Immunoliposomes: A Targeted Drug Delivery System for Cancer Therapeutics and Vaccination

Page: [366 - 390] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Cancer has become one of the world's most lethal and life-threatening disorders, resulting in many deaths. Drug targeting and managing drug delivery are concepts that are implemented to increase a drug's therapeutic index by enhancing its specificity to particular cells, tissues, or organs and reducing its action and harmful side effects. Liposomes have proven to be one of the most innovative drug delivery systems in medicine. Immunoliposomes, also known as antibody-coupled liposomes, have gained a lot of attention as a homing device for targeted therapies. Monoclonal antibodies or antibody fragments that combine with liposomes to create immunoliposomes have been considered a leading technique for targeted delivery. Various functionalization strategies are adopted for the non-covalent and covalent binding of monoclonal antibodies and their components to liposomal surfaces, such as thiolation, amide bonds, hydrazone bonds, and electrostatic interactions, hydrophobic interactions, hydrogen bonding, etc. for cancer-specific targeting. This provides an overview of various stimulus-responsive immunoliposomes capable of regulating drug release in response to an exogenous magnetic field, changes in temperature or pH, enzyme concentration, endogenous stimuli, and applications of immunoliposomes in vaccination and cancer therapeutics and endogenous immune response stimulation.

Keywords: Immunoliposome, drug targeting, cancer, vaccination, drug delivery, monoclonal antibodies.

Graphical Abstract

[1]
Das, M.; Mohanty, C.; Sahoo, S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv., 2009, 6(3), 285-304.
[http://dx.doi.org/10.1517/17425240902780166] [PMID: 19327045]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Liao, Z.; Wong, S.W.; Yeo, H.L.; Zhao, Y. Nanocarriers for cancer treatment: Clinical impact and safety. NanoImpact, 2020, 5, 1-12.
[http://dx.doi.org/10.1016/j.impact.2020.100253]
[4]
Master, A.M.; Sen Gupta, A. EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine (Lond.), 2012, 7(12), 1895-1906.
[http://dx.doi.org/10.2217/nnm.12.160] [PMID: 23249333]
[5]
Mukhopadhyay, D.; Ahmed, A.; Sano, C.; Awad, N.; Al Sawaftah, N.; Husseini, G.A. Ultrasound-triggered immunotherapy for cancer treatment: An update. Curr. Protein Pept. Sci., 2021, 22(6), 493-504.
[http://dx.doi.org/10.2174/1389203722666210212125526] [PMID: 33583369]
[6]
Miliotou, A.N.; Papadopoulou, L.C. CAR T-cell therapy: A new era in cancer immunotherapy. Curr. Pharm. Biotechnol., 2018, 19(1), 5-18.
[http://dx.doi.org/10.2174/1389201019666180418095526] [PMID: 29667553]
[7]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[8]
Arias, J.L.; Clares, B.; Morales, M.E.; Gallardo, V.; Ruiz, M.A. Lipid-based drug delivery systems for cancer treatment. Curr. Drug Targets, 2011, 12(8), 1151-1165.
[http://dx.doi.org/10.2174/138945011795906570] [PMID: 21443475]
[9]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[10]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[11]
Bendas, G. Immunoliposomes: A promising approach to targeting cancer therapy. BioDrugs, 2001, 15(4), 215-224.
[http://dx.doi.org/10.2165/00063030-200115040-00002] [PMID: 11437687]
[12]
Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624] [PMID: 28049940]
[13]
Bangham, A.D.; Horne, R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol., 1964, 8(5), 660-668.
[http://dx.doi.org/10.1016/S0022-2836(64)80115-7] [PMID: 14187392]
[14]
Paszko, E.; Senge, M.O. Immunoliposomes. Curr. Med. Chem., 2012, 19(31), 5239-5277.
[http://dx.doi.org/10.2174/092986712803833362] [PMID: 22934774]
[15]
Nekkanti, V.K.; Kalepu, S. Recent advances in liposomal drug delivery: A review. Pharm. Nanotechnol., 2015, 3(1), 35-55.
[http://dx.doi.org/10.2174/2211738503666150709173905]
[16]
Nisini, R.; Poerio, N.; Mariotti, S.; De Santis, F.; Fraziano, M. The multirole of liposomes in therapy and prevention of infectious diseases. Front. Immunol., 2018, 9, 155.
[http://dx.doi.org/10.3389/fimmu.2018.00155] [PMID: 29459867]
[17]
Urbinati, G.; Marsaud, V.; Renoir, J.M. Anticancer drugs in liposomal nanodevices: A target delivery for a targeted therapy. Curr. Top. Med. Chem., 2012, 12(15), 1693-1712.
[http://dx.doi.org/10.2174/156802612803531423] [PMID: 22978336]
[18]
Wang, D.; Sun, Y.; Liu, Y.; Meng, F.; Lee, R.J. Clinical translation of immunoliposomes for cancer therapy: Recent perspectives. Expert Opin. Drug Deliv., 2018, 15(9), 893-903.
[http://dx.doi.org/10.1080/17425247.2018.1517747] [PMID: 30169978]
[19]
Zhu, L.; Torchilin, V.P. Stimulus-responsive nanopreparations for tumor targeting. Integr. Biol., 2013, 5(1), 96-107.
[http://dx.doi.org/10.1039/c2ib20135f] [PMID: 22869005]
[20]
Kontermann, R.E. Immunoliposomes for cancer therapy. Curr. Opin. Mol. Ther., 2006, 8(1), 39-45.
[PMID: 16506524]
[21]
Mastrobattista, E.; Koning, G.A.; Storm, G. Immunoliposomes for the targeted delivery of antitumor drugs. Adv. Drug Deliv. Rev., 1999, 40(1-2), 103-127.
[http://dx.doi.org/10.1016/S0169-409X(99)00043-5] [PMID: 10837783]
[22]
Alavizadeh, S.H.; Soltani, F.; Ramezani, M. Recent advances in immunoliposome-based Cancer therapy. Curr. Pharmacol. Rep., 2016, 2(3), 129-141.
[http://dx.doi.org/10.1007/s40495-016-0056-z]
[23]
Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol., 2014, 32(1), 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007] [PMID: 24210498]
[24]
Vingerhoeds, M.H.; Steerenberg, P.A.; Hendriks, J.J.; Crommelin, D.J.; Storm, G. Targeted delivery of diphtheria toxin via immunoliposomes: Efficient antitumor activity in the presence of inactivating anti-diphtheria toxin antibodies. FEBS Lett., 1996, 395(2-3), 245-250.
[http://dx.doi.org/10.1016/0014-5793(96)01055-1] [PMID: 8898105]
[25]
Wang, N.; Chen, M.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release, 2019, 303, 130-150.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.025] [PMID: 31022431]
[26]
Schwendener, R.A. Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines, 2014, 2(6), 159-182.
[http://dx.doi.org/10.1177/2051013614541440] [PMID: 25364509]
[27]
HogenEsch H.; O’Hagan, D.T.; Fox, C.B. Optimizing the utilization of aluminum adjuvants in vaccines: You might just get what you want. NPJ Vaccines, 2018, 3(1), 1-11.
[28]
Nie, F.; Yu, X.; Huang, M.; Wang, Y.; Xie, M.; Ma, H.; Wang, Z.; De, W.; Sun, M. Long noncoding RNA ZFAS1 promotes gastric cancer cells proliferation by epigenetically repressing KLF2 and NKD2 expression. Oncotarget, 2017, 8(24), 38227-38238.
[http://dx.doi.org/10.18632/oncotarget.9611] [PMID: 27246976]
[29]
Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015, 348(6230), 62-68.
[http://dx.doi.org/10.1126/science.aaa4967] [PMID: 25838374]
[30]
Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther., 2019, 34(1), 1-8.
[http://dx.doi.org/10.1515/dmpt-2018-0032] [PMID: 30707682]
[31]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[32]
Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci., 2020, 7, 193.
[http://dx.doi.org/10.3389/fmolb.2020.00193] [PMID: 32974385]
[33]
Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol., 2008, 8(1), 59-73.
[http://dx.doi.org/10.1038/nri2216] [PMID: 18097448]
[34]
Dadwal, A.; Baldi, A.; Narang, R.K. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol, 2018, 46(sup2), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039]
[35]
Palazzolo, S.; Bayda, S.; Hadla, M.; Caligiuri, I.; Corona, G.; Toffoli, G.; Rizzolio, F. The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr. Med. Chem., 2018, 25(34), 4224-4268.
