Main Fabrication Methods of Micellar Nanoparticles for Nanoscale Tumor Therapy through the Self-assembly of Amphiphilic Copolymers

Page: [263 - 274] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Micellar nanoparticles synthesized through the self-assembly of amphiphilic copolymers have been widely used to encapsulate various cancer therapeutic agents for preclinical and clinical applications. These drug delivery systems are easy to fabricate and have good biocompatibility in general. In this article, we provide an overview of the advantages and disadvantages of micellar nanoparticles for the fabrication of therapeutic agent-loaded nanoparticles from amphiphilic copolymers, the examples of common polymer materials, and methods used to prepare micellar nanoparticles, including emulsion solvent evaporation method, double emulsion method, nanoprecipitation method, etc. By choosing an appropriate technique, different therapeutic agents with different properties can be incorporated into nanoparticles individually or in combination. We analyzed the parameters of various preparation methods, with particular emphasis on improvements in improved techniques for simultaneous co-loading of hydrophilic/hydrophobic drugs and therapeutic nucleic acids in a single nanoparticle. It will allow researchers to choose the appropriate method to design therapeutic agent-loaded micellar nanoparticles from amphiphilic copolymers.

Keywords: Micellar nanoparticles, amphiphilic copolymers, nanoparticle drug carriers, tumor therapy, co-delivery strategies, nano scaletumor.

Graphical Abstract

[1]
Maranhão, R.C.; Vital, C.G.; Tavoni, T.M.; Graziani, S.R. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents. Expert Opin. Drug Deliv., 2017, 14(10), 1217-1226.
[http://dx.doi.org/10.1080/17425247.2017.1276560] [PMID: 28042707]
[2]
Li, Q.; Zhou, T.; Wu, F.; Li, N.; Wang, R.; Zhao, Q.; Ma, Y.M.; Zhang, J.Q.; Ma, B.L. Subcellular drug distribution: Mechanisms and roles in drug efficacy, toxicity, resistance, and targeted delivery. Drug Metab. Rev., 2018, 50(4), 430-447.
[http://dx.doi.org/10.1080/03602532.2018.1512614] [PMID: 30270675]
[3]
Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2003, 2(5), 347-360.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[4]
Yokoyama, M.; Kwon, G.S.; Okano, T.; Sakurai, Y.; Seto, T.; Kataoka, K. Preparation of micelle-forming polymer-drug conjugates. Bioconjug. Chem., 1992, 3(4), 295-301.
[http://dx.doi.org/10.1021/bc00016a007] [PMID: 1390984]
[5]
Yu, F.; Zhu, M.; Li, N. Imaging-guided synergistic targeting-promoted photo-chemotherapy against cancers by methotrexate-conjugated hyaluronic acid nanoparticles. Chem. Eng. J., 2020, 380, 122426.
[http://dx.doi.org/10.1016/j.cej.2019.122426]
[6]
Joo, Y.; Brady, G.J.; Shea, M.J.; Oviedo, M.B.; Kanimozhi, C.; Schmitt, S.K.; Wong, B.M.; Arnold, M.S.; Gopalan, P. Isolation of pristine electronics grade semiconducting carbon nano tubes by switching the rigidity of the wrapping polymer backbone on demand. ACS Nano, 2015, 9(10), 10203-10213.
[http://dx.doi.org/10.1021/acsnano.5b03835] [PMID: 26348205]
[7]
Debnath, S.; Boyle, C.J.; Zhou, D.M. Persistent radical anion polymers based on naphthalenediimide and a vinylene spacer. RSC Advances, 2018, 8, 14760-14764.
[http://dx.doi.org/10.1039/C8RA02417K]
[8]
Kwon, G.; Suwa, S.; Yokoyama, M. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J. Control. Release, 1994, 29, 17-23.
[http://dx.doi.org/10.1016/0168-3659(94)90118-X]
[9]
Yokoyama, M.; Okano, T.; Sakurai, Y.; Fukushima, S.; Okamoto, K.; Kataoka, K. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system. J. Drug Target., 1999, 7(3), 171-186.
