The Effects of Acute and Chronic Sleep Deprivation on the Immune Profile in the Rat

Article ID: e160322202280 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Acute and chronic sleep deprivation present many health-related problems in modern societies, mainly concerning the immune system. Immune factors, particularly the interleukins, regulate sleep and, therefore, may be altered by sleep deprivation (SD). Objectives: We aimed to investigate the possible effects of acute and chronic sleep deprivation on selected cytokines, including interleukins (IL-1β, IL-9, IL-17, and IL-23) and tumor necrosis factor- alpha (TNF-α).

Methods: The animals were grouped into acute sleep-deprived (SD; for 24 hours) and chronic sleep-deprived (8 hours a day for 10, 20, and 30-days). The SD was induced using the multipleplatforms model. The serum levels of cytokines were measured using commercially available ELISA.

Results: The serum levels of IL-1β were significantly reduced after acute SD, whereas they were increased after 20-days of chronic SD. The IL-9 levels were reduced after acute SD, increased after 10-days of SD, and reduced again after 30-days of SD. Conversely, the levels of IL-23 were not changed after acute SD, reduced after 10 days of SD, and increased after 30-days of SD. Levels of TNF-α were not changed after acute SD, whereas they were increased after 20 and 30- days of SD.

Conclusion: In conclusion, both acute and chronic SD distinctly disturb the immune profile, which might result in the emergence of various pathologies presented during sleep deprivation.

Keywords: Sleep deprivation, cytokines, interleukins, rat model, platform, immune profile.

