi.org/10.1039/b505883j]
[10]
Aitipamula, S.; Banerjee, R.; Bansal, A.K.; Biradha, K.; Cheney, M.L.; Choudhury, A.R.; Desiraju, G.R.; Dikundwar, A.G.; Dubey, R.; Duggirala, N.; Ghogale, P.P.; Ghosh, S.; Goswami, P.K.; Goud, N.R.; Jetti, R.R.K.R.; Karpinski, P.; Kaushik, P.; Kumar, D.; Ku-mar, V.; Moulton, B.; Mukherjee, A.; Mukherjee, G.; Myerson, A.S.; Puri, V.; Ramanan, A.; Rajamannar, T.; Reddy, C.M. Rodri-guez-Hornedo, N.; Rogers, R.D.; Row, T.N.G.; Sanphui, P.; Shan, N.; Shete, G.; Singh, A.; Sun, C.C.; Swift, J.A.; Thaimattam, R.; Thakur, T.S.; Kumar Thaper, R.; Thomas, S.P.; Tothadi, S.; Vangala, V.R.; Variankaval, N.; Vishweshwar, P.; Weyna, D.R.; Za-worotko, M.J. Polymorphs, salts, and cocrystals: What’s in a name? Cryst. Growth Des., 2012, 12(5), 2147-2152.
[http://dx.doi.org/10.1021/cg3002948]
[11]
Regulatory classification of pharmaceutical co-crystals. 2018. Available from: http://www.fda.gov/downloads/drugs/guidancecom-plianceregulatoryinformation/guidances/ucm 281764.pdf
[12]
Bhogala, B.R.; Basavoju, S.; Nangia, A. Tape and layer structures in cocrystals of some di-and tricarboxylic acids with 4, 4′-bipyridines and isonicotinamide. From binary to ternary cocrystals. CrystEngComm, 2005, 7(90), 551-562.
[http://dx.doi.org/10.1039/b509162d]
[13]
Childs, S.L.; Stahly, G.P.; Park, A. The salt-cocrystal continuum: The influence of crystal structure on ionization state. Mol. Pharm., 2007, 4(3), 323-338.
[http://dx.doi.org/10.1021/mp0601345] [PMID: 17461597]
[14]
Morissette, S.L.; Almarsson, O.; Peterson, M.L.; Remenar, J.F.; Read, M.J.; Lemmo, A.V.; Ellis, S.; Cima, M.J.; Gardner, C.R. High-throughput crystallization: Polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev., 2004, 56(3), 275-300.
[http://dx.doi.org/10.1016/j.addr.2003.10.020] [PMID: 14962582]
[15]
Abourahma, H.; Cocuzza, D.S.; Melendez, J.; Urban, J.M. Pyrazinamide cocrystals and the search for polymorphs. CrystEngComm, 2011, 13(21), 6442-6450.
[http://dx.doi.org/10.1039/c1ce05598d]
[16]
Batisai, E.; Ayamine, A.; Kilinkissa, O.E.; Báthori, N.B. Melting point–solubility–structure correlations in multicomponent crystals containing fumaric or adipic acid. CrystEngComm, 2014, 16(43), 9992-9998.
[http://dx.doi.org/10.1039/C4CE01298D]
[17]
Schultheiss, N.; Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des., 2009, 9(6), 2950-2967.
[http://dx.doi.org/10.1021/cg900129f] [PMID: 19503732]
[18]
Fleischman, S.G.; Kuduva, S.S.; McMahon, J.A.; Moulton, B.; Bailey, W.R.D.; Rodríguez-Hornedo, N.; Zaworotko, M.J. Crystal engineering of the composition of pharmaceutical phases: Multiple-component crystalline solids involving carbamazepine. Cryst. Growth Des., 2003, 3(6), 909-919.
[http://dx.doi.org/10.1021/cg034035x]
[19]
Zhou, Z.; Li, W.; Sun, W.J.; Lu, T.; Tong, H.H.Y.; Sun, C.C.; Zheng, Y. Resveratrol cocrystals with enhanced solubility and tabletabil-ity. Int. J. Pharm., 2016, 509(1-2), 391-399.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.006] [PMID: 27282539]
[20]
Krishna, G.R.; Shi, L.; Bag, P.P.; Sun, C.C.; Reddy, C.M. Correlation among crystal structure, mechanical behavior, and tabletability in the co-crystals of vanillin isomers. Cryst. Growth Des., 2015, 15(4), 1827-1832.
[http://dx.doi.org/10.1021/cg5018642]
[21]
Ross, S.A.; Lamprou, D.A.; Douroumis, D. Engineering and manufacturing of pharmaceutical co-crystals: A review of solvent-free manufacturing technologies. Chem. Commun. (Camb.), 2016, 52(57), 8772-8786.
