Efficient Control of the Formation of Pillar[5]arene-based Supramolecular Polymers

Page: [152 - 159] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The design and preparation of functional pillar[n]arene-based supramolecular polymers have attracted extensive attention due to their wide range of applications.

Objective and Methods: Based on the synergistic effects of non-covalent interactions, including hydrogen bonds and host-guest interaction, an amphiphilic pillar[5]arene 1 with two terminated acid chains was designed, and its self-assembly properties were investigated by 1HNMR, TEM, SEM and UV-Vis.

Results: The pillar[5]arene 1 can form a self-inclusion complex, whose carboxyl groups are locked on the surface of the cavity at low concentration (<4.5 mM) in chloroform. Interestingly, when competitive guest dihaloalkanes, such as α,ω-diiodobutane (DIB), α,ω-dibromobutane (DBB) and α,ω-dichlorobutane (DCB), were added, supramolecular polymers were immediately obtained and precipitated. Their critical precipitation concentration (CPC) were calculated as 1 mM, 3 mM and 5 mM for DIB, DBB and DCB, respectively. Moreover, tuning the solvent, concentration and guests can reversibly control their polymerization.

Conclusion: This study provided an efficient method for the preparation of pillar[5]arene-based supramolecular polymers, which have the potential for the separation or purification of the dihaloalkanes.

Keywords: Pillar[5]arene, pseudo[2]rotaxane, supramolecular polymer, self-assembly, host-guest interaction, calculation.