Graphical Abstract

[1]
Donlea, J.M. Neuronal and molecular mechanisms of sleep homeostasis. Curr. Opin. Insect Sci., 2017, 24, 51-57.
[http://dx.doi.org/10.1016/j.cois.2017.09.008] [PMID: 29208223]
[2]
Besedovsky, L.; Lange, T.; Born, J. Sleep and immune func-tion. Pflugers Arch., 2012, 463(1), 121-137.
[http://dx.doi.org/10.1007/s00424-011-1044-0] [PMID: 22071480]
[3]
Liu, Y.; Wheaton, A.G.; Chapman, D.P.; Cunningham, T.J.; Lu, H.; Croft, J.B. Prevalence of healthy sleep duration among adults-United States, 2014. MMWR Morb. Mortal. Wkly. Rep., 2016, 65(6), 137-141.
[http://dx.doi.org/10.15585/mmwr.mm6506a1] [PMID: 26890214]
[4]
Murphy, M.J.; Peterson, M.J. Sleep disturbances in depres-sion. Sleep Med. Clin., 2015, 10(1), 17-23.
[http://dx.doi.org/10.1016/j.jsmc.2014.11.009] [PMID: 26055669]
[5]
Besedovsky, L.; Lange, T.; Haack, M. The sleep-immune crosstalk in health and disease. Physiol. Rev., 2019, 99(3), 1325-1380.
[http://dx.doi.org/10.1152/physrev.00010.2018] [PMID: 30920354]
[6]
Ibarra-Coronado, E.G.; Pérez-Torres, A.; Pantaleón-Martínez, A.M.; Velazquéz-Moctezuma, J.; Rodriguez-Mata, V.; Mo-rales-Montor, J. Innate immunity modulation in the duodenal mucosa induced by REM sleep deprivation during infection with Trichinella spirallis. Sci. Rep., 2017, 7, 45528.
[http://dx.doi.org/10.1038/srep45528] [PMID: 28374797]
[7]
Wright, K.P., Jr; Drake, A.L.; Frey, D.J.; Fleshner, M.; Desou-za, C.A.; Gronfier, C.; Czeisler, C.A. Influence of sleep depri-vation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav. Immun., 2015, 47, 24-34.
[http://dx.doi.org/10.1016/j.bbi.2015.01.004] [PMID: 25640603]
[8]
Lungato, L.; Gazarini, M.L.; Paredes-Gamero, E.J.; Tufik, S.; D’Almeida, V.J. Paradoxical sleep deprivation impairs mouse survival after infection with malaria parasites. Malar. J., 2015, 14, 183.
[http://dx.doi.org/10.1186/s12936-015-0690-7]
[9]
Taylor, D.J.; Kelly, K.; Kohut, M.L.; Song, K.S. Is insomnia a risk factor for decreased influenza vaccine response? Behav. Sleep Med., 2017, 15(4), 270-287.
[http://dx.doi.org/10.1080/15402002.2015.1126596] [PMID: 27077395]
[10]
Opp, M.R.; Krueger, J.M. Sleep and immunity: A growing field with clinical impact. Brain Behav. Immun., 2015, 47, 1-3.
[http://dx.doi.org/10.1016/j.bbi.2015.03.011] [PMID: 25849976]
[11]
Krueger, J.M. The role of cytokines in sleep regulation. Curr. Pharm. Des., 2008, 14(32), 3408-3416.
[http://dx.doi.org/10.2174/138161208786549281] [PMID: 19075717]
[12]
Karlsson, L.; Nousiainen, N.; Scheinin, N.M.; Maksimow, M.; Salmi, M.; Lehto, S.M.; Tolvanen, M.; Lukkarinen, H.; Karls-son, H. Cytokine profile and maternal depression and anxiety symptoms in mid-pregnancy-the finnbrain birth cohort study. Arch. Women Ment. Health, 2017, 20(1), 39-48.
[http://dx.doi.org/10.1007/s00737-016-0672-y] [PMID: 27699637]
[13]
Saresella, M.; Calabrese, E.; Marventano, I.; Piancone, F.; Gatti, A.; Alberoni, M.; Nemni, R.; Clerici, M. Increased ac-tivity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain Behav. Immun., 2011, 25(3), 539-547.
[http://dx.doi.org/10.1016/j.bbi.2010.12.004] [PMID: 21167930]
[14]
Cappuzzello, C.; Di Vito, L.; Melchionna, R.; Melillo, G.; Sil-vestri, L.; Cesareo, E.; Crea, F.; Liuzzo, G.; Facchiano, A.; Capogrossi, M.C.; Napolitano, M. Increase of plasma IL-9 and decrease of plasma IL-5, IL-7, and IFN-γ in patients with chronic heart failure. J. Transl. Med., 2011, 9, 28.
[http://dx.doi.org/10.1186/1479-5876-9-28] [PMID: 21418620]
[15]
Pan, H.F.; Leng, R.X.; Li, X.P.; Zheng, S.G.; Ye, D.Q. Target-ing T-helper 9 cells and interleukin-9 in autoimmune diseases. Cytokine Growth Factor Rev., 2013, 24(6), 515-522.
[http://dx.doi.org/10.1016/j.cytogfr.2013.09.001] [PMID: 25215394]
[16]
Iwakura, Y.; Ishigame, H. The IL-23/IL-17 axis in inflamma-tion. J. Clin. Invest., 2006, 116(5), 1218-1222.
[http://dx.doi.org/10.1172/JCI28508] [PMID: 16670765]
[17]
Hsiao, Y.H.; Chen, Y.T.; Tseng, C.M.; Wu, L.A.; Lin, W.C.; Su, V.Y.; Perng, D.W.; Chang, S.C.; Chen, Y.M.; Chen, T.J.; Lee, Y.C.; Chou, K.T. Sleep disorders and increased risk of autoimmune diseases in individuals without sleep apnea. Sleep, 2015, 38(4), 581-586.
[http://dx.doi.org/10.5665/sleep.4574] [PMID: 25669189]
[18]
Mullington, J.M.; Simpson, N.S.; Meier-Ewert, H.K.; Haack, M. Sleep loss and inflammation. Best Pract. Res. Clin. Endocrinol. Metab., 2010, 24(5), 775-784.
[http://dx.doi.org/10.1016/j.beem.2010.08.014] [PMID: 21112025]
[19]
Hotamisligil, G.S.; Arner, P.; Caro, J.F.; Atkinson, R.L.; Spie-gelman, B.M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest., 1995, 95(5), 2409-2415.