[http://dx.doi.org/10.1039/C6CC01289B] [PMID: 27302311]
[22]
Martin, F.A.; Pop, M.M.; Borodi, G.; Filip, X.; Kacso, I. Ketoconazole salt and co-crystals with enhanced aqueous solubility. Cryst. Growth Des., 2013, 13(10), 4295-4304.
[http://dx.doi.org/10.1021/cg400638g]
[23]
Wang, J.R.; Yu, X.; Zhou, C.; Lin, Y.; Chen, C.; Pan, G.; Mei, X. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotinamide. Bioorg. Med. Chem. Lett., 2015, 25(5), 1036-1039.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.022] [PMID: 25630224]
[24]
Chen, Y.; Li, L.; Yao, J.; Ma, Y.Y.; Chen, J.M.; Lu, T.B. Improving the solubility and bioavailability of apixaban via apixaban–oxalic acid cocrystal. Cryst. Growth Des., 2016, 16(5), 2923-2930.
[http://dx.doi.org/10.1021/acs.cgd.6b00266]
[25]
Princy, B.; Shabaraya, A.R.; Bhavyashree, T. Pharmaceutical cocrystals: A novel approach for solubility modification. World J. Pharm. Res., 2021, 10, 1707-1724.
[26]
Shargel, L.; Yu, A.B. Applied biopharmaceutics and pharmacokinetics, 4th ed; McGraw Hill: New York, 1999.
[27]
Huang, Y.; Zhang, B.; Gao, Y.; Zhang, J.; Shi, L. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioa-vailability. J. Pharm. Sci., 2014, 103(8), 2330-2337.
[http://dx.doi.org/10.1002/jps.24048] [PMID: 24903146]
[28]
Almarsson, O.; Zaworotko, M.J. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals rep-resent a new path to improved medicines? Chem. Commun. (Camb.), 2004, 17(17), 1889-1896.
[http://dx.doi.org/10.1039/b402150a] [PMID: 15340589]
[29]
Khan, M.; Enkelmann, V.; Brunklaus, G. Crystal engineering of pharmaceutical Co-crystals: Application of methyl paraben as molecu-lar hook. J. Am. Chem. Soc., 2010, 132(14), 5254-5263.
[http://dx.doi.org/10.1021/ja100146f] [PMID: 20235531]
[30]
Aakeröy, C.B.; Fasulo, M.; Schultheiss, N.; Desper, J.; Moore, C. Structural competition between hydrogen bonds and halogen bonds. J. Am. Chem. Soc., 2007, 129(45), 13772-13773.
[http://dx.doi.org/10.1021/ja073201c] [PMID: 17956090]
[31]
Fukte, S.R.; Wagh, M.P.; Rawat, S. Coformer selection: An important tool in cocrystal formation. Int. J. Pharm. Pharm. Sci., 2014, 6, 9-14.
[32]
Duggirala, N.K.; Perry, M.L.; Almarsson, Ö.; Zaworotko, M. J. Pharmaceutical cocrystals: Along the path to improved medicines. Chem. Commun. (Camb.), 2016, 52(4), 640-655.
[http://dx.doi.org/10.1039/C5CC08216A] [PMID: 26565650]
[33]
Cincić, D.; Friscić, T.; Jones, W. Isostructural materials achieved by using structurally equivalent donors and acceptors in halogen-bonded cocrystals. Chemistry, 2008, 14(2), 747-753.
[http://dx.doi.org/10.1002/chem.200701184] [PMID: 17955560]
[34]
Pang, X.; Wang, H.; Wang, W.; Jin, W.J. Phosphorescent π-hole··· π bonding cocrystals of pyrene with halo-perfluorobenzenes (F, Cl, Br, I). Cryst. Growth Des., 2015, 15(10), 4938-4945.
[http://dx.doi.org/10.1021/acs.cgd.5b00844]
[35]
O’Nolan, D.; Perry, M.L.; Zaworotko, M.J. Chloral hydrate polymorphs and cocrystal revisited: Solving two pharmaceutical cold cas-es. Cryst. Growth Des., 2016, 16(4), 2211-2217.
[http://dx.doi.org/10.1021/acs.cgd.6b00032]
[36]
Meade, E.M. Sodium hydrogen divalproate oligomer. U.S. Patent 4, 988, 731, 1991.
[37]
Trask, A.V.; Motherwell, W.D.; Jones, W. Physical stability enhancement of theophylline via cocrystallization. Int. J. Pharm., 2006, 320(1-2), 114-123.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.018] [PMID: 16769188]
[38]
Etter, M.C. Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem., 1991, 95(12), 4601-4610.
[http://dx.doi.org/10.1021/j100165a007]
[39]
Allen, F.H. The cambridge structural database: A quarter of a million crystal structures and rising. Acta Crystallogr. B, 2002, 58(Pt 3 Pt 1), 380-388.