[http://dx.doi.org/10.3109/10611869909085500] [PMID: 10680973]
[10]
Huang, W-C.; Lu, I.L.; Chiang, W-H.; Lin, Y.W.; Tsai, Y.C.; Chen, H.H.; Chang, C.W.; Chiang, C.S.; Chiu, H.C. Tumortropic adipose-derived stem cells carrying smart nanotherapeutics for targeted delivery and dual-modality therapy of orthotopic glioblastoma. J. Control. Release, 2017, 254, 119-130.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.035] [PMID: 28336375]
[11]
Li, X.; Bottini, M.; Zhang, L.; Zhang, S.; Chen, J.; Zhang, T.; Liu, L.; Rosato, N.; Ma, X.; Shi, X.; Wu, Y.; Guo, W.; Liang, X.J. Core-satellite nanomedicines for in vivo real-time monitoring of enzyme-activatable drug release by fluorescence and photoacoustic dual-modal imaging. ACS Nano, 2019, 13(1), 176-186.
[http://dx.doi.org/10.1021/acsnano.8b05136] [PMID: 30592401]
[12]
Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release, 2002, 82(2-3), 189-212.
[http://dx.doi.org/10.1016/S0168-3659(02)00009-3] [PMID: 12175737]
[13]
Han, S.; Liu, Y.; Nie, X.; Xu, Q.; Jiao, F.; Li, W.; Zhao, Y.; Wu, Y.; Chen, C. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. Small, 2012, 8(10), 1596-1606.
[http://dx.doi.org/10.1002/smll.201102280] [PMID: 22411637]
[14]
Silva, D.M.; Liu, R.; Gonçalves, A.F.; da Costa, A.; Castro Gomes, A.; Machado, R.; Vongsvivut, J.; Tobin, J. M.; Sencadas, V. Design of polymeric core-shell carriers for combination therapies. J. Colloid Interface Sci., 2021, 587, 499-509.
[http://dx.doi.org/10.1016/j.jcis.2020.12.001] [PMID: 33388652]
[15]
Rosen, T.; Goldberg, I.; Navarra, W.; Venditto, V.; Kol, M. Block-stereoblock copolymers of poly(e-caprolactone) and poly(lactic acid). Angew. Chem. Int. Ed. Engl., 2018, 57(24), 7191-7195.
[http://dx.doi.org/10.1002/anie.201803063] [PMID: 29665211]
[16]
Xiao, X.; Chevali, V.S.; Song, P. Enhanced toughness of plla/pcl blends using poly(d-lactide)-poly (epsilon-caprolactone)-poly(d-lactide) as compatibilizer; Composites Communications, 2020, p. 21.
[17]
Makadia, H.K.; Siegel, S.J. Siegel Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[18]
Hiljanen Vainio, M.; Karjalainen, J. T. Seppala Biodegradable lactone copolymers. 1. Characterization and mechanical behavior of epsi-lon-caprolactone and lactide copolymers. J. Appl. Polym. Sci., 1996, 59, 1281-1288.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1281:AID-APP11>3.0.CO;2-9]
[19]
Bouissou, C.; Rouse, J.J.; Price, R.; van der Walle, C.F. The influence of surfactant on PLGA microsphere glass transition and water sorp-tion: Remodeling the surface morphology to attenuate the burst release. Pharm. Res., 2006, 23(6), 1295-1305.
[http://dx.doi.org/10.1007/s11095-006-0180-2] [PMID: 16715359]
[20]
Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000, 21(23), 2475-2490.
[http://dx.doi.org/10.1016/S0142-9612(00)00115-0] [PMID: 11055295]
[21]
Ruhe, P.Q.; Hedberg, E.L.; Padron, N.T.; Spauwen, P.H.; Jansen, J.A.; Mikos, A.G. rhBMP-2 release from injectable poly(DL-lactic-co-glycolic acid)/calcium-phosphate cement composites. J. Bone Joint Surg. Am., 2003, 85-A(Suppl. 3), 75-81.
[http://dx.doi.org/10.2106/00004623-200300003-00013] [PMID: 12925613]
[22]
Maeda, N.; Takeuchi, Y.; Takada, M.; Sadzuka, Y.; Namba, Y.; Oku, N. Anti-neovascular therapy by use of tumor neovasculature-targeted long-circulating liposome. J. Control. Release, 2004, 100(1), 41-52.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.033] [PMID: 15491809]
[23]
Tang, N.; Du, G.; Wang, N.; Liu, C.; Hang, H.; Liang, W. Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin. J. Natl. Cancer Inst., 2007, 99(13), 1004-1015.