[http://dx.doi.org/10.2174/0929867324666170830113755] [PMID: 28875844]
[36]
Mohanty, C.; Das, M.; Kanwar, J.R.; Sahoo, S.K. Receptor mediated tumor targeting: An emerging approach for cancer therapy. Curr. Drug Deliv., 2011, 8(1), 45-58.
[http://dx.doi.org/10.2174/156720111793663606] [PMID: 21034422]
[37]
Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D.H.; Chen, Z.S. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updat., 2016, 27, 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.001] [PMID: 27449595]
[38]
Fathi, S.; Oyelere, A.K. Liposomal drug delivery systems for targeted cancer therapy: Is active targeting the best choice? Future Med. Chem., 2016, 8(17), 2091-2112.
[http://dx.doi.org/10.4155/fmc-2016-0135] [PMID: 27774793]
[39]
Yan, W.; Leung, S.S.; To, K.K. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond.), 2020, 15(3), 303-318.
[http://dx.doi.org/10.2217/nnm-2019-0308] [PMID: 31802702]
[40]
Allen, T.M. Liposomes. Opportunities in drug delivery. Drugs, 1997, 54(4)(Suppl. 4), 8-14.
[http://dx.doi.org/10.2165/00003495-199700544-00004] [PMID: 9361956]
[41]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8(24), 1112-1120.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[42]
Pandya, T.; Patel, K.K.; Pathak, R.; Shah, S. Liposomal formulations in cancer therapy: Passive versus active targeting. Asian J. Pharm. Res. Develop., 2019, 7(2), 35-38.
[http://dx.doi.org/10.22270/ajprd.v7i2.489]
[43]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.), 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[44]
Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[45]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[46]
Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer, 2003, 3(6), 401-410.
[http://dx.doi.org/10.1038/nrc1093] [PMID: 12778130]
[47]
Leserman, L.D.; Barbet, J.; Kourilsky, F.; Weinstein, J.N. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature, 1980, 288(5791), 602-604.
[http://dx.doi.org/10.1038/288602a0] [PMID: 7442804]
[48]
Singh, A.; Myklebust, N.N.; Furevik, S.M.V.; Haugse, R.; Herfindal, L. Immunoliposomes in acute myeloid leukaemia therapy: An overview of possible targets and obstacles. Curr. Med. Chem., 2019, 26(28), 5278-5292.
[http://dx.doi.org/10.2174/0929867326666190517114450] [PMID: 31099318]
[49]
Elbayoumi, T.A.; Torchilin, V.P. Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. Eur. J. Pharm. Sci., 2007, 32(3), 159-168.
[http://dx.doi.org/10.1016/j.ejps.2007.05.113] [PMID: 17707615]
[50]
Park, Y.S. Tumor-directed targeting of liposomes. Biosci. Rep., 2002, 22(2), 267-281.
[http://dx.doi.org/10.1023/A:1020190606757] [PMID: 12428904]
[51]
Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(3), 177-193.
[http://dx.doi.org/10.3322/caac.21395] [PMID: 28248415]
[52]
Sapra, P.; Allen, T.M. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res., 2003, 42(5), 439-462.
[http://dx.doi.org/10.1016/S0163-7827(03)00032-8] [PMID: 12814645]
[53]
Feng, B.; Matsui, H.; Tomizawa, K. Nanoparticle-based drug delivery systems for solid brain tumors. Curr. Nanosci., 2011, 7(1), 47-54.
[http://dx.doi.org/10.2174/157341311794480327]
[54]
Zhao, M.; Sun, Y.; Zhu, X.; Chen, D.; Feng, S.; Guo, S.; Li, W. Antibody-targeted immunocarriers for cancer treatment. Smart Drug Deliv. Syst., 2016, 10, 139-158.
[55]
Gao, J.; Kou, G.; Wang, H.; Chen, H.; Li, B.; Lu, Y.; Zhang, D.; Wang, S.; Hou, S.; Qian, W.; Dai, J.; Zhao, J.; Zhong, Y.; Guo, Y. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Breast Cancer Res. Treat., 2009, 115(1), 29-41.
[http://dx.doi.org/10.1007/s10549-008-0043-0] [PMID: 18481173]
[56]
Gao, J.; Kou, G.; Chen, H.; Wang, H.; Li, B.; Lu, Y.; Zhang, D.; Wang, S.; Hou, S.; Qian, W.; Dai, J.; Zhao, J.; Zhong, Y.; Guo, Y. Treat-ment of hepatocellular carcinoma in mice with PE38KDEL type I mutant-loaded poly(lactic-co-glycolic acid) nanoparticles conjugated with humanized SM5-1 F(ab’) fragments. Mol. Cancer Ther., 2008, 7(10), 3399-3407.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0514] [PMID: 18852143]
[57]
Gao, J.; Sun, J.; Li, H.; Liu, W.; Zhang, Y.; Li, B.; Qian, W.; Wang, H.; Chen, J.; Guo, Y. Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing. Biomaterials, 2010, 31(9), 2655-2664.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.112] [PMID: 20035999]
[58]
Gao, J.; Feng, S.S.; Guo, Y. Antibody engineering promotes nanomedicine for cancer treatment. Nanomedicine (Lond.), 2010, 5(8), 1141-1145.
[http://dx.doi.org/10.2217/nnm.10.94] [PMID: 21039191]
[59]
Kou, G.; Gao, J.; Wang, H.; Chen, H.; Li, B.; Zhang, D.; Wang, S.; Hou, S.; Qian, W.; Dai, J.; Zhong, Y.; Guo, Y. Preparation and Characterization of Paclitaxel-loaded PLGA nanoparticles coated with cationic SM5-1 single-chain antibody. J. Biochem. Mol. Biol., 2007, 40(5), 731-739.
[PMID: 17927907]
[60]
Sapra, P.; Tyagi, P.; Allen, T.M. Ligand-targeted liposomes for cancer treatment. Curr. Drug Deliv., 2005, 2(4), 369-381.
[http://dx.doi.org/10.2174/156720105774370159] [PMID: 16305440]
[61]
Schnyder, A.; Huwyler, J. Drug transport to brain with targeted liposomes. NeuroRx, 2005, 2(1), 99-107.
[http://dx.doi.org/10.1602/neurorx.2.1.99] [PMID: 15717061]
[62]
Sawant, R.R.; Torchilin, V.P. Design and synthesis of novel functional lipid-based bioconjugates for drug delivery and other applications. Methods Mol. Biol., 2011, 751, 357-378.
[http://dx.doi.org/10.1007/978-1-61779-151-2_23] [PMID: 21674343]
[63]
Torchilin, V.P.; Levchenko, T.S.; Lukyanov, A.N.; Khaw, B.A.; Klibanov, A.L.; Rammohan, R.; Samokhin, G.P.; Whiteman, K.R. p-Nitrophenylcarbonyl-PEG-PE-liposomes: Fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim. Biophys. Acta, 2001, 1511(2), 397-411.
[http://dx.doi.org/10.1016/S0005-2728(01)00165-7] [PMID: 11286983]
[64]
Maclean, A.; Symonds, G.; Ward, R. Immunoliposomes as targeted delivery vehicles for cancer therapeutics. (Review) Int. J. Oncol., 1997, 11(2), 325-332.
[http://dx.doi.org/10.3892/ijo.11.2.325] [PMID: 21528218]
[65]
Archakov, A.I. Nanobiotechnologies in medicine: Nanodiagnostics and nanodrugs. Biomed. Khim., 2010, 56(1), 7-25.
[PMID: 21328908]
[66]
Feng, S.S. New-concept chemotherapy by nanoparticles of biodegradable polymers: Where are we now? Nanomedicine (Lond.), 2006, 1(3), 297-309.
[http://dx.doi.org/10.2217/17435889.1.3.297] [PMID: 17716160]
[67]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[68]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[69]
Schrama, D.; Reisfeld, R.A.; Becker, J.C. Antibody targeted drugs as cancer therapeutics. Nat. Rev. Drug Discov., 2006, 5(2), 147-159.
[http://dx.doi.org/10.1038/nrd1957] [PMID: 16424916]
[70]
Adams, G.P.; Weiner, L.M. Monoclonal antibody therapy of cancer. Nat. Biotechnol., 2005, 23(9), 1147-1157.
[http://dx.doi.org/10.1038/nbt1137] [PMID: 16151408]
[71]
Zhang, T.; Herlyn, D. Combination of active specific immunotherapy or adoptive antibody or lymphocyte immunotherapy with chemo-therapy in the treatment of cancer. Cancer Immunol. Immunother., 2009, 58(4), 475-492.
