Nanoscience & Nanotechnology-Asia

Author(s): Deepika Joshi* and Bhavna

DOI: 10.2174/1568026622666220310162418

Optimization of Chitosan-wrapped Linagliptin Nanosuspension for Cognitive Enhancement Through Intranasal Route

Article ID: e100322202064 Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Objective: This study aimed to design and statistically optimize the potential of intranasallydelivered chitosan-wrapped linagliptin nanosuspension as an alternative approach for brain targeting for enhancing cognitive behaviour, increasing its solubility/permeability characteristics, and reducing the side effects.

Methods: Linagliptin nanosuspensions were prepared by the nanoprecipitation method. We investigated the effects of independent variables, i.e., linagliptin concentration (D) and chitosan concentration (P), on the dependent factors like % drug loading (R1), % entrapment efficiency (R2), and % drug release (R3) via a central composite design. Furthermore, the optimized formulation was evaluated for surface morphology/ size, ex-vivo permeation study, in-vitro release study, and stability study.

Results: The optimized formulation was further evaluated by different evaluation parameters such as FESEM and TEM study of the optimized formulation (LS 1) showed spherical morphology. Mean particle size (250.7 nm), charge (-16.3 mV), % entrapment efficiency (95.8 ± 1.45 %), and % drug loading (35.78 ± 0.19 %) were determined. Saturation solubility (0.987 mg/ml), in vitro dissolution rate (89.65 ± 0.82 %), and ex vivo permeation (82.23 ± 1.25 %) of LS 1 were higher than pure linagliptin.

Conclusion: Response surface methodology was applied successfully to obtain LS 1 as an optimized formulation with enhanced solubility and dissolution characteristics at minimized dose, alleviating side effects and with improvised cognitive effects. Thus, an efficient intranasal delivery platform of linagliptin based on nanosuspension was designed for bypassing the BBB and delivering therapeutics directly to the brain. This can be a futuristic approach for enhancing cognitive effects by linagliptin nanosuspension via the intranasal route.

Keywords: Linagliptin, cognitive behaviour, central composite design, response surface methodology, nanosuspension, intranasal.