[http://dx.doi.org/10.1093/jnci/djm027] [PMID: 17596572]
[24]
Chiappetta, D.A.; Sosnik, A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm., 2007, 66(3), 303-317.
[http://dx.doi.org/10.1016/j.ejpb.2007.03.022] [PMID: 17481869]
[25]
Dai, C.; Zhou, M.; Jiang, W. Breaking or following the membrane-targeting mechanism: Exploring the antibacterial mechanism of host defense peptide mimicking poly(2-oxazoline)s. J. Mater. Sci. Technol., 2020, 59, 220-226.
[http://dx.doi.org/10.1016/j.jmst.2020.06.006]
[26]
Allen, C.; Yu, Y.; Maysinger, D.; Eisenberg, A. Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug deliv-ery vehicle for neurotrophic agents FK506 and L-685,818. Bioconjug. Chem., 1998, 9(5), 564-572.
[http://dx.doi.org/10.1021/bc9702157] [PMID: 9736490]
[27]
Liu, X.; Liu, S.; Feng, S. Thermal, mechanical and degradation properties of flexible poly (1,3-trimethylene carbonate)/poly (l-lactide-co-epsilon-caprolactone) blends. J. Polym. Res., 2021, 28.
[28]
Zawaneh, P.N.; Doody, A.M.; Zelikin, A.N.; Putnam, D. Diblock copolymers based on dihydroxyacetone and ethylene glycol: Synthesis, characterization, and nanoparticle formulation. Biomacromolecules, 2006, 7(11), 3245-3251.
[http://dx.doi.org/10.1021/bm0605457] [PMID: 17096557]
[29]
Xu, Q.; Liu, Y.; Su, S. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic rgd and transferrin conjugated hyper-branched copolymer nanoparticles. Biomaterials, 2012, 33(5), 1627-1639.
[PMID: 22118775]
[30]
Halman, J.R.; Kim, K-T.; Gwak, S-J.; Pace, R.; Johnson, M.B.; Chandler, M.R.; Rackley, L.; Viard, M.; Marriott, I.; Lee, J.S.; Afonin, K.A. A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (Nanps) for controlled gene silencing, immunostimulation, and biodistribution. Nanomedicine, 2020, 23, 102094.
[http://dx.doi.org/10.1016/j.nano.2019.102094] [PMID: 31669854]
[31]
Zhao, L.; Skwarczynski, M.; Toth, I. Polyelectrolyte-based platforms for the delivery of peptides and proteins. ACS Biomater. Sci. Eng., 2019, 5(10), 4937-4950.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01135] [PMID: 33455241]
[32]
Zhang, L.; Eisenberg, A. Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc., 1996, 118, 3168-3181.
[http://dx.doi.org/10.1021/ja953709s]
[33]
Elbert, D.L.; Hubbell, J.A. Surface treatments of polymers for biocompatibility. Annu. Rev. Mater. Sci., 1996, 26, 365-394.
[http://dx.doi.org/10.1146/annurev.ms.26.080196.002053]
[34]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. In: Drug Del. Rev; , 2012, pp. 631-651.
[35]
Cong, Z.; Zhang, L.; Ma, S.Q.; Lam, K.S.; Yang, F.F.; Liao, Y.H. Size-transformable hyaluronan stacked self-assembling peptide nanopar-ticles for improved transcellular tumor penetration and photo-chemo combination therapy. ACS Nano, 2020, 14(2), 1958-1970.
[http://dx.doi.org/10.1021/acsnano.9b08434] [PMID: 32023048]
[36]
Li, X.; Wang, X.; Zhao, C.; Shao, L.; Lu, J.; Tong, Y.; Chen, L.; Cui, X.; Sun, H.; Liu, J.; Li, M.; Deng, X.; Wu, Y. From one to all: Self-assembled theranostic nanoparticles for tumor-targeted imaging and programmed photoactive therapy. J. Nanobiotechnology, 2019, 17(1), 23.
[http://dx.doi.org/10.1186/s12951-019-0450-x] [PMID: 30711005]
[37]
Nagasaki, Y.; Iijima, M.; Kato, M.; Kataoka, K. Primary amino-terminal heterobifunctional poly(ethylene oxide). Facile synthesis of poly(ethylene oxide) with a primary amino group at one end and a hydroxyl group at the other end. Bioconjug. Chem., 1995, 6(6), 702-704.