[http://dx.doi.org/10.1007/s00262-008-0598-y] [PMID: 18925393]
[72]
Beckman, R.A.; Weiner, L.M.; Davis, H.M. Antibody constructs in cancer therapy: Protein engineering strategies to improve exposure in solid tumors. Cancer, 2007, 109(2), 170-179.
[http://dx.doi.org/10.1002/cncr.22402] [PMID: 17154393]
[73]
Myo Clinic. Monoclonal antibody drugs for cancer: How they work. Available from: https://www.mayoclinic.org/diseases -conditions/cancer/in-depth/monoclonal-antibody/art-20047808(Accessed March 6, 2021).
[74]
Kolkman, J.A.; Law, D.A. Nanobodies–from llamas to therapeutic proteins. Drug Discov. Today. Technol., 2010, 7(2), e95-e146.
[http://dx.doi.org/10.1016/j.ddtec.2010.03.002]
[75]
Dai, J.; Jin, J.; Li, B.; Wang, H.; Hou, S.; Qian, W.; Kou, G.; Zhang, D.; Li, J.; Tan, M.; Ma, J.; Guo, Y. A chimeric SM5-1 antibody inhibits hepatocellular carcinoma cell growth and induces caspase-dependent apoptosis. Cancer Lett., 2007, 258(2), 208-214.
[http://dx.doi.org/10.1016/j.canlet.2007.09.002] [PMID: 17959303]
[76]
Wu, L.; Wang, C.; Zhang, D.; Zhang, X.; Qian, W.; Zhao, L.; Wang, H.; Li, B.; Guo, Y. Characterization of a humanized anti-CD20 antibody with potent antitumor activity against B-cell lymphoma. Cancer Lett., 2010, 292(2), 208-214.
[http://dx.doi.org/10.1016/j.canlet.2009.12.004] [PMID: 20056316]
[77]
Zahavi, D.; Weiner, L. Monoclonal antibodies in cancer therapy. Antibodies (Basel), 2020, 9(3), 1-34.
[http://dx.doi.org/10.3390/antib9030034] [PMID: 32698317]
[78]
Maso, K.; Montagner, I.M.; Grigoletto, A.; Schiavon, O.; Rosato, A.; Pasut, G. A non-covalent antibody complex for the delivery of anti-cancer drugs. Eur. J. Pharm. Biopharm., 2019, 142, 49-60.
[http://dx.doi.org/10.1016/j.ejpb.2019.06.012] [PMID: 31201855]
[79]
Lonberg, N. Human antibodies from transgenic animals. Nat. Biotechnol., 2005, 23(9), 1117-1125.
[http://dx.doi.org/10.1038/nbt1135] [PMID: 16151405]
[80]
Gao, J.; Chen, H.; Song, H.; Su, X.; Niu, F.; Li, W.; Li, B.; Dai, J.; Wang, H.; Guo, Y. Antibody-targeted immunoliposomes for cancer treatment. Mini Rev. Med. Chem., 2013, 13(14), 2026-2035.
[http://dx.doi.org/10.2174/1389557513666131119202717] [PMID: 24251805]
[81]
Jain, R.K.; Duda, D.G.; Clark, J.W.; Loeffler, J.S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol., 2006, 3(1), 24-40.
[http://dx.doi.org/10.1038/ncponc0403] [PMID: 16407877]
[82]
Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., 2004, 351(4), 337-345.
[http://dx.doi.org/10.1056/NEJMoa033025] [PMID: 15269313]
[83]
Li, Z.; Krippendorff, B.F.; Sharma, S.; Walz, A.C.; Lavé, T.; Shah, D.K. Influence of molecular size on tissue distribution of antibody fragments. MAbs, 2016, 8(1), 113-119.
[http://dx.doi.org/10.1080/19420862.2015.1111497] [PMID: 26496429]
[84]
Röthlisberger, D.; Honegger, A.; Plückthun, A. Domain interactions in the Fab fragment: A comparative evaluation of the singlechain Fv and Fab format engineered with variable domains of different stability. J. Mol. Biol., 2005, 347(4), 773-789.
[http://dx.doi.org/10.1016/j.jmb.2005.01.053] [PMID: 15769469]
[85]
Bates, A.; Power, C.A. David vs. Goliath: The structure, function, and clinical prospects of antibody fragments. Antibodies (Basel), 2019, 8(2), 2-31.
[http://dx.doi.org/10.3390/antib8020028] [PMID: 31544834]
[86]
Gagné, J.F.; Désormeaux, A.; Perron, S.; Tremblay, M.J.; Bergeron, M.G. Targeted delivery of indinavir to HIV-1 primary reservoirs with immunoliposomes. Biochim. Biophys. Acta, 2002, 1558(2), 198-210.
[http://dx.doi.org/10.1016/S0005-2736(01)00432-1] [PMID: 11779569]
[87]
Nelson, A.L. Antibody fragments: Hope and hype. MAbs, 2010, 2(1), 77-83.
[http://dx.doi.org/10.4161/mabs.2.1.10786] [PMID: 20093855]
[88]
Montoliu-Gaya, L.; Esquerda-Canals, G.; Bronsoms, S.; Villegas, S. Production of an anti-Aβ antibody fragment in Pichia pastoris and in vitro and in vivo validation of its therapeutic effect. PLoS One, 2017, 12(8), e0181480.
[http://dx.doi.org/10.1371/journal.pone.0181480] [PMID: 28771492]
[89]
Spadiut, O.; Capone, S.; Krainer, F.; Glieder, A.; Herwig, C. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol., 2014, 32(1), 54-60.
[http://dx.doi.org/10.1016/j.tibtech.2013.10.002] [PMID: 24183828]
[90]
Yokota, T.; Milenic, D.E.; Whitlow, M.; Schlom, J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res., 1992, 52(12), 3402-3408.
[PMID: 1596900]
[91]
Blažek, D.; Celer, V. The production and application of singlechain antibody fragments. Folia Microbiol. (Praha), 2003, 48(5), 687-698.
[http://dx.doi.org/10.1007/BF02993480] [PMID: 14976730]
[92]
Narain, R. Chemistry of bioconjugates: Synthesis, characterization, and biomedical applications. In: Covalent and noncovalent bioconjugation strategies, 1st Ed; Sunasee, R.; Narain, R., Eds.; John Wiley & Sons, Inc: New York, , 2014; 17, pp. 1-75.
[93]
Ohradanova-Repic, A.; Nogueira, E.; Hartl, I.; Gomes, A.C.; Preto, A.; Steinhuber, E.; Mühlgrabner, V.; Repic, M.; Kuttke, M.; Zwirzitz, A.; Prouza, M.; Suchanek, M.; Wozniak-Knopp, G.; Horejsi, V.; Schabbauer, G.; Cavaco-Paulo, A.; Stockinger, H. Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. Nanomedicine , 2018, 14(1), 123-130.
[http://dx.doi.org/10.1016/j.nano.2017.09.003] [PMID: 28939491]
[94]
Zalipsky, S.; Hansen, C.B.; De-Menezes, D.E.; Allen, T.M. Longcirculating, polyethylene glycol-grafted immunoliposomes. J. Control. Release, 1996, 39(2-3), 153-161.
[http://dx.doi.org/10.1016/0168-3659(95)00149-2]
[95]
Manjappa, A.S.; Chaudhari, K.R.; Venkataraju, M.P.; Dantuluri, P.; Nanda, B.; Sidda, C.; Sawant, K.K.; Murthy, R.S. Antibody derivatization and conjugation strategies: Application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J. Control. Release, 2011, 150(1), 2-22.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.002] [PMID: 21095210]
[96]
Sandeep, D.; Al-Sawaftah, N.M.; Husseini, G.A. Immunoliposomes: Synthesis, Structure, and Their Potential as Drug Delivery Carriers. Curr. Cancer Ther. Rev., 2020, 16(4), 306-319.
[http://dx.doi.org/10.2174/1573394716666200227095521]
[97]
Siwak, D.R.; Tari, A.M.; Lopez-Berestein, G. The potential of drug-carrying immunoliposomes as anticancer agents. Clin. Cancer Res., 2002, 8(4), 955-956.
[PMID: 11948099]
[98]
Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66(13), 6732-6740.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4199] [PMID: 16818648]
[99]
Shimada, K.; Mitamura, K. Derivatization of thiol-containing compounds. J. Chromatogr. B Biomed. Appl., 1994, 659(1-2), 227-241.
[http://dx.doi.org/10.1016/0378-4347(93)E0444-U] [PMID: 7820279]
[100]
Davis, N.J.; Flitsch, S.L. A novel method for the specific glycosylation of proteins. Tetrahedron Lett., 1991, 32(46), 6793-6796.