Graphical Abstract

[1]
Song, X.; Zhu, J.L.; Wen, Y.; Zhao, F.; Zhang, Z.X.; Li, J. Thermoresponsive supramolecular micellar drug delivery system based on star-linear pseudo-block polymer consisting of β-cyclodextrin-poly(N-isopropylacrylamide) and adamantyl-poly(ethylene glycol). J. Colloid Interface Sci., 2017, 490, 372-379.
[http://dx.doi.org/10.1016/j.jcis.2016.11.056] [PMID: 27914336]
[2]
Gonzalez-Gaitano, G.; Isasi, J.R.; Velaz, I.; Zornoza, A. Drug carrier systems based on cyclodextrin supramolecular assemblies and polymers: Present and perspectives. Curr. Pharm. Des., 2017, 23(3), 411-432.
[http://dx.doi.org/10.2174/1381612823666161118145309] [PMID: 27855609]
[3]
Xiao, T.X.; Wang, L.Y. Recent advances of functional gels controlled by pillar[n]arene-based host–guest interactions. Tetrahedron Lett., 2018, 59(13), 1172-1182.
[http://dx.doi.org/10.1016/j.tetlet.2018.02.028]
[4]
Bellingham, C.M.; Lillie, M.A.; Gosline, J.M.; Wright, G.M.; Starcher, B.C.; Bailey, A.J.; Woodhouse, K.A.; Keeley, F.W. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers, 2003, 70(4), 445-455.
[http://dx.doi.org/10.1002/bip.10512] [PMID: 14648756]
[5]
Pekkanen, A.M.; Mondschein, R.J.; Williams, C.B.; Long, T.E. 3D printing polymers with supramolecular functionality for biological applications. Biomacromolecules, 2017, 18(9), 2669-2687.
[http://dx.doi.org/10.1021/acs.biomac.7b00671] [PMID: 28762718]
[6]
Luo, K.; Jeong, K.B.; Park, C.S.; Kim, Y.R. Biosynthesis of superparamagnetic polymer microbeads via simple precipitation of enzymatically synthesized short-chain amylose. Carbohydr. Polym., 2018, 181, 818-824.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.073] [PMID: 29254041]
[7]
Ma, X.; Tian, H. Photo-responsive supramolecular polymer. Acta. Polym. Sin., 2017, (1), 27-36.
[8]
Wang, H.; Zhang, D.W.; Li, Z.T. Supramolecular organic frameworks: Porous periodic supramolecular polymers. Acta. Polym. Sin., 2017, (1), 19-26
[9]
Liu, J.; Tan, C.S.Y.; Yu, Z.; Li, N.; Abell, C.; Scherman, O.A. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater., 2017, 29(22), 1605325-1605330.
[http://dx.doi.org/10.1002/adma.201605325] [PMID: 28370560]
[10]
Cheng, C.C.; Lee, D.J.; Chen, J.K. Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation. Acta Biomater., 2017, 50, 476-483.
[http://dx.doi.org/10.1016/j.actbio.2016.12.031] [PMID: 28003144]
[11]
Ooi, H.W.; Hafeez, S.; van Blitterswijk, C.A.; Moroni, L.; Baker, M.B. Hydrogels that listen to cells: A review of cell-responsive strategies in biomaterial design for tissue regeneration. Mater. Horiz., 2017, 4(6), 1020-1040.
[http://dx.doi.org/10.1039/C7MH00373K]
[12]
Chai, J.; Buriak, J.M. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano, 2008, 2(3), 489-501.
[http://dx.doi.org/10.1021/nn700341s] [PMID: 19206575]
[13]
Zimmermann, S.T.; Balkenende, D.W.R.; Lavrenova, A.; Weder, C.; Brugger, J. Nanopatterning of a stimuli-responsive fluorescent supramolecular polymer by thermal scanning probe lithography. ACS Appl. Mater. Interfaces, 2017, 9(47), 41454-41461.
[http://dx.doi.org/10.1021/acsami.7b13672] [PMID: 29077391]
[14]
Han, G.; Wang, J.T.; Ji, X.; Liu, L.; Zhao, H. Nanoscale proteinosomes fabricated by self-assembly of a supramolecular protein-polymer conjugate. Bioconjug. Chem., 2017, 28(2), 636-641.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00704] [PMID: 28035817]
[15]
Yang, F.; Graciani, J.; Evans, J.; Liu, P.; Hrbek, J.; Sanz, J.F.; Rodriguez, J.A. CO oxidation on inverse CeO(x)/Cu(111) catalysts: High catalytic activity and ceria-promoted dissociation of O2. J. Am. Chem. Soc., 2011, 133(10), 3444-3451.