[http://dx.doi.org/10.1107/S0108768102003890] [PMID: 12037359]
[40]
Atwood, J.L.; Steed, J.W., Eds.; Encyclopedia of supramolecular chemistry; CRC press, 2004, Vol. 1, .
[http://dx.doi.org/10.1081/E-ESMC]
[41]
(a)Etter, M.C.; Acc, C. Encoding and decoding hydrogen-bond patterns of organic compounds. Res, 1990, 23, 120-126.
(b)Fan, E.; Vicent, C.; Geib, S.j.; Hamilton, A.D. Chem. Mater., 1994, 6, 1113-1117.
[42]
Hildebrand, J.H.; Scott, R.L. The solubility of nonelectrolytes; Reinhold Pub. Co.: New York, 1950, p. 3.
[43]
Zhang, G.G.; Zhou, D. Crystalline and amorphous solids.Developing solid oral dosage forms; Academic Press, 2009, pp. 25-60.
[http://dx.doi.org/10.1016/B978-0-444-53242-8.00002-3]
[44]
Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm., 2013, 453(1), 101-125.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.043] [PMID: 23207015]
[45]
Anderson, B.D.; Conradi, R.A. Predictive relationships in the water solubility of salts of a nonsteroidal anti-inflammatory drug. J. Pharm. Sci., 1985, 74(8), 815-820.
[http://dx.doi.org/10.1002/jps.2600740803] [PMID: 4032262]
[46]
Maheshwari, C.; André, V.; Reddy, S.; Roy, L.; Duarte, T.; Rodríguez-Hornedo, N. Tailoring aqueous solubility of a highly soluble compound via cocrystallization: Effect of coformer ionization, pH max and solute–solvent interactions. CrystEngComm, 2012, 14(14), 4801-4811.
[http://dx.doi.org/10.1039/c2ce06615g]
[47]
Good, D.J.; Rodriguez-Hornedo, N. Solubility advantage of pharmaceutical cocrystals. Cryst. Growth Des., 2009, 9(5), 2252-2264.
[http://dx.doi.org/10.1021/cg801039j]
[48]
Kuminek, G.; Cao, F. Bahia de Oliveira da Rocha, A.; Gonçalves Cardoso, S.; Rodríguez-Hornedo, N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv. Drug Deliv. Rev., 2016, 101, 143-166.
[http://dx.doi.org/10.1016/j.addr.2016.04.022] [PMID: 27137109]
[49]
Babu, N.J.; Nangia, A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst. Growth Des., 2011, 11(7), 2662-2679.
[http://dx.doi.org/10.1021/cg200492w]
[50]
Sathisaran, I.; Dalvi, S.V. Engineering cocrystals of poorlywater-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics, 2018, 10(3), 1-74.
[http://dx.doi.org/10.3390/pharmaceutics10030108] [PMID: 30065221]
[51]
Sanjay, A.N.; Manohar, S.D.; Bhanudas, S.R. Pharmaceutical cocrystallization: A review. J. Adv. Pharm. Educ. Res., 2014, 4, 388-396.
[52]
Yadav, S.; Gupta, P.C.; Sharma, N.; Kumar, J. Cocrystals: An alternative approach to modify physicochemical properties of drugs. Int. J. Pharm. Chem. Biol. Sci., 2015, 5, 427-436.
[53]
Mutalik, S.; Anju, P.; Manoj, K.; Usha, A.N. Enhancement of dissolution rate and bioavailability of aceclofenac: A chitosan-based solvent change approach. Int. J. Pharm., 2008, 350(1-2), 279-290.
[http://dx.doi.org/10.1016/j.ijpharm.2007.09.006] [PMID: 17945447]
[54]
Savjani, J.K. Co-crystallization: An approach to improve the performance characteristics of active pharmaceutical ingredients. Asian J. Pharm., 2015, 9(3), 147-151.
[http://dx.doi.org/10.4103/0973-8398.160309]
[55]
Sadoun, A.M.; Najjar, I.M.R.; Abd-Elwahed, M.S.; Meselhy, A. Experimental study on properties of AleAl2O3 nanocomposite hy-bridized by grapheme nanosheets. J. Mater. Res. Technol., 2020, 9(6), 14708-14717.
[http://dx.doi.org/10.1016/j.jmrt.2020.10.011]
[56]
Dhibar, M.; Chakraborty, S.; Basak, S. Assessment of effects of solvents on cocrystallization by computational simulation approach. Curr. Drug Deliv., 2021, 18(1), 44-53.