[http://dx.doi.org/10.1172/JCI117936] [PMID: 7738205]
[20]
Alvarez, A.; Cacabelos, R.; Sanpedro, C.; García-Fantini, M.; Aleixandre, M. Serum TNF-alpha levels are increased and cor-relate negatively with free IGF-I in Alzheimer disease. Neurobiol. Aging, 2007, 28(4), 533-536.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.012] [PMID: 16569464]
[21]
Karayiannakis, A.J.; Syrigos, K.N.; Polychronidis, A.; Pitia-koudis, M.; Bounovas, A.; Simopoulos, K. Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients. Anticancer Res., 2001, 21(2B), 1355-1358.
[PMID: 11396212]
[22]
Alzoubi, K.H.; Khabour, O.F.; Albawaana, A.S.; Alhashimi, F.H.; Athamneh, R.Y. Tempol prevents chronic sleep-deprivation induced memory impairment. Brain Res. Bull., 2016, 120, 144-150.
[http://dx.doi.org/10.1016/j.brainresbull.2015.11.017] [PMID: 26616531]
[23]
Guide for the care and use of laboratory animals. National Academies Press (US): 8th edition, 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK54050/
[24]
Clark, J.D.; Gebhart, G.F.; Gonder, J.C.; Keeling, M.E.; Kohn, D.F. The 1996 guide for the care and use of laboratory ani-mals. ILAR J., 1997, 38(1), 41-48.
[http://dx.doi.org/10.1093/ilar.38.1.41]
[25]
Aleisa, A.M.; Alzoubi, K.H.; Alkadhi, K.A. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment. Neurosci. Lett., 2011, 499(1), 28-31.
[http://dx.doi.org/10.1016/j.neulet.2011.05.025] [PMID: 21624432]
[26]
Ibarra-Coronado, E.G.; Pantaleón-Martínez, A.M.; Velazquéz-Moctezuma, J.; Prospéro-García, O.; Méndez-Díaz, M.; Pérez-Tapia, M.; Pavón, L.; Morales-Montor, J. The bidirectional re-lationship between sleep and immunity against infections. J. Immunol. Res., 2015, 2015, 678164.
[http://dx.doi.org/10.1155/2015/678164] [PMID: 26417606]
[27]
Cheng, F.; Guo, Z.; Xu, H.; Yan, D.; Li, Q. Decreased plasma IL22 levels, but not increased IL17 and IL23 levels, correlate with disease activity in patients with systemic lupus erythema-tosus. Ann. Rheum. Dis., 2009, 68(4), 604-606.
[http://dx.doi.org/10.1136/ard.2008.097089] [PMID: 19286907]
[28]
Zhang, X.; Zheng, H.; Zhang, H.; Ma, W.; Wang, F.; Liu, C.; He, S. Increased interleukin (IL)-8 and decreased IL-17 pro-duction in chronic obstructive pulmonary disease (COPD) provoked by cigarette smoke. Cytokine, 2011, 56(3), 717-725.
[http://dx.doi.org/10.1016/j.cyto.2011.09.010] [PMID: 21996014]
[29]
Hakim, F.; Wang, Y.; Zhang, S.X.; Zheng, J.; Yolcu, E.S.; Carreras, A.; Khalyfa, A.; Shirwan, H.; Almendros, I.; Gozal, D. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res., 2014, 74(5), 1329-1337.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3014] [PMID: 24448240]
[30]
Krueger, J.M.; Fang, J.; Taishi, P.; Chen, Z.; Kushikata, T.; Gardi, J. Sleep. A physiologic role for IL-1 beta and TNF-alpha. Ann. N. Y. Acad. Sci., 1998, 856, 148-159.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb08323.x] [PMID: 9917875]
[31]
Boswell, J.M.; Yui, M.A.; Burt, D.W.; Kelley, V.E. Increased tumor necrosis factor and IL-1 beta gene expression in the kidneys of mice with lupus nephritis. J. Immunol., 1988, 141(9), 3050-3054.
[PMID: 3262676]
[32]
Liu, T.; McDonnell, P.C.; Young, P.R.; White, R.F.; Siren, A.L.; Hallenbeck, J.M.; Barone, F.C.; Feurestein, G.Z. Inter-leukin-1 beta mRNA expression in ischemic rat cortex. Stroke, 1993, 24(11), 1746-1750.
[http://dx.doi.org/10.1161/01.STR.24.11.1746] [PMID: 8236352]
[33]
Shimbara, A.; Christodoulopoulos, P.; Soussi-Gounni, A.; Olivenstein, R.; Nakamura, Y.; Levitt, R.C.; Nicolaides, N.C.; Holroyd, K.J.; Tsicopoulos, A.; Lafitte, J.J.; Wallaert, B.; Ha-mid, Q.A. IL-9 and its receptor in allergic and nonallergic lung disease: Increased expression in asthma. J. Allergy Clin. Immunol., 2000, 105(1 Pt 1), 108-115.
[http://dx.doi.org/10.1016/S0091-6749(00)90185-4] [PMID: 10629460]
[34]
Ouyang, H.; Shi, Y.; Liu, Z.; Feng, S.; Li, L.; Su, N.; Lu, Y.; Kong, S. Increased interleukin 9 and CD4+IL-9+ T cells in pa-tients with systemic lupus erythematosus. Mol. Med. Rep., 2013, 7(3), 1031-1037.
[http://dx.doi.org/10.3892/mmr.2013.1258] [PMID: 23291628]
[35]
Kandir, S.; Keskin, E. Serum IL-1β IL-6, IL-10 and TNF-α levels in thyroidectomized rats. Kafkas Univ. Vet. Fak. Derg., 2015, 22(2), 297-300.
[http://dx.doi.org/10.9775/kvfd.2015.14371]
[36]
Silva, C.M.S.; Vieira-Junior, R.C.; Trombeta, J.C.R.; Lima, T.R.; Fraga, G.A.; Sena, M.S.; Ávila, E.T.P.; Tibana, R.A.; Prestes, J.; Navalta, J.W.; Voltarelli, F.A. Effects of aerobic and resistance training of long duration on pro- and anti-inflammatory cytokines in rats. Rev. Andal. Med. Deporte, 2017, 10(4), 170-175.
[http://dx.doi.org/10.1016/j.ramd.2016.02.005]