Graphical Abstract

[1]
Lauand, F.; Hohl, A.; Ronsoni, M.F.; Guedes, E.P.; Melo, T.G. Linagliptin: Dpp-4 inhibition in the treatment of type 2 diabetes mellitus. J. Diabetes. Metab. Disord. Control, 2014, 1(1), 13-19.
[2]
Al-Badri, G.; Leggio, G.M.; Musumeci, G.; Marzagalli, R.; Drago, F.; Castorina, A. Tackling dipeptidyl peptidase IV in neurological disor-ders. Neural Regen. Res., 2018, 13(1), 26-34.
[http://dx.doi.org/10.4103/1673-5374.224365] [PMID: 29451201]
[3]
Bendlin, B.B. Antidiabetic therapies and Alzheimer disease. Dialogues Clin. Neurosci., 2019, 21(1), 83-91.
[http://dx.doi.org/10.31887/DCNS.2019.21.1/bbendlin] [PMID: 31607783]
[4]
Cole, G.M.; Frautschy, S.A. The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease. Exp. Gerontol., 2007, 42(1-2), 10-21.
[http://dx.doi.org/10.1016/j.exger.2006.08.009] [PMID: 17049785]
[5]
Lovshin, J.; Estall, J.; Yusta, B.; Brown, T.J.; Drucker, D.J. Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J. Biol. Chem., 2001, 276(24), 21489-21499.
[http://dx.doi.org/10.1074/jbc.M009382200] [PMID: 11262390]
[6]
Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology, 2007, 132(6), 2131-2157.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[7]
Flock, G.; Baggio, L.L.; Longuet, C.; Drucker, D.J. Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice. Diabetes, 2007, 56(12), 3006-3013.
[http://dx.doi.org/10.2337/db07-0697] [PMID: 17717280]
[8]
Isik, A.T.; Soysal, P.; Yay, A.; Usarel, C. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease. Diabetes Res. Clin. Pract., 2017, 123, 192-198.
[http://dx.doi.org/10.1016/j.diabres.2016.12.010] [PMID: 28056430]
[9]
Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis. Model. Mech., 2017, 10(5), 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[10]
Kumar, B.; Sharma, D. Recent patent advances for neurodegenerative disorders and its treatment. Recent Pat. Drug Deliv. Formul., 2017, 11(3), 158-172.
[http://dx.doi.org/10.2174/1872211311666171010123958] [PMID: 29032765]
[11]
Wu, H.; Zhou, Y.; Wang, Y.; Tong, L.; Wang, F.; Song, S.; Xu, L.; Liu, B.; Yan, H.; Sun, Z. Current state and future directions of intranasal delivery route for central nervous system disorders: A scientometric and visualization analysis. Front. Pharmacol., 2021, 12, 717192.
[http://dx.doi.org/10.3389/fphar.2021.717192] [PMID: 34322030]
[12]
Pashirova, T.N.; Zueva, I.V.; Petrov, K.A.; Lukashenko, S.S.; Nizameev, I.R.; Kulik, N.V.; Voloshina, A.D.; Almasy, L.; Kadirov, M.K.; Masson, P.; Souto, E.B.; Zakharova, L.Y.; Sinyashin, O.G. Mixed cationic liposomes for brain delivery of drugs by the intranasal route: The acetylcholinesterase reactivator 2-PAM as encapsulated drug model. Colloids Surf. B Biointerfaces, 2018, 171, 358-367.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.049] [PMID: 30059851]
[13]
Peltonen, L.; Hirvonen, J. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol., 2010, 62(11), 1569-1579.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01022.x] [PMID: 21039542]
[14]
Sharma, D. Bhavna, Formulation and evaluation of polymeric nanomicelles of gliptin for controlled drug delivery. Drug Deliv. Lett., 2019, 9(4), 1-11.
[15]
Shariare, M.H.; Altamimi, M.A.; Marzan, A.L.; Tabassum, R.; Jahan, B.; Reza, H.M.; Rahman, M.; Ahsan, G.U.; Kazi, M. in vitro dissolu-tion and bioavailability study of furosemide nanosuspension prepared using design of experiment (DoE). Saudi Pharm. J., 2019, 27(1), 96-105.
[http://dx.doi.org/10.1016/j.jsps.2018.09.002] [PMID: 30662312]
[16]
Davaran, S.; Rashidi, M.R.; Pourabbas, B.; Dadashzadeh, M.; Haghshenas, N.M. Adriamycin release from poly(lactide-coglycolide)-polyethylene glycol nanoparticles: Synthesis, and in vitro characterization. Int. J. Nanomedicine, 2006, 1(4), 535-539.
[http://dx.doi.org/10.2147/nano.2006.1.4.535] [PMID: 17722284]
[17]
Chaudhari, B.; Satyanand, T.; Patel, C. Preparation and evaluation of nano suspension of poorly soluble drug. J Drug Dis Therapeutics., 2013, 1(1), 37-42.
[18]
Song, J.; Suh, C.H.; Park, Y.B.; Lee, S.H.; Yoo, N.C.; Lee, J.D.; Kim, K.H.; Lee, S.K. A phase I/IIa study on intra-articular injection of holmium-166-chitosan complex for the treatment of knee synovitis of rheumatoid arthritis. Eur. J. Nucl. Med., 2001, 28(4), 489-497.