[http://dx.doi.org/10.1021/ja1087979] [PMID: 21341793]
[16]
Bhanja, P.; Bhaumik, A. Functionalized porous nanomaterials as efficient heterogeneous catalyst for eco-friendly organic transformations. J. Nanosci. Nanotechnol., 2016, 16(9), 9050-9062.
[http://dx.doi.org/10.1166/jnn.2016.12899]
[17]
Agarwal, R.A.; Mukherjee, S. Two-dimensional flexible Ni(II)-based porous coordination polymer showing single-crystal to single-crystal transformation, selective gas adsorption and catalytic properties. Polyhedron, 2016, 105, 228-237.
[http://dx.doi.org/10.1016/j.poly.2015.12.008]
[18]
Jin, Y.; Voss, B.A.; Jin, A.; Long, H.; Noble, R.D.; Zhang, W. Highly CO2-selective organic molecular cages: What determines the CO2 selectivity. J. Am. Chem. Soc., 2011, 133(17), 6650-6658.
[http://dx.doi.org/10.1021/ja110846c] [PMID: 21473590]
[19]
Lopez-Olvera, A.; Sanchez-Gonzalez, E.; Campos-Reales-Pineda, A.; Aguilar-Granda, A.; Ibarra, I.A.; Rodriguez-Molina, B. CO2 capture in a carbazole-based supramolecular polyhedron structure: The significance of Cu(II) open metal sites. Inorg. Chem. Front., 2017, 4(1), 56-64.
[http://dx.doi.org/10.1039/C6QI00342G]
[20]
Kondo, A.; Kajiro, H.; Noguchi, H.; Carlucci, L.; Proserpio, D.M.; Ciani, G.; Kato, K.; Takata, M.; Seki, H.; Sakamoto, M.; Hattori, Y.; Okino, F.; Maeda, K.; Ohba, T.; Kaneko, K.; Kanoh, H. Super flexibility of a 2D Cu-based porous coordination framework on gas adsorption in comparison with a 3D framework of identical composition: Framework dimensionality-dependent gas adsorptivities. J. Am. Chem. Soc., 2011, 133(27), 10512-10522.
[http://dx.doi.org/10.1021/ja201170c] [PMID: 21671624]
[21]
Heaven, M.W.; Cave, G.W.V.; McKinlay, R.M.; Antesberger, J.; Dalgarno, S.J.; Thallapally, P.K.; Atwood, J.L. Hydrogen-bonded hexamers self-assemble as spherical and tubular superstructures on the sub-micron scale. Angew. Chem. Int. Ed., 2006, 45(37), 6221-6224.
[http://dx.doi.org/10.1002/anie.200600671] [PMID: 16865764]
[22]
Xu, J.X.; Liu, J.J.; Li, Z.J.; Li, X.P.; Chen, C.; Zhao, C.X.; Xu, S.Q.; Pan, X.F.; Liu, J.Q.; Guo, K. Three is company: Dual intramolecular hydrogen-bond enabled carboxylic acid active in ring-opening polymerization. Polym. Polym. Chem., 2016, 7(5), 1111-1120.
[http://dx.doi.org/10.1039/C5PY01635E]
[23]
Voisin, D.; Flot, D.; Van der Lee, A.; Dautel, O.J.; Moreau, J.J.E. Hydrogen bond-directed assembly of silsesquioxanes cubes: Synthesis of carboxylic acid POSS derivatives and the solid state structure of octa[2-(p-carboxyphenyl)ethyl] silsesquioxane. CrystEngComm, 2017, 19(3), 492-502.
[http://dx.doi.org/10.1039/C6CE02369J]
[24]
Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.A.; Nakamoto, Y. para-Bridged symmetrical pillar[5]arenes: Their Lewis acid catalyzed synthesis and host-guest property. J. Am. Chem. Soc., 2008, 130(15), 5022-5023.
[http://dx.doi.org/10.1021/ja711260m] [PMID: 18357989]
[25]
Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res., 2012, 45(8), 1294-1308.
[http://dx.doi.org/10.1021/ar2003418] [PMID: 22551015]
[26]
Ogoshi, T.; Yamagishi, T.A.; Nakamoto, Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: New key players for supramolecular chemistry. Chem. Rev., 2016, 116(14), 7937-8002.
[http://dx.doi.org/10.1021/acs.chemrev.5b00765] [PMID: 27337002]
[27]
Cragg, P.J.; Sharma, K. Pillar[5]arenes: Fascinating cyclophanes with a bright future. Chem. Soc. Rev., 2012, 41(2), 597-607.
[http://dx.doi.org/10.1039/C1CS15164A] [PMID: 21804967]