[http://dx.doi.org/10.1016/S0040-4039(00)93605-0]
[101]
Ivanov, V.O.; Preobrazhensky, S.N.; Tsibulsky, V.P.; Babaev, V.R.; Repin, V.S.; Smirnov, V.N. Liposome uptake by cultured macrophages mediated by modified low-density lipoproteins. Biochim. Biophys. Acta, 1985, 846(1), 76-84.
[http://dx.doi.org/10.1016/0167-4889(85)90112-0] [PMID: 4016158]
[102]
Schelté, P.; Boeckler, C.; Frisch, B.; Schuber, F. Differential reactivity of maleimide and bromoacetyl functions with thiols: Application to the preparation of liposomal diepitope constructs. Bioconjug. Chem., 2000, 11(1), 118-123.
[http://dx.doi.org/10.1021/bc990122k] [PMID: 10639094]
[103]
Eroğlu, İ.; İbrahim, M. Liposome-ligand conjugates: A review on the current state of art. J. Drug Target., 2020, 28(3), 225-244.
[http://dx.doi.org/10.1080/1061186X.2019.1648479] [PMID: 31339374]
[104]
Jølck, R.I.; Feldborg, L.N.; Andersen, S.; Moghimi, S.M.; Andresen, T.L. Engineering liposomes and nanoparticles for biological targeting. Adv. Biochem. Eng. Biotechnol., 2011, 125, 251-280.
[http://dx.doi.org/10.1007/10_2010_92] [PMID: 21049296]
[105]
Kung, V.T.; Redemann, C.T. Synthesis of carboxyacyl derivatives of phosphatidylethanolamine and use as an efficient method for conjugation of protein to liposomes. Biochim. Biophys. Acta, 1986, 862(2), 435-439.
[http://dx.doi.org/10.1016/0005-2736(86)90247-6] [PMID: 3778901]
[106]
Tardi, P.; Bally, M.B.; Harasym, T.O. Clearance properties of liposomes involving conjugated proteins for targeting. Adv. Drug Deliv. Rev., 1998, 32(1-2), 99-118.
[http://dx.doi.org/10.1016/S0169-409X(97)00134-8] [PMID: 10837638]
[107]
Palekar, R.U.; Myerson, J.W.; Schlesinger, P.H.; Sadler, J.E.; Pan, H.; Wickline, S.A. Thrombin-targeted liposomes establish a sustained localized anticlotting barrier against acute thrombosis. Mol. Pharm., 2013, 10(11), 4168-4175.
[http://dx.doi.org/10.1021/mp400210q] [PMID: 24063304]
[108]
Suzuki, R.; Takizawa, T.; Kuwata, Y.; Mutoh, M.; Ishiguro, N.; Utoguchi, N.; Shinohara, A.; Eriguchi, M.; Yanagie, H.; Maruyama, K. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int. J. Pharm., 2008, 346(1-2), 143-150.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.010] [PMID: 17640835]
[109]
Ying, X.; Wen, H.; Lu, W.L.; Du, J.; Guo, J.; Tian, W.; Men, Y.; Zhang, Y.; Li, R.J.; Yang, T.Y.; Shang, D.W.; Lou, J.N.; Zhang, L.R.; Zhang, Q. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J. Control. Release, 2010, 141(2), 183-192.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.020] [PMID: 19799948]
[110]
Maruyama, K.; Holmberg, E.; Kennel, S.J.; Klibanov, A.; Torchilin, V.P.; Huang, L. Characterization of in vivo immunoliposome targeting to pulmonary endothelium. J. Pharm. Sci., 1990, 79(11), 978-984.
[http://dx.doi.org/10.1002/jps.2600791107] [PMID: 2292774]
[111]
Nobs, L.; Buchegger, F.; Gurny, R.; Allémann, E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci., 2004, 93(8), 1980-1992.
[http://dx.doi.org/10.1002/jps.20098] [PMID: 15236448]
[112]
Zhong, X.B.; Reynolds, R.; Kidd, J.R.; Kidd, K.K.; Jenison, R.; Marlar, R.A.; Ward, D.C. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11559-11564.
[http://dx.doi.org/10.1073/pnas.1934783100] [PMID: 12975525]
[113]
Kozlov, I.A.; Melnyk, P.C.; Stromsborg, K.E.; Chee, M.S.; Barker, D.L.; Zhao, C. Efficient strategies for the conjugation of oligonucleotides to antibodies enabling highly sensitive protein detection. Biopolymers, 2004, 73(5), 621-630.
[http://dx.doi.org/10.1002/bip.20009] [PMID: 15048786]
[114]
Chua, M.M.; Fan, S.T.; Karush, F. Attachment of immunoglobulin to liposomal membrane via protein carbohydrate. Biochim. Biophys. Acta, 1984, 800(3), 291-300.
[http://dx.doi.org/10.1016/0304-4165(84)90408-2] [PMID: 6432057]
[115]
Koning, G.A.; Morselt, H.W.; Velinova, M.J.; Donga, J.; Gorter, A.; Allen, T.M.; Zalipsky, S.; Kamps, J.A.; Scherphof, G.L. Selective transfer of a lipophilic prodrug of 5-fluorodeoxyuridine from immunoliposomes to colon cancer cells. Biochim. Biophys. Acta, 1999, 1420(1-2), 153-167.
[http://dx.doi.org/10.1016/S0005-2736(99)00091-7] [PMID: 10446299]
[116]
Torchilin, V.P.; Khaw, B.A.; Smirnov, V.N.; Haber, E. Preservation of antimyosin antibody activity after covalent coupling to liposomes. Biochem. Biophys. Res. Commun., 1979, 89(4), 1114-1119.
[http://dx.doi.org/10.1016/0006-291X(79)92123-5] [PMID: 496941]
[117]
Torchilin, V.P.; Goldmacher, V.S.; Smirnov, V.N. Comparative studies on covalent and noncovalent immobilization of protein molecules on the surface of liposomes. Biochem. Biophys. Res. Commun., 1978, 85(3), 983-990.
[http://dx.doi.org/10.1016/0006-291X(78)90640-X] [PMID: 736970]
[118]
Werengowska-Ciećwierz, K.; Wiśniewski, M.; Terzyk, A.P.; Furmaniak, S. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv. Condens. Matter Phys., 2015, 28, 1-27.
[http://dx.doi.org/10.1155/2015/198175]
[119]
Mahesh, S.; Tang, K.C.; Raj, M. Amide bond activation of biological molecules. Molecules, 2018, 23(10), 2-43.
[http://dx.doi.org/10.3390/molecules23102615] [PMID: 30322008]
[120]
Huang, L.; Kennel, S.J. Binding of immunoglobulin G to phospholipid vesicles by sonication. Biochemistry, 1979, 18(9), 1702-1707.
[http://dx.doi.org/10.1021/bi00576a011] [PMID: 571288]
[121]
Livnah, O.; Bayer, E.A.; Wilchek, M.; Sussman, J.L. Threedimensional structures of avidin and the avidin-biotin complex. Proc. Natl. Acad. Sci. USA, 1993, 90(11), 5076-5080.
[http://dx.doi.org/10.1073/pnas.90.11.5076] [PMID: 8506353]
[122]
Bratthauer, G.L. The avidin-biotin complex (ABC) method and other avidin-biotin binding methods. Methods Mol. Biol., 1999, 115, 203-214.
[http://dx.doi.org/10.1385/1-59259-213-9:203] [PMID: 10098182]
[123]
Ko, Y.T.; Bickel, U. Liposome-encapsulated polyethylenimine/oligonucleotide polyplexes prepared by reverse-phase evaporation technique. AAPS PharmSciTech, 2012, 13(2), 373-378.
[http://dx.doi.org/10.1208/s12249-012-9757-8] [PMID: 22328240]
[124]
Xiao, Z.; McQuarrie, S.A.; Suresh, M.R.; Mercer, J.R.; Gupta, S.; Miller, G.G. A three-step strategy for targeting drug carriers to human ovarian carcinoma cells in vitro. J. Biotechnol., 2002, 94(2), 171-184.
[http://dx.doi.org/10.1016/S0168-1656(01)00424-2] [PMID: 11796170]
[125]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26(1), 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015] [PMID: 18190833]
[126]
Zhang, L.; Jiang, Y.; Zheng, Y.; Zeng, Y.; Yang, Z.; Huang, G.; Liu, D.; Gao, M.; Shen, X.; Wu, G.; Yan, X.; He, F. Selective killing of Burkitt’s lymphoma cells by mBAFF-targeted delivery of PinX1. Leukemia, 2011, 25(2), 331-340.