[http://dx.doi.org/10.2174/1567201817666200804110837] [PMID: 32753012]
[57]
Sathisaran, I.; Dalvi, S.V. Investigating cocrystallization of carbamazepine with structurally compatible coformers: New cocrystal and eutectic phases with enhanced dissolution. AAPS PharmSciTech, 2021, 22(1), 29.
[http://dx.doi.org/10.1208/s12249-020-01888-6] [PMID: 33404968]
[58]
Ratih, H.; Pamudji, J.S.; Alatas, F.; Soewandhi, S.N. Improving telmisartan mechanical properties through the formation of telmisartan and oxalic acid co-crystal by slow evaporation and ultrasound assisted co-crystallization from solution methods. Songklanakarin J. Sci. Technol., 2020, 42, 188-195.
[59]
Kulkarni, A.; Shete, S.; Hol, V.; Bachhav, R. Novel pharmaceutical cocrystal of telmisartan and hydrochlorothiazide. Asian J. Pharm. Clin. Res., 2020, 13, 104-112.
[http://dx.doi.org/10.22159/ajpcr.2020.v13i3.36541]
[60]
Haneef, J.; Arora, P.; Chadha, R. Implication of coformer structural diversity on cocrystallization outcomes of telmisartan with im-proved biopharmaceutical performance. AAPS PharmSciTech, 2020, 21(1), 1-11.
[http://dx.doi.org/10.1208/s12249-019-1559-9] [PMID: 31802267]
[61]
Al-Kazemi, R.; Al-Basarah, Y.; Nada, A. Dissolution enhancement of atorvastatin calcium by cocrystallization. Adv. Pharm. Bull., 2019, 9(4), 559-570.
[http://dx.doi.org/10.15171/apb.2019.064] [PMID: 31857959]
[62]
Kundu, S.; Kumari, N.; Soni, S.R.; Ranjan, S.; Kumar, R.; Sharon, A.; Ghosh, A. Enhanced solubility of telmisartan phthalic acid co-crystals within the ph range of a systemic absorption site. ACS Omega, 2018, 3(11), 15380-15388.
[http://dx.doi.org/10.1021/acsomega.8b02144] [PMID: 31458196]
[63]
Wong, S.N.; Hu, S.; Ng, W.W.; Xu, X.; Lai, K.L.; Lee, W.Y.T.; Chow, A.H.L.; Sun, C.C.; Chow, S.F. Cocrystallization of curcumin with benzenediols and benzenetriols via rapid solvent removal. Cryst. Growth Des., 2018, 11(9), 1-33.
[http://dx.doi.org/10.1021/acs.cgd.8b00849]
[64]
Alatas, F.; Ratih, H.; Soewandhi, S.N. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid co-crystal formation. Int. J. Pharm. Pharm. Sci., 2015, 7, 423-426.
[65]
Shewale, S.; Shete, A.S.; Doijad, R.C.; Kadam, S.S.; Patil, V.A.; Yadav, A.V. Formulation and solid state characterization of nicotin-amide-based co-crystals of fenofibrate. Indian J. Pharm. Sci., 2015, 77(3), 328-334.
[http://dx.doi.org/10.4103/0250-474X.159669] [PMID: 26180279]
[66]
Chadha, R.; Bhandari, S.; Haneef, J.; Khullar, S.; Mandal, S. Cocrystals of telmisartan: Characterization, structure elucidation, in vivo and toxicity studies. CrystEngComm, 2014, 16(36), 8375-8389.
[http://dx.doi.org/10.1039/C4CE00797B]
[67]
Sanphui, P.; Goud, N.R.; Khandavilli, U.B.R.; Nangia, A. Fast dissolving curcumin cocrystals. Cryst. Growth Des., 2011, 11(9), 4135-4145.
[http://dx.doi.org/10.1021/cg200704s]
[68]
Sevukarajan, M.; Thanuja, B.; Sodanapalli, R.; Nair, R. Synthesis and characterization of a pharmaceutical co-crystal: (Aceclofenac: Nicotinamide). J. Pharm. Sci. Res., 2011, 3, 1288-1293.
[69]
Arora, P.; Kaur, A.; Haneef, J.; Chadha, R. Solubility improvement of telmisartan by cocrystallization with citric acid. Int. J. Pharm. Sci. Res., 2017, 8, 3768-3775.
[70]
Emami, S.; Siahi-Shadbad, M.; Adibkia, K.; Barzegar-Jalali, M. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts, 2018, 8(4), 305-320.
[http://dx.doi.org/10.15171/bi.2018.33] [PMID: 30397585]
[71]
Wang, X.; Du, S.; Zhang, R.; Jia, X.; Yang, T.; Zhang, X. Drug-drug cocrystals: Opportunities and challenges. Asian J. Pharm. Sci., 2021, 16(3), 307-317.
[http://dx.doi.org/10.1016/j.ajps.2020.06.004] [PMID: 34276820]