[28]
Guo, F.; Sun, Y.; Xi, B.H.; Diao, G.W. Recent progress in the research on the host-guest chemistry of pillar[n]arenes. Supramol. Chem., 2018, 30(2), 81-92.
[http://dx.doi.org/10.1080/10610278.2017.1368512]
[29]
Yang, Y.W.; Sun, Y.L.; Song, N. Switchable host-guest systems on surfaces. Acc. Chem. Res., 2014, 47(7), 1950-1960.
[http://dx.doi.org/10.1021/ar500022f] [PMID: 24635353]
[30]
Zhang, Z.; Luo, Y.; Chen, J.; Dong, S.; Yu, Y.; Ma, Z.; Huang, F. Formation of linear supramolecular polymers that is driven by C-H...π interactions in solution and in the solid state. Angew. Chem. Int. Ed. Engl., 2011, 50(6), 1397-1401.
[http://dx.doi.org/10.1002/anie.201006693] [PMID: 21290521]
[31]
Zhang, Z.; Yu, G.; Han, C.; Liu, J.; Ding, X.; Yu, Y.; Huang, F. Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals forces. Org. Lett., 2011, 13(18), 4818-4821.
[http://dx.doi.org/10.1021/ol2018938] [PMID: 21842840]
[32]
Zhang, Z.H.; Shao, L.; Yang, J. Assembly of a self‐complementary monomer: Formation of a pH‐responsive pillar[5]arene‐based supramolecular polymer. J. Polym. Sci. A Polym. Chem., 2018, 56(3), 261-265.
[http://dx.doi.org/10.1002/pola.28907]
[33]
Wang, Y.; Lv, M-Z.; Song, N.; Liu, Z-J.; Wang, C.; Yang, Y-W. Dual-Stimuli-Responsive Fluorescent Supramolecular Polymer Based on a Diselenium-Bridged Pillar[5]arene Dimer and an AIE-Active Tetraphenylethylene Guest. Macromolecules, 2017, 50(15), 5759-5766.
[http://dx.doi.org/10.1021/acs.macromol.7b01010]
[34]
Sun, C.L.; Peng, H.Q.; Niu, L.Y.; Chen, Y.Z.; Wu, L.Z.; Tung, C.H.; Yang, Q.Z. Artificial light-harvesting supramolecular polymeric nanoparticles formed by pillar[5]arene-based host-guest interaction. Chem. Commun. (Camb.), 2018, 54(9), 1117-1120.
[http://dx.doi.org/10.1039/C7CC09315B] [PMID: 29334097]
[35]
Liu, L.; Wang, L.; Liu, C.; Fu, Z.; Meier, H.; Cao, D. Dimerization control in the self-assembly behavior of copillar[5]arenes bearing ω-hydroxyalkoxy groups. J. Org. Chem., 2012, 77(20), 9413-9417.
[http://dx.doi.org/10.1021/jo301779y] [PMID: 22998632]
[36]
Liu, L.; Cao, D.; Jin, Y.; Tao, H.; Kou, Y.; Meier, H. Efficient synthesis of copillar[5]arenes and their host-guest properties with dibromoalkanes. Org. Biomol. Chem., 2011, 9(20), 7007-7010.
[http://dx.doi.org/10.1039/c1ob05871a] [PMID: 21870001]
[37]
Yu, G.; Hua, B.; Han, C. Proton transfer in host-guest complexation between a difunctional pillar[5]arene and alkyldiamines. Org. Lett., 2014, 16(9), 2486-2489.
[http://dx.doi.org/10.1021/ol500857w] [PMID: 24735090]
[38]
Khalib, N.C.; Thanigaimani, K.; Arshad, S.; Razak, I.A. Hydrogen bonded supramolecular association in organic acid–base salts: Crystal structures of four proton-transfer complexes assembled from 2-amino-4-methylpyridine with 2-chloro, 4-chloro, 3-methyl and 4-methylbenzoic acid. J. Chem. Crystallogr., 2014, 44(11-12), 555-571.
[http://dx.doi.org/10.1007/s10870-014-0550-2]
[39]
Chen, L.; Li, Z.; Chen, Z.; Hou, J.L. Pillar[5]arenes with an introverted amino group: A hydrogen bonding tuning effect. Org. Biomol. Chem., 2013, 11(2), 248-251.
[http://dx.doi.org/10.1039/C2OB27044G] [PMID: 23160174]
[40]
Zhang, W.X.; Liu, L.Z.; Duan, W.G.; Zhou, Q.Q.; Ma, C.G.; Huang, Y. Recognition selectivities of lasso-type pseudo[1]rotaxane based on a mono-ester-functionalized pillar[5]arene. Molecules, 2019, 24(15), 1-10.
[http://dx.doi.org/10.3390/molecules24152693] [PMID: 31344932]
[41]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision A. 02; Gaussian, Inc.: Wallingford, CT, 2009.