[http://dx.doi.org/10.1038/leu.2010.261] [PMID: 21102426]
[127]
Ravar, F.; Saadat, E.; Gholami, M.; Dehghankelishadi, P.; Mahdavi, M.; Azami, S.; Dorkoosh, F.A. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J. Control. Release, 2016, 229, 10-22.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.012] [PMID: 26968799]
[128]
Szczepanowicz, K.; Bzowska, M.; Kruk, T.; Karabasz, A.; Bereta, J.; Warszynski, P. Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting. Colloids Surf. B Biointerfaces, 2016, 143, 463-471.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.064] [PMID: 27037784]
[129]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[130]
Arias, J.L. Drug targeting strategies in cancer treatment: An overview. Mini Rev. Med. Chem., 2011, 11(1), 1-17.
[http://dx.doi.org/10.2174/138955711793564024] [PMID: 21235512]
[131]
Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41(1), 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[132]
Carita, A.C.; Eloy, J.O.; Chorilli, M.; Lee, R.J.; Leonardi, G.R. Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr. Med. Chem., 2018, 25(5), 606-635.
[http://dx.doi.org/10.2174/0929867324666171009120154] [PMID: 28990515]
[133]
Sykes, E.A.; Chen, J.; Zheng, G.; Chan, W.C.W. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano, 2014, 8(6), 5696-5706.
[http://dx.doi.org/10.1021/nn500299p] [PMID: 24821383]
[134]
Torchilin, V.P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J., 2007, 9(2), E128-E147.
[http://dx.doi.org/10.1208/aapsj0902015] [PMID: 17614355]
[135]
Torchilin, V.P. Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol., 2010, 197(197), 3-53.
[http://dx.doi.org/10.1007/978-3-642-00477-3_1] [PMID: 20217525]
[136]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880]
[137]
Pelicano, H.; Martin, D.S.; Xu, R.H.; Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene, 2006, 25(34), 4633-4646.
[http://dx.doi.org/10.1038/sj.onc.1209597] [PMID: 16892078]
[138]
Lim, E.K.; Chung, B.H.; Chung, S.J. Recent advances in pHsensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr. Drug Targets, 2018, 19(4), 300-317.
[http://dx.doi.org/10.2174/1389450117666160602202339] [PMID: 27262486]
[139]
Jain, R.K. Barriers to drug delivery in solid tumors. Sci. Am., 1994, 271(1), 58-65.
[http://dx.doi.org/10.1038/scientificamerican0794-58] [PMID: 8066425]
[140]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[141]
Egusquiaguirre, S.P.; Igartua, M.; Hernández, R.M.; Pedraz, J.L. Nanoparticle delivery systems for cancer therapy: Advances in clinical and preclinical research. Clin. Transl. Oncol., 2012, 14(2), 83-93.
[http://dx.doi.org/10.1007/s12094-012-0766-6] [PMID: 22301396]
[142]
Shi, J.; Xiao, Z.; Kamaly, N.; Farokhzad, O.C. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc. Chem. Res., 2011, 44(10), 1123-1134.
[http://dx.doi.org/10.1021/ar200054n] [PMID: 21692448]
[143]
Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010.
[http://dx.doi.org/10.1039/c2cs15344k] [PMID: 22388185]
[144]
Kumar Khanna, V. Targeted delivery of nanomedicines. ISRN Pharmacol., 2012, 2012, 571394.
[http://dx.doi.org/10.5402/2012/571394] [PMID: 22577576]
[145]
Adams, G.P.; Schier, R.; McCall, A.M.; Simmons, H.H.; Horak, E.M.; Alpaugh, R.K.; Marks, J.D.; Weiner, L.M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res., 2001, 61(12), 4750-4755.
[PMID: 11406547]
[146]
Harashima, H.; Kiwada, H. The pharmacokinetics of liposomes for tumor targeting. Adv. Drug Deliv. Rev., 1999, 40(1-2), 1-2.
[http://dx.doi.org/10.1016/S0169-409X(99)00036-8] [PMID: 10837776]
[147]
Düzgüneş, N.; Nir, S. Mechanisms and kinetics of liposome–cell interactions. Adv. Drug Deliv. Rev., 1999, 40(1-2), 3-18.
[http://dx.doi.org/10.1016/S0169-409X(99)00037-X] [PMID: 10837777]
[148]
Wakaskar, R.R.; Bathena, S.P.; Tallapaka, S.B.; Ambardekar, V.V.; Gautam, N.; Thakare, R.; Simet, S.M.; Curran, S.M.; Singh, R.K.; Dong, Y.; Vetro, J.A. Peripherally cross-linking the shell of core-shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after IV administration. Pharm. Res., 2015, 32(3), 1028-1044.
[http://dx.doi.org/10.1007/s11095-014-1515-z] [PMID: 25223962]
[149]
Bhatt, P.; Vhora, I.; Patil, S.; Amrutiya, J.; Bhattacharya, C.; Misra, A.; Mashru, R. Role of antibodies in diagnosis and treatment of ovarian cancer: Basic approach and clinical status. J. Control. Release, 2016, 226, 148-167.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.008] [PMID: 26860284]
[150]
Gandhi, M.; Bhatt, P.; Chauhan, G.; Gupta, S.; Misra, A.; Mashru, R. IGF-II-conjugated nanocarrier for brain-targeted delivery of p11 gene for depression. AAPS PharmSciTech, 2019, 20(2), 50.
[http://dx.doi.org/10.1208/s12249-018-1206-x] [PMID: 30617637]
[151]
Duarte, S.; Faneca, H.; Lima, M.C. Folate-associated lipoplexes mediate efficient gene delivery and potent antitumoral activity in vitro and in vivo. Int. J. Pharm., 2012, 423(2), 365-377.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.035] [PMID: 22209825]
[152]
Chaudhury, A.; Das, S.; Bunte, R.M.; Chiu, G.N. Potent therapeutic activity of folate receptor-targeted liposomal carboplatin in the localized treatment of intraperitoneally grown human ovarian tumor xenograft. Int. J. Nanomedicine, 2012, 7, 739-751.
[PMID: 22359453]
[153]
Li, X.; Ding, L.; Xu, Y.; Wang, Y.; Ping, Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int. J. Pharm., 2009, 373(1-2), 116-123.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.023] [PMID: 19429296]
[154]
Zhai, G.; Wu, J.; Yu, B.; Guo, C.; Yang, X.; Lee, R.J. A transferrin receptor-targeted liposomal formulation for docetaxel. J. Nanosci. Nanotechnol., 2010, 10(8), 5129-5136.
[http://dx.doi.org/10.1166/jnn.2010.2393] [PMID: 21125861]
[155]
Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol., 2014, 2(6), 904-908.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[156]
Huang, R.B.; Mocherla, S.; Heslinga, M.J.; Charoenphol, P.; Eniola-Adefeso, O. Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery. (review) Mol. Membr. Biol., 2010, 27(4-6), 190-205.
[http://dx.doi.org/10.3109/09687688.2010.499548] [PMID: 20615080]
[157]
Gosk, S.; Moos, T.; Gottstein, C.; Bendas, G. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim. Biophys. Acta, 2008, 1778(4), 854-863.
[http://dx.doi.org/10.1016/j.bbamem.2007.12.021] [PMID: 18211818]
[158]
Simone, E.; Ding, B.S.; Muzykantov, V. Targeted delivery of therapeutics to endothelium. Cell Tissue Res., 2009, 335(1), 283-300.
[http://dx.doi.org/10.1007/s00441-008-0676-7] [PMID: 18815813]
[159]
Spragg, D.D.; Alford, D.R.; Greferath, R.; Larsen, C.E.; Lee, K.D.; Gurtner, G.C.; Cybulsky, M.I.; Tosi, P.F.; Nicolau, C.; Gimbrone, M.A., Jr Immunotargeting of liposomes to activated vascular endothelial cells: A strategy for site-selective delivery in the cardiovascular system. Proc. Natl. Acad. Sci. USA, 1997, 94(16), 8795-8800.
[http://dx.doi.org/10.1073/pnas.94.16.8795] [PMID: 9238057]
[160]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[161]
Bianco, R.; Gelardi, T.; Damiano, V.; Ciardiello, F.; Tortora, G. Rational bases for the development of EGFR inhibitors for cancer treatment. Int. J. Biochem. Cell Biol., 2007, 39(7-8), 1416-1431.
[http://dx.doi.org/10.1016/j.biocel.2007.05.008] [PMID: 17596994]
[162]
Khan, M.A.; Phelps, S.M. Recent advancements involving immunoliposomes to target breast cancer. J. Cancer Res. Clin. Oncol., 2018, 5(2), 2-9.