[http://dx.doi.org/10.1021/bc00036a007] [PMID: 8608183]
[38]
Yokoyama, M.; Okano, T.; Sakurai, Y.; Kikuchi, A.; Ohsako, N.; Nagasaki, Y.; Kataoka, K. Synthesis of poly(ethylene oxide) with het-erobifunctional reactive groups at its terminals by an anionic initiator. Bioconjug. Chem., 1992, 3(4), 275-276.
[http://dx.doi.org/10.1021/bc00016a003] [PMID: 1390981]
[39]
Nakamura, T.; Nagasaki, Y.; Kataoka, K. Synthesis of heterobifunctional poly(ethylene glycol) with a reducing monosaccharide residue at one end. Bioconjug. Chem., 1998, 9(2), 300-303.
[http://dx.doi.org/10.1021/bc970179b] [PMID: 9548548]
[40]
Chakka, V.P.; Zhou, T. Carboxymethylation of polysaccharides: Synthesis and bioactivities Int. J. Biol. Macromol, 2020, 165(PtB), 2425-2431.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.178] [PMID: 33132131]
[41]
Thorén, L. The dextrans--clinical data. Dev. Biol. Stand., 1980, 48, 157-167.
[PMID: 6168501]
[42]
Kalina, M.; Kargerová, A. Pekař M. DEAE-dextran hydrochloride behaviour in aqueous solution-The effect of ionic strength and con-centration. Carbohydr. Polym., 2019, 220, 163-169.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.070] [PMID: 31196536]
[43]
Nichols, B.L.B.; Chen, J.; Mischnick, P.; Edgar, K.J. Selective oxidation of 2-hydroxypropyl ethers of cellulose and dextran: Simple and efficient introduction of versatile ketone groups to polysaccharides. Biomacromolecules, 2020, 21(12), 4835-4849.
[http://dx.doi.org/10.1021/acs.biomac.0c01045] [PMID: 33236636]
[44]
Chen, Y.; Yuan, M.; Zhang, Y.; Liu, S.; Yang, X.; Wang, K.; Liu, J. Construction of coacervate-in-coacervate multi-compartment protocells for spatial organization of enzymatic reactions. Chem. Sci. (Camb.), 2020, 11(32), 8617-8625.
[http://dx.doi.org/10.1039/D0SC03849K] [PMID: 34123122]
[45]
Larsen, C. Dextran prodrugs—structure and stability in relation to therapeutic activity. Adv. Drug Deliv. Rev., 1989, 3, 103-154.
[http://dx.doi.org/10.1016/0169-409X(89)90006-9]
[46]
Wang, H.; Han, S.; Sun, J. Preparation of dextran–poly(lactide)–1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer and its micellar characteristics. Carbohydr. Polym., 2011, 83, 1408-1413.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.028]
[47]
Dai, Y.; Su, J.; Wu, K.; Ma, W.; Wang, B.; Li, M.; Sun, P.; Shen, Q.; Wang, Q.; Fan, Q. Multifunctional thermosensitive liposomes based on natural phase-change material: Near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy. ACS Appl. Mater. Interfaces, 2019, 11(11), 10540-10553.
[http://dx.doi.org/10.1021/acsami.8b22748] [PMID: 30807086]
[48]
Shao, L.; Li, Q.; Zhao, C.; Lu, J.; Li, X.; Chen, L.; Deng, X.; Ge, G.; Wu, Y. Auto-fluorescent polymer nanotheranostics for self-monitoring of cancer therapy via triple-collaborative strategy. Biomaterials, 2019, 194, 105-116.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.021] [PMID: 30590240]
[49]
McKee, M.G.; Unal, S.; Wilkes, G.L. Branched polyesters: Recent advances in synthesis and performance. Prog. Polym. Sci., 2005, 30, 507-539.