[http://dx.doi.org/10.1007/s002590000470] [PMID: 11357500]
[19]
Illum, L. Nasal drug delivery--possibilities, problems and solutions. J. Control. Release, 2003, 87(1-3), 187-198.
[http://dx.doi.org/10.1016/S0168-3659(02)00363-2] [PMID: 12618035]
[20]
Bhavna; Md, S.; Ali, A.; Bhatnagar, A.;Baboota, S.; Sahni, J.K.; Ali, J. Design, development, optimization and characterization of donepezil loaded chitosan nanoparticles for brain targeting to treat Alzheimer’s disease. Sci. Adv. Mater., 2014, 6(4), 720-735.
[http://dx.doi.org/10.1166/sam.2014.1761]
[21]
Su, Y.; Sun, B.; Gao, X.; Dong, X.; Fu, L.; Zhang, Y.; Li, Z.; Wang, Y.; Jiang, H.; Han, B. Intranasal delivery of targeted nanoparticles loaded With miR-132 to brain for the treatment of neurodegenerative diseases. Front. Pharmacol., 2020, 11, 1165.
[http://dx.doi.org/10.3389/fphar.2020.01165] [PMID: 32848773]
[22]
Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.K.; Ali, J. Development and evaluation of rivastigmine loaded chitosan na-noparticles for brain targeting. Eur. J. Pharm. Sci., 2012, 47(1), 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[23]
Chen, Y.; Liu, Y.; Xie, J.; Zheng, Q.; Yue, P.; Chen, L.; Hu, P.; Yang, M. Nose-to-brain delivery by nanosuspensions-based in situ gel for breviscapine. Int. J. Nanomedicine, 2020, 15, 10435-10451.
[http://dx.doi.org/10.2147/IJN.S265659] [PMID: 33380794]
[24]
Pailla, S.R.; Talluri, S.; Rangaraj, N.; Ramavath, R.; Challa, V.S.; Doijad, N.; Sampathi, S. Intranasal zotepine nanosuspension: Intended for improved brain distribution in rats. Daru, 2019, 27(2), 541-556.
[http://dx.doi.org/10.1007/s40199-019-00281-4] [PMID: 31256410]
[25]
Gulsun, T.; Borna, S.E.; Vural, I. Preparation and characterization of furosemide nanosuspensions. J. Drug Deliv. Sci. Technol., 2018, 45, 93-100.
[http://dx.doi.org/10.1016/j.jddst.2018.03.005]
[26]
Islam, S.U.; Shehzad, A.; Ahmed, M.B.; Lee, Y.S. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules, 2020, 25(8), 19-29.
[http://dx.doi.org/10.3390/molecules25081929] [PMID: 32326318]
[27]
Rabiee, N.; Ahmad, S.; Afshari, K.S. Polymeric nanoparticles for nasal drug delivery to the brain: Relevance to Alzheimer’s Disease. Adv. Ther. (Weinh.), 2021, 4(3), 1-14.
[http://dx.doi.org/10.1002/adtp.202000076]
[28]
Muntimadugu, E.; Dhommati, R.; Jain, A.; Challa, V.G.; Shaheen, M.; Khan, W. Intranasal delivery of nanoparticle encapsulated tarenflur-bil: A potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci., 2016, 92, 224-234.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[29]
Elnaggar, Y.S.; Etman, S.M.; Abdelmonsif, D.A. Intranasal piperine-loaded Chitosan nanoparticles as brain-targeted therapy in Alz-heimer’s disease: Optimization, biological efficacy, and potential toxicity. J. Pharm. Sci., 2015, 104(10), 3544-3556.
[http://dx.doi.org/10.1002/jps.24557]
[30]
Sahu, B.P.; Das, K.M. Optimization of felodipine nanosuspensions using Full Factorial Design. Int. J. Pharm. Tech. Res., 2013, 5(2), 553-561.
[31]
Sharma, D.; Bhargava, S. Bhavna, Development and optimization of nanomicelles of dpp-4 inhibitor using response surface methodolo-gy. Drug Dev. Ind. Pharm., 2019, 46(1), 70-79.
[http://dx.doi.org/10.1080/03639045.2019.1701003] [PMID: 31795778]
[32]
Soheyla, H.; Foruhe, Z. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 2). Trop. J. Pharm. Res., 2013, 12(2), 265-273.
[33]
Kakran, M.; Shegokar, R.; Sahoo, N.G.; Shaal, L.A.; Li, L.; Müller, R.H. Fabrication of quercetin nanocrystals: Comparison of different methods. Eur. J. Pharm. Biopharm., 2012, 80(1), 113-121.
[http://dx.doi.org/10.1016/j.ejpb.2011.08.006] [PMID: 21896330]
[34]
Jahangir, M.A.; Khan, R.; Sarim Imam, S. Formulation of sitagliptin-loaded oral polymeric nano scaffold: Process parameters evaluation and enhanced anti-diabetic performance. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 66-78.
[http://dx.doi.org/10.1080/21691401.2017.1411933] [PMID: 29226729]
[35]
Sobhani, Z.; Mohammadi Samani, S.; Montaseri, H.; Khezri, E. Nanoparticles of chitosan loaded ciprofloxacin: Fabrication and antimicro-bial activity. Adv. Pharm. Bull., 2017, 7(3), 427-432.