[163]
Limasale, Y.D.; Tezcaner, A.; Özen, C.; Keskin, D.; Banerjee, S. Epidermal growth factor receptor-targeted immunoliposomes for delivery of celecoxib to cancer cells. Int. J. Pharm., 2015, 479(2), 364-373.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.016] [PMID: 25595386]
[164]
Martinelli, E.; De Palma, R.; Orditura, M.; De Vita, F.; Ciardiello, F. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin. Exp. Immunol., 2009, 158(1), 1-9.
[http://dx.doi.org/10.1111/j.1365-2249.2009.03992.x] [PMID: 19737224]
[165]
Zalba, S.; Contreras, A.M.; Haeri, A.; Ten Hagen, T.L.; Navarro, I.; Koning, G.; Garrido, M.J. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J. Control. Release, 2015, 210, 26-38.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.271] [PMID: 25998052]
[166]
Mamot, C.; Drummond, D.C.; Noble, C.O.; Kallab, V.; Guo, Z.; Hong, K.; Kirpotin, D.B.; Park, J.W. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res., 2005, 65(24), 11631-11638.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1093] [PMID: 16357174]
[167]
Mamot, C.; Drummond, D.C.; Greiser, U.; Hong, K.; Kirpotin, D.B.; Marks, J.D.; Park, J.W. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res., 2003, 63(12), 3154-3161.
[PMID: 12810643]
[168]
Mamot, C.; Ritschard, R.; Küng, W.; Park, J.W.; Herrmann, R.; Rochlitz, C.F. EGFR-targeted immunoliposomes derived from the mono-clonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells. J. Drug Target., 2006, 14(4), 215-223.
[http://dx.doi.org/10.1080/10611860600691049] [PMID: 16777680]
[169]
Gao, J.; Yu, Y.; Zhang, Y.; Song, J.; Chen, H.; Li, W.; Qian, W.; Deng, L.; Kou, G.; Chen, J.; Guo, Y. EGFR-specific PEGylated immunoliposomes for active siRNA delivery in hepatocellular carcinoma. Biomaterials, 2012, 33(1), 270-282.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.035] [PMID: 21963149]
[170]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J.; Norton, L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med., 2001, 344(11), 783-792.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[171]
Tai, W.; Mahato, R.; Cheng, K. The role of HER2 in cancer therapy and targeted drug delivery. J. Control. Release, 2010, 146(3), 264-275.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.009] [PMID: 20385184]
[172]
Labidi, S.; Mejri, N.; Lagha, A.; Daoud, N.; El Benna, H.; Afrit, M.; Boussen, H. Targeted therapies in HER2-overexpressing metastatic breast cancer. Breast Care (Basel), 2016, 11(6), 418-422.
[http://dx.doi.org/10.1159/000452194] [PMID: 28228709]
[173]
Garnock-Jones, K.P.; Keating, G.M.; Scott, L.J. Trastuzumab: A review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer. Drugs, 2010, 70(2), 215-239.
[http://dx.doi.org/10.2165/11203700-000000000-00000] [PMID: 20108993]
[174]
Vaidya, T.; Straubinger, R.M.; Ait-Oudhia, S. Development and evaluation of tri-functional immunoliposomes for the treatment of HER2 positive breast cancer. Pharm. Res., 2018, 35(5), 95.
[http://dx.doi.org/10.1007/s11095-018-2365-x] [PMID: 29536232]
[175]
Park, J.W.; Hong, K.; Kirpotin, D.B.; Colbern, G.; Shalaby, R.; Baselga, J.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Moore, D.; Papahadjopoulos, D.; Benz, C.C. Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery. Clin. Cancer Res., 2002, 8(4), 1172-1181.
[PMID: 11948130]
[176]
O’Shaughnessy, J.A. Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin. Breast Cancer, 2003, 4(5), 318-328.
[http://dx.doi.org/10.3816/CBC.2003.n.037] [PMID: 14715106]
[177]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[178]
Kirpotin, D.B.; Park, J.W.; Hong, K.; Shao, Y.; Shalaby, R.; Colbern, G.; Benz, C.C.; Papahadjopoulos, D. Targeting of liposomes to solid tumors: The case of sterically stabilized anti-HER2 immunoliposomes. J. Liposome Res., 1997, 7(4), 391-417.
[http://dx.doi.org/10.3109/08982109709035509]
[179]
Yang, T.; Choi, M.K.; Cui, F.D.; Kim, J.S.; Chung, S.J.; Shim, C.K.; Kim, D.D. Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J. Control. Release, 2007, 120(3), 169-177.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.011] [PMID: 17586082]
[180]
Eloy, J.O.; Petrilli, R.; Brueggemeier, R.W.; Marchetti, J.M.; Lee, R.J. Rapamycin-loaded immunoliposomes functionalized with Trastuzumab: A strategy to enhance cytotoxicity to HER2-positive breast cancer cells. Anticancer. Agents Med. Chem., 2017, 17(1), 48-56.
[PMID: 27225450]
[181]
Eloy, J.O.; Petrilli, R.; Chesca, D.L.; Saggioro, F.P.; Lee, R.J.; Marchetti, J.M. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur. J. Pharm. Biopharm., 2017, 115, 159-167.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.020] [PMID: 28257810]
[182]
Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer, 2012, 12(4), 278-287.
[http://dx.doi.org/10.1038/nrc3236] [PMID: 22437872]
[183]
Srinivasarao, M.; Galliford, C.V.; Low, P.S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov., 2015, 14(3), 203-219.
[http://dx.doi.org/10.1038/nrd4519] [PMID: 25698644]
[184]
Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.), 2017, 9(4), 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[185]
Lu, Y.; Sega, E.; Leamon, C.P.; Low, P.S. Folate receptor-targeted immunotherapy of cancer: Mechanism and therapeutic potential. Adv. Drug Deliv. Rev., 2004, 56(8), 1161-1176.
[http://dx.doi.org/10.1016/j.addr.2004.01.009] [PMID: 15094213]
[186]
Xia, W.; Low, P.S. Folate-targeted therapies for cancer. J. Med. Chem., 2010, 53(19), 6811-6824.
[http://dx.doi.org/10.1021/jm100509v] [PMID: 20666486]
[187]
Reddy, J.A.; Allagadda, V.M.; Leamon, C.P. Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr. Pharm. Biotechnol., 2005, 6(2), 131-150.
[http://dx.doi.org/10.2174/1389201053642376] [PMID: 15853692]
[188]
Reddy, J.A.; Low, P.S. Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation. J. Control. Release, 2000, 64(1-3), 27-37.
[http://dx.doi.org/10.1016/S0168-3659(99)00135-2] [PMID: 10640643]
[189]
Werner, M.E.; Karve, S.; Sukumar, R.; Cummings, N.D.; Copp, J.A.; Chen, R.C.; Zhang, T.; Wang, A.Z. Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials, 2011, 32(33), 8548-8554.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.067] [PMID: 21843904]
[190]
Kim, K.H.; Jelovac, D.; Armstrong, D.K.; Schwartz, B.; Weil, S.C.; Schweizer, C.; Alvarez, R.D. Phase 1b safety study of farletuzumab, carboplatin and pegylated liposomal doxorubicin in patients with platinum-sensitive epithelial ovarian cancer. Gynecol. Oncol., 2016, 140(2), 210-214.
[http://dx.doi.org/10.1016/j.ygyno.2015.11.031] [PMID: 26644263]
[191]
Ledermann, J.A.; Canevari, S.; Thigpen, T. Targeting the folate receptor: Diagnostic and therapeutic approaches to personalize cancer treatments. Ann. Oncol., 2015, 26(10), 2034-2043.
[http://dx.doi.org/10.1093/annonc/mdv250] [PMID: 26063635]
[192]
Tortorella, S.; Karagiannis, T.C. Transferrin receptor-mediated endocytosis: A useful target for cancer therapy. J. Membr. Biol., 2014, 247(4), 291-307.
[http://dx.doi.org/10.1007/s00232-014-9637-0] [PMID: 24573305]
[193]
Yue, P.J.; He, L.; Qiu, S.W.; Li, Y.; Liao, Y.J.; Li, X.P.; Xie, D.; Peng, Y. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol. Cancer, 2014, 13(1), 191.
[http://dx.doi.org/10.1186/1476-4598-13-191] [PMID: 25128329]
[194]
Wike-Hooley, J.L.; Haveman, J.; Reinhold, H.S. The relevance of tumour pH to the treatment of malignant disease. Radiother. Oncol., 1984, 2(4), 343-366.