[http://dx.doi.org/10.1016/j.progpolymsci.2005.01.009]
[50]
Li, Q.; Li, W.; Di, H.; Luo, L.; Zhu, C.; Yang, J.; Yin, X.; Yin, H.; Gao, J.; Du, Y.; You, J. A photosensitive liposome with NIR light trig-gered doxorubicin release as a combined photodynamic-chemo therapy system. J. Control. Release, 2018, 277, 114-125.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.001] [PMID: 29408424]
[51]
Tyrrell, Z.L.; Shen, Y.; Radosz, M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog. Polym. Sci., 2010, 35, 1128-1143.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.06.003]
[52]
Chen, H.; Zhao, Y.; Wang, H.; Nie, G.; Nan, K. Co-delivery strategies based on multifunctional nanocarriers for cancer therapy. Curr. Drug Metab., 2012, 13(8), 1087-1096.
[http://dx.doi.org/10.2174/138920012802849995] [PMID: 22380013]
[53]
Kircheis, R.; Wightman, L.; Wagner, E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev., 2001, 53(3), 341-358.
[http://dx.doi.org/10.1016/S0169-409X(01)00202-2] [PMID: 11744176]
[54]
Liu, J.; Wang, H.; Guo, J. Molecular insights into the kinetic hydrate inhibition performance of poly (n-vinyl lactam) polymers. J. Nat. Gas Sci. Eng., 2020, 83, 10354.
[http://dx.doi.org/10.1016/j.jngse.2020.103504]
[55]
Shen, R.; Xue, S.; Xu, Y.; Liu, Q.; Feng, Z.; Ren, H.; Zhai, H.; Kong, F. Research progress and development demand of nanocellulose reinforced polymer composites. Polymers (Basel), 2020, 12(9), 12.
[http://dx.doi.org/10.3390/polym12092113] [PMID: 32957464]
[56]
Kobayashi, S.; Uyama, H.; Narita, Y. Novel multifunctional initiators for polymerization of 2-oxazolines. Macromolecules, 1992, 25, 3232-3236.
[http://dx.doi.org/10.1021/ma00038a031]
[57]
Zhao, C.; Deng, H.; Xu, J.; Li, S.; Zhong, L.; Shao, L.; Wu, Y.; Liang, X.J. “Sheddable” PEG-lipid to balance the contradiction of PEGyla-tion between long circulation and poor uptake. Nanoscale, 2016, 8(20), 10832-10842.
[http://dx.doi.org/10.1039/C6NR02174C] [PMID: 27167180]
[58]
Su, S.; Tian, Y.; Li, Y.; Ding, Y.; Ji, T.; Wu, M.; Wu, Y.; Nie, G. “Triple-punch” strategy for triple negative breast cancer therapy with minimized drug dosage and improved antitumor efficacy. ACS Nano, 2015, 9(2), 1367-1378.
[http://dx.doi.org/10.1021/nn505729m] [PMID: 25611071]
[59]
Su, S.; Wang, H.; Liu, X.; Wu, Y.; Nie, G. iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials, 2013, 34(13), 3523-3533.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.083] [PMID: 23410678]
[60]
Miao, Q.; Xu, D.; Wang, Z.; Xu, L.; Wang, T.; Wu, Y.; Lovejoy, D.B.; Kalinowski, D.S.; Richardson, D.R.; Nie, G.; Zhao, Y. Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents. Biomaterials, 2010, 31(28), 7364-7375.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.012] [PMID: 20599267]
[61]
Zhu, Z.; Li, Y.; Li, X.; Li, R.; Jia, Z.; Liu, B.; Guo, W.; Wu, W.; Jiang, X. Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly(epsilon-caprolactone) nanoparticles: Preparation and antitumor activity in vivo. J. Control. Release, 2010, 142(3), 438-446.
[http://dx.doi.org/10.1016/j.jconrel.2009.11.002] [PMID: 19896997]
[62]
Yang, K.; Yang, C.H.; Li, Z. Synthesis and characterization of pva/mmt porous nanocomposite prepared by directional freeze-drying method. Adv. Mat. Res., 2011, 197, 253-260.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.197-198.253]
[63]
Yoshitomi, T.; Hirayama, A.; Nagasaki, Y. The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles. Biomaterials, 2011, 32(31), 8021-8028.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.014] [PMID: 21816462]
[64]
Lee, H.; Zeng, F.; Dunne, M.; Allen, C. Methoxy poly(ethylene glycol)-block-poly(δ-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules, 2005, 6(6), 3119-3128.