[http://dx.doi.org/10.15171/apb.2017.051] [PMID: 29071225]
[36]
Souza, S.D. A review of in vitro drug release test methods for nano-sized dosage forms. Adv. Pharm., 2014, 2014, 1-12.
[37]
Mudgil, M.; Pawar, P.K. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic appli-cation. Sci. Pharm., 2013, 81(2), 591-606.
[http://dx.doi.org/10.3797/scipharm.1204-16] [PMID: 23833723]
[38]
Varshosaz, J.; Hassanzadeh, F.; Sadeghi Aliabadi, H.; Nayebsadrian, M.; Banitalebi, M.; Rostami, M. Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia. BioMed Res. Int., 2014, 2014, 525684.
[http://dx.doi.org/10.1155/2014/525684] [PMID: 24719872]
[39]
Shanmugam, S.; Valarmathi, S.; Kumars, S. Sterility testing procedure of ophthalmic ocusert aciclovir used for treating herpes simplex virus. Asian J. Pharm. Clin. Res., 2017, 10(10), 344-346.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i10.19216]
[40]
Ortega-Arroyo, L. Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface re-sponse. Stärke, 2013, 65, 814-821.
[http://dx.doi.org/10.1002/star.201200255]
[41]
Hormozi, M.R.; Jalali, M.; Robatjazi, H. Controlling aspect ratio of colloidal silver nanorods using response surface methodology. Colloids Surf. A Physicochem. Eng. Asp., 2012, 393, 46-52.
[http://dx.doi.org/10.1016/j.colsurfa.2011.10.023]
[42]
Ahmed, S.; Sarim Imam, S.; Zafar, A.; Ali, A.; Aqil, M.; Gull, A. in vitro and preclinical assessment of factorial design based nanoetho-somes transgel formulation of an opioid analgesic. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1793-1802.
[http://dx.doi.org/10.3109/21691401.2015.1102742] [PMID: 26584819]
[43]
Kharia, K.K.; Singhai, A.K.; Verma, R. Formulation and evaluation of polymeric nanoparticles of an antiviral drug for gastroretention. Int. J. Pharm. Sci. Nanotech., 2012, 4(4), 1557-1562.
[http://dx.doi.org/10.37285/ijpsn.2011.4.4.6]
[44]
Sarika, P.R.; James, N.R.; Nishna, N.; Anil Kumar, P.R.; Raj, D.K. Galactosylated pullulan-curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells. Colloids Surf. B Biointerfaces, 2015, 133, 347-355.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.020] [PMID: 26133239]
[45]
Alshweiat, A.; Csóka, I.; Tömösi, F.; Janáky, T.; Kovács, A.; Gáspár, R.; Sztojkov-Ivanov, A.; Ducza, E.; Márki, Á.; Szabó-Révész, P.; Ambrus, R. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: Preparation, characterization, and in vivo evaluation. Int. J. Pharm., 2020, 579(579), 119166.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119166] [PMID: 32084574]
[46]
He, J.; Han, Y.; Xu, G. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Advances, 2017, 7(22), 13053-13064.
[http://dx.doi.org/10.1039/C6RA28676C]
[47]
Fernandes Queiroz, M.; Melo, K.R.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A. Does the use of chitosan contribute to oxalate kidney stone formation? Mar. Drugs, 2014, 13(1), 141-158.
[http://dx.doi.org/10.3390/md13010141] [PMID: 25551781]
[48]
Kreuter, J.; Shamenkov, D.; Petrov, V.; Ramge, P.; Cychutek, K.; Koch-Brandt, C.; Alyautdin, R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target., 2002, 10(4), 317-325.
[http://dx.doi.org/10.1080/10611860290031877] [PMID: 12164380]
[49]
Agarwal, V.; Bajpai, M. Preparation and optimization of esomeprazole nanosuspension using evaporative precipitation– ultrasonication. Trop. J. Pharm. Res., 2014, 13(4), 497-503.
[http://dx.doi.org/10.4314/tjpr.v13i4.2]
[50]
Jacob, S.; Nair, A.B.; Shah, J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res., 2020, 24(24), 3.
[http://dx.doi.org/10.1186/s40824-020-0184-8] [PMID: 31969986]
[51]
Xu, R.; Wang, J.; Xu, J.; Song, X.; Huang, H.; Feng, Y.; Fu, C. Rhynchophylline loaded-mPEG-PLGA nanoparticles coated with tween-80 for preliminary study in Alzheimer’s Disease. Int. J. Nanomedicine, 2020, 15, 1149-1160.
[http://dx.doi.org/10.2147/IJN.S236922] [PMID: 32110013]
[52]
Dibaei, M.; Rouini, M.R.; Sheikholeslami, B.; Gholami, M.; Dinarvand, R. The effect of surface treatment on the brain delivery of curcu-min nanosuspension: In vitro and in vivo studies. Int. J. Nanomedicine, 2019, 14, 5477-5490.
[http://dx.doi.org/10.2147/IJN.S199624] [PMID: 31409999]