[http://dx.doi.org/10.1016/S0167-8140(84)80077-8] [PMID: 6097949]
[195]
Basel, M.T.; Shrestha, T.B.; Troyer, D.L.; Bossmann, S.H. Protease-sensitive, polymer-caged liposomes: A method for making highly targeted liposomes using triggered release. ACS Nano, 2011, 5(3), 2162-2175.
[http://dx.doi.org/10.1021/nn103362n] [PMID: 21314184]
[196]
Schroeder, A.; Honen, R.; Turjeman, K.; Gabizon, A.; Kost, J.; Barenholz, Y. Ultrasound triggered release of cisplatin from liposomes in murine tumors. J. Control. Release, 2009, 137(1), 63-68.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.007] [PMID: 19303426]
[197]
Tagami, T.; Foltz, W.D.; Ernsting, M.J.; Lee, C.M.; Tannock, I.F.; May, J.P.; Li, S.D. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials, 2011, 32(27), 6570-6578.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.029] [PMID: 21641639]
[198]
Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res., 1989, 49(23), 6449-6465.
[PMID: 2684393]
[199]
Biswas, S.; Dodwadkar, N.S.; Sawant, R.R.; Torchilin, V.P. Development of the novel PEG-PE-based polymer for the reversible attachment of specific ligands to liposomes: Synthesis and in vitro characterization. Bioconjug. Chem., 2011, 22(10), 2005-2013.
[http://dx.doi.org/10.1021/bc2002133] [PMID: 21870873]
[200]
Guo, P.; You, J.O.; Yang, J.; Jia, D.; Moses, M.A.; Auguste, D.T. Inhibiting metastatic breast cancer cell migration via the synergy of targeted, pH-triggered siRNA delivery and chemokine axis blockade. Mol. Pharm., 2014, 11(3), 755-765.
[http://dx.doi.org/10.1021/mp4004699] [PMID: 24467226]
[201]
Huang, Z.R.; Tipparaju, S.K.; Kirpotin, D.B.; Pien, C.; Kornaga, T.; Noble, C.O.; Koshkaryev, A.; Tran, J.; Kamoun, W.S.; Drummond, D.C. Formulation optimization of an ephrin A2 targeted immunoliposome encapsulating reversibly modified taxane prodrugs. J. Control. Release, 2019, 310, 47-57.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.006] [PMID: 31400383]
[202]
Zhu, L.; Kate, P.; Torchilin, V.P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano, 2012, 6(4), 3491-3498.
[http://dx.doi.org/10.1021/nn300524f] [PMID: 22409425]
[203]
Huang, S.; Shao, K.; Liu, Y.; Kuang, Y.; Li, J.; An, S.; Guo, Y.; Ma, H.; Jiang, C. Tumor-targeting and microenvironmentresponsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano, 2013, 7(3), 2860-2871.
[http://dx.doi.org/10.1021/nn400548g] [PMID: 23451830]
[204]
Maruyama, K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev., 2011, 63(3), 161-169.
[http://dx.doi.org/10.1016/j.addr.2010.09.003] [PMID: 20869415]
[205]
Gaber, M.H.; Hong, K. Targeted sterically stabilized immunoliposomes: Effect of bilayer composition and temperature on the antitumor activity in vitro. Dtsch. Z. Onkol., 2000, 10(3), 78-85.
[http://dx.doi.org/10.1055/s-2000-11211]
[206]
Puri, A.; Kramer-Marek, G.; Campbell-Massa, R.; Yavlovich, A.; Tele, S.C.; Lee, S.B.; Clogston, J.D.; Patri, A.K.; Blumenthal, R.; Capala, J. HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J. Liposome Res., 2008, 18(4), 293-307.
[http://dx.doi.org/10.1080/08982100802457377] [PMID: 18937120]
[207]
Ren, Y.; Zhang, H.; Chen, B.; Cheng, J.; Cai, X.; Liu, R.; Xia, G.; Wu, W.; Wang, S.; Ding, J.; Gao, C.; Wang, J.; Bao, W.; Wang, L.; Tian, L.; Song, H.; Wang, X. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multi-drug resistance. Int. J. Nanomedicine, 2012, 7, 2261-2269.
[PMID: 22619560]
[208]
Wang, C.; Wang, X.; Zhong, T.; Zhao, Y.; Zhang, W.Q.; Ren, W.; Huang, D.; Zhang, S.; Guo, Y.; Yao, X.; Tang, Y.Q.; Zhang, X.; Zhang, Q. The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo. Int. J. Nanomedicine, 2015, 10, 2229-2248.
[PMID: 25834435]
[209]
Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm., 2009, 71(3), 431-444.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.026] [PMID: 18977297]
[210]
Kikumori, T.; Kobayashi, T.; Sawaki, M.; Imai, T. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticleloaded anti-HER2 immunoliposomes. Breast Cancer Res. Treat., 2009, 113(3), 435-441.
[http://dx.doi.org/10.1007/s10549-008-9948-x] [PMID: 18311580]
[211]
Pradhan, P.; Giri, J.; Rieken, F.; Koch, C.; Mykhaylyk, O.; Döblinger, M.; Banerjee, R.; Bahadur, D.; Plank, C. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release, 2010, 142(1), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.002] [PMID: 19819275]
[212]
Su, W.; Wang, H.; Wang, S.; Liao, Z.; Kang, S.; Peng, Y.; Han, L.; Chang, J. PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting. Int. J. Pharm., 2012, 426(1-2), 170-181.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.013] [PMID: 22266537]
[213]
De Gregorio, E.; Rappuoli, R. From empiricism to rational design: A personal perspective of the evolution of vaccine development. Nat. Rev. Immunol., 2014, 14(7), 505-514.
[http://dx.doi.org/10.1038/nri3694] [PMID: 24925139]
[214]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[215]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1(3), 297-315.
[PMID: 17717971]
[216]
Wang, N.; Wu, T.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system. Liposomes, 2017, 25, 129-154.
[http://dx.doi.org/10.5772/intechopen.68521]
[217]
Fotoran, W.L.; Kleiber, N.; Müntefering, T.; Liebau, E.; Wunderlich, G. Production of glycosylphosphatidylinositol-anchored proteins for vaccines and directed binding of immunoliposomes to specific cell types. J. Venom. Anim. Toxins Incl. Trop. Dis., 2020, 26, e20200032.
[http://dx.doi.org/10.1590/1678-9199-jvatitd-2020-0032] [PMID: 32788917]
[218]
Ozpolat, B.; Rao, X.M.; Powell, M.F.; Lachman, L.B. Immunoliposomes containing antibodies to costimulatory molecules as adjuvants for HIV subunit vaccines. AIDS Res. Hum. Retroviruses, 1998, 14(5), 409-417.
[http://dx.doi.org/10.1089/aid.1998.14.409] [PMID: 9546800]
[219]
Askarizadeh, A.; Jaafari, M.R.; Khamesipour, A.; Badiee, A. Liposomal adjuvant development for leishmaniasis vaccines. Ther. Adv. Vaccines, 2017, 5(4-5), 85-101.
[http://dx.doi.org/10.1177/2051013617741578] [PMID: 29201374]
[220]
Badiee, A.; Davies, N.; McDonald, K.; Radford, K.; Michiue, H.; Hart, D.; Kato, M. Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor DEC-205. Vaccine, 2007, 25(25), 4757-4766.
[http://dx.doi.org/10.1016/j.vaccine.2007.04.029] [PMID: 17512099]
[221]
Mohammadian Haftcheshmeh, S.; Zamani, P.; Mashreghi, M.; Nikpoor, A.R.; Tavakkol-Afshari, J.; Jaafari, M.R. Immunoliposomes bearing lymphocyte activation gene 3 fusion protein and P5 peptide: A novel vaccine for breast cancer. Biotechnol. Prog., 2021, 37(2), e3095.
[http://dx.doi.org/10.1002/btpr.3095] [PMID: 33118322]
[222]
Matusewicz, L.; Podkalicka, J.; Sikorski, A.F. Immunoliposomes with simvastatin as a potential therapeutic in treatment of breast cancer cells overexpressing HER2—An in vitro study. Cancers (Basel), 2018, 10(11), 1-23.
[http://dx.doi.org/10.3390/cancers10110418] [PMID: 30388834]
[223]
Hosokawa, S.; Tagawa, T.; Niki, H.; Hirakawa, Y.; Nohga, K.; Nagaike, K. Efficacy of immunoliposomes on cancer models in a cell-surface-antigen-density-dependent manner. Br. J. Cancer, 2003, 89(8), 1545-1551.