[http://dx.doi.org/10.1021/bm050451h] [PMID: 16283736]
[65]
Wu, Y.; Jiao, F.; Han, S.; Fan, T.; Liu, Y.; Li, W.; Hu, L.; Zhao, Y.; Chen, C. Construction of amphiphilic copolymer nanoparticles based on hyperbranched poly (amine-ester) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine as drug carriers for cancer therapy. Nanomedicine, 2011, 7(6), 945-954.
[http://dx.doi.org/10.1016/j.nano.2011.04.010] [PMID: 21664985]
[66]
Ding, Y.; Su, S.; Zhang, R.; Shao, L.; Zhang, Y.; Wang, B.; Li, Y.; Chen, L.; Yu, Q.; Wu, Y.; Nie, G. Precision combination therapy for triple negative breast cancer via biomimetic polydopamine polymer core-shell nanostructures. Biomaterials, 2017, 113, 243-252.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.053] [PMID: 27829203]
[67]
Yin, T.; Liu, Y.; Yang, M.; Wang, L.; Zhou, J.; Huo, M. Novel chitosan derivatives with reversible cationization and hydrophobicization for tumor cytoplasm-specific burst co-delivery of sirna and chemotherapeutics. ACS Appl. Mater. Interfaces, 2020, 12(13), 14770-14783.
[http://dx.doi.org/10.1021/acsami.9b19373] [PMID: 32149497]
[68]
Laskar, P.; Somani, S.; Campbell, S.J.; Mullin, M.; Keating, P.; Tate, R.J.; Irving, C.; Leung, H.Y.; Dufès, C. Camptothecin-based dendrim-ersomes for gene delivery and redox-responsive drug delivery to cancer cells. Nanoscale, 2019, 11(42), 20058-20071.
[http://dx.doi.org/10.1039/C9NR07254C] [PMID: 31612185]
[69]
Costa, D.; Santo, D.; Domingues, C.; Veiga, F.; Faneca, H.; Figueiras, A. Recent advances in peptide-targeted micelleplexes: Current devel-opments and future perspectives. Int. J. Pharm., 2021, 597, 120362.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120362] [PMID: 33556489]
[70]
Wang, H.; Zhao, Y.; Wu, Y.; Hu, Y.L.; Nan, K.; Nie, G.; Chen, H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials, 2011, 32(32), 8281-8290.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.032] [PMID: 21807411]
[71]
Okochi, H.; Nakano, M. Preparation and evaluation of w/o/w type emulsions containing vancomycin. Adv. Drug Deliv. Rev., 2000, 45(1), 5-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00097-1] [PMID: 11104894]
[72]
Wang, H.; Wu, Y.; Zhao, R.; Nie, G. Engineering the assemblies of biomaterial nanocarriers for delivery of multiple theranostic agents with enhanced antitumor efficacy. Adv. Mater., 2013, 25(11), 1616-1622.
[http://dx.doi.org/10.1002/adma.201204750] [PMID: 23341059]
[73]
Setten, R.L.; Rossi, J.J.; Han, S.P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov., 2019, 18(6), 421-446.
[http://dx.doi.org/10.1038/s41573-019-0017-4] [PMID: 30846871]
[74]
Zhu, C.; Jung, S.; Luo, S.; Meng, F.; Zhu, X.; Park, T.G.; Zhong, Z. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials, 2010, 31(8), 2408-2416.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.077] [PMID: 19963269]
[75]
Yang, J.; Zhang, Q.; Liu, Y.; Zhang, X.; Shan, W.; Ye, S.; Zhou, X.; Ge, Y.; Wang, X.; Ren, L. Nanoparticle-based co-delivery of siRNA and paclitaxel for dual-targeting of glioblastoma. Nanomedicine (Lond.), 2020, 15(14), 1391-1409.
[http://dx.doi.org/10.2217/nnm-2020-0066] [PMID: 32495692]
[76]
Chen, W.; Zhang, M.; Shen, W.; Du, B.; Yang, J.; Zhang, Q. A polycationic brush mediated co-delivery of doxorubicin and gene for com-bination therapy. Polymers (Basel), 2019, 11(1), 11.
[http://dx.doi.org/10.3390/polym11010060] [PMID: 30960044]
[77]
Wiradharma, N.; Zhang, Y.; Venkataraman, S. Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today, 2009, 4, 302-317.
[http://dx.doi.org/10.1016/j.nantod.2009.06.001]