[http://dx.doi.org/10.1038/sj.bjc.6601341] [PMID: 14562030]
[224]
Sawant, R.M.; Cohen, M.B.; Torchilin, V.P.; Rokhlin, O.W. Prostate cancer-specific monoclonal antibody 5D4 significantly enhances the cytotoxicity of doxorubicin-loaded liposomes against target cells in vitro. J. Drug Target., 2008, 16(7), 601-604.
[http://dx.doi.org/10.1080/10611860802228954] [PMID: 18686131]
[225]
Lu, R.M.; Chang, Y.L.; Chen, M.S.; Wu, H.C. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials, 2011, 32(12), 3265-3274.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.061] [PMID: 21306768]
[226]
Weng, K.C.; Noble, C.O.; Papahadjopoulos-Sternberg, B.; Chen, F.F.; Drummond, D.C.; Kirpotin, D.B.; Wang, D.; Hom, Y.K.; Hann, B.; Park, J.W. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett., 2008, 8(9), 2851-2857.
[http://dx.doi.org/10.1021/nl801488u] [PMID: 18712930]
[227]
Zhang, Y.; Jeong Lee, H.; Boado, R.J.; Pardridge, W.M. Receptormediated delivery of an antisense gene to human brain cancer cells. J. Gene Med., 2002, 4(2), 183-194.
[http://dx.doi.org/10.1002/jgm.255] [PMID: 11933219]
[228]
Park, J.W.; Kirpotin, D.B.; Hong, K.; Shalaby, R.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Papahadjopoulos, D.; Benz, C.C. Tumor targeting using anti-her2 immunoliposomes. J. Control. Release, 2001, 74(1-3), 95-113.
[http://dx.doi.org/10.1016/S0168-3659(01)00315-7] [PMID: 11489487]
[229]
Roth, A.; Drummond, D.C.; Conrad, F.; Hayes, M.E.; Kirpotin, D.B.; Benz, C.C.; Marks, J.D.; Liu, B. Anti-CD166 single chain antibody-mediated intracellular delivery of liposomal drugs to prostate cancer cells. Mol. Cancer Ther., 2007, 6(10), 2737-2746.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0140] [PMID: 17938267]
[230]
Gao, J.; Zhong, W.; He, J.; Li, H.; Zhang, H.; Zhou, G.; Li, B.; Lu, Y.; Zou, H.; Kou, G.; Zhang, D.; Wang, H.; Guo, Y.; Zhong, Y. Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. Int. J. Pharm., 2009, 374(1-2), 145-152.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.018] [PMID: 19446771]
[231]
Ito, A.; Kuga, Y.; Honda, H.; Kikkawa, H.; Horiuchi, A.; Watanabe, Y.; Kobayashi, T. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett., 2004, 212(2), 167-175.
[http://dx.doi.org/10.1016/j.canlet.2004.03.038] [PMID: 15279897]
[232]
Barrajón-Catalán, E.; Menéndez-Gutiérrez, M.P.; Falco, A.; Carrato, A.; Saceda, M.; Micol, V. Selective death of human breast cancer cells by lytic immunoliposomes: Correlation with their HER2 expression level. Cancer Lett., 2010, 290(2), 192-203.
[http://dx.doi.org/10.1016/j.canlet.2009.09.010] [PMID: 19896266]
[233]
Koning, G.A.; Kamps, J.A.; Scherphof, G.L. Efficient intracellular delivery of 5-fluorodeoxyuridine into colon cancer cells by targeted immunoliposomes. Cancer Detect. Prev., 2002, 26(4), 299-307.
[http://dx.doi.org/10.1016/S0361-090X(02)00087-9] [PMID: 12430634]
[234]
Guin, S.; Yao, H.P.; Wang, M.H. RON receptor tyrosine kinase as a target for delivery of chemodrugs by antibody directed pathway for cancer cell cytotoxicity. Mol. Pharm., 2010, 7(2), 386-397.
[http://dx.doi.org/10.1021/mp900168v] [PMID: 20039696]
[235]
Guin, S.; Ma, Q.; Padhye, S.; Zhou, Y.Q.; Yao, H.P.; Wang, M.H. Targeting acute hypoxic cancer cells by doxorubicinimmunoliposomes directed by monoclonal antibodies specific to RON receptor tyrosine kinase. Cancer Chemother. Pharmacol., 2011, 67(5), 1073-1083.
[http://dx.doi.org/10.1007/s00280-010-1408-8] [PMID: 20658288]
[236]
Marty, C.; Odermatt, B.; Schott, H.; Neri, D.; Ballmer-Hofer, K.; Klemenz, R.; Schwendener, R.A. Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br. J. Cancer, 2002, 87(1), 106-112.
[http://dx.doi.org/10.1038/sj.bjc.6600423] [PMID: 12085265]
[237]
Kim, M.J.; Lee, H.J.; Lee, I.A.; Kim, I.Y.; Lim, S.K.; Cho, H.A.; Kim, J.S. Preparation of pH-sensitive, long-circulating and EGFR-targeted immunoliposomes. Arch. Pharm. Res., 2008, 31(4), 539-546.
[http://dx.doi.org/10.1007/s12272-001-1190-9] [PMID: 18449514]
[238]
Drummond, D.C.; Noble, C.O.; Guo, Z.; Hayes, M.E.; Connolly-Ingram, C.; Gabriel, B.S.; Hann, B.; Liu, B.; Park, J.W.; Hong, K.; Benz, C.C.; Marks, J.D.; Kirpotin, D.B. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J. Control. Release, 2010, 141(1), 13-21.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.006] [PMID: 19686789]
[239]
Nielsen, U.B.; Kirpotin, D.B.; Pickering, E.M.; Hong, K.; Park, J.W.; Refaat Shalaby, M.; Shao, Y.; Benz, C.C.; Marks, J.D. Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta, 2002, 1591(1-3), 109-118.
[http://dx.doi.org/10.1016/S0167-4889(02)00256-2] [PMID: 12183061]
[240]
Afrakhteh, M.; Kheirollah, A.; Pourshohod, A.; Ghaffari, M.A.; Jamalan, M.; Zeinali, M. Cytotoxicity of sodium arsenite-loaded anti-HER2 immunoliposomes against HER2-expressing human breast cancer cell lines. Lett. Drug Des. Discov., 2019, 16(5), 556-562.
[http://dx.doi.org/10.2174/1570180815666180803120409]
[241]
Petrilli, R.; Eloy, J.O.; Lopez, R.F.; Lee, R.J. Cetuximab immunoliposomes enhance delivery of 5-FU to skin squamous carcinoma cells. Anticancer. Agents Med. Chem., 2017, 17(2), 301-308.
[http://dx.doi.org/10.2174/1871520616666160526110913] [PMID: 27225449]
[242]
Hagiwara, M.; Kobayashi, T.; Mizuno, M.; Okada, H.; Yoshida, J.; Yoshida, J.; Xiaolin, M.; Okada, H.; Mizuno, M.; Hagiwara, M. Immunoliposomes for intracellular introduction of antitumor active substances into tumor cells and their preparation methods. JPH09110722A,, 1997.
[243]
Kook, Y.; So-yeon, W. UPA antibody-attached immunoliposomes. KR100470535B1 2005.
[244]
Benz, C.C.N.; Papahadjopoulos, D.S.F.; Park, W.J.S.F.; Hong, K.S.F.; Kirpotin, D.S.F. Immunoliposomes to optimize internalization in target cells. DE69736178T2 2007.
[245]
Rochlitz, C.; Mamot, C. Immunoliposomes for treatment of cancer. US20100239652A1, 2010.
[246]
Morita, K.; Morita, K.; Niwa, T.; Niwa, T.; Ichikawa, K.; Ichikawa, K.; Yoshida, H.; Yoshida, H. Immunoliposomes that induce apoptosis in death domain-containing receptor-expressing cells. JPWO2009020093A1, 2010.
[247]
Benz, C.C.; Papahadjopoulos, D.P.; Park, J.W.; Hong, K.; Kirpotin, D. Immunoliposomes that optimize internationalization into target cells. US7871620B2 2011.
[248]
Kim, J. Temperature-sensitive immunoliposome, preparation method thereof, and use thereof. KR101131107B1, 2012.
[249]
Herrmann, R.; Rochlitz, C.; Mamot, C. Novel combination treatment of cancer. WO2012136829A1, 2012.
[250]
Chang, E.H.; Pirollo, K.F. Preparation of antibody or an antibody fragment targeted immunoliposomes for systemic administration of therapeutic or diagnostic agents and uses thereof. US20150252372A1 2015.
[251]
Husseini, G.; Al-Sayah, M.; Elsadig, A. Systems and methods for targeted breast cancer therapies. US10864161B2, 2020.