Nanosilver-Reinforced AgSn Alloys for Dental Applications: Mechanical Behavior and Hardness

Page: [77 - 81] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Aim: AgSn alloys of different compositions were prepared by direct mixing with silver nanoparticles, and synthesized, in turn, by an environmentally friendly method.

Methods: The procedure was carried out by following the standard technique for preparing dental materials and devices. A detailed mechanical characterization, including the maximum elongation at break, the ultimate tensile strength and the hardness of the resulting nanocomposites, was obtained and numerically fitted by statistically significant equations.

Results: The results showed improved mechanical performance, as compared to standard materials used in dentistry, in particular, amalgams.

Conclusion: The procedure described allows to produce low-cost materials with tailored mechanical properties.

Keywords: cast alloys, AgSn amalgams, silver nanoparticles

[1]
Poffo CM, de Lima JC, Souza SM, et al. Photoacoustic study of nanocrystalline silicon produced by mechanical grinding. Physica B 2011; 406(8): 1627-32.
[http://dx.doi.org/10.1016/j.physb.2011.02.012]
[2]
Upadhyay D, Panchal MA, Dubey RS, et al. Corrosion of alloys used in dentistry: A review. Mater Sci Eng A 2006; 432(1-2): 1-11.
[http://dx.doi.org/10.1016/j.msea.2006.05.003]
[3]
Soares AC, Cavalheiro A. A review of amalgam and composite longevity of posterior restorations, revista portuguesa de estomatologia. Medicina Dentária e Cirurgia Maxilofacial 2010; 51: 155-64.
[4]
Mueller WD, Schoepf C, Nascimento ML, et al. Electrochemical characterisation of dental alloys: its possibilities and limitations. Anal Bioanal Chem 2005; 381(8): 1520-5.
[http://dx.doi.org/10.1007/s00216-005-3093-8] [PMID: 15827724]
[5]
Acciari Heloísa A, Guastaldi Antonio C, Brett Christopher MA. Corrosion of dental amalgams: electrochemical study of Ag–Hg, Ag–Sn and Sn–Hg phases. Electrochim Acta 2001; 46(24-25): 3887-93. [Escuchar
[http://dx.doi.org/10.1016/S0013-4686(01)00676-4]
[6]
Marcel FK, Muradás Thaís C. Penha Nilton, Maria M. Innovative surfaces and alloys for dental implants: What about biointergace-safety concerns? Dent Mater 2021; 37: 1447-62.
[http://dx.doi.org/10.1016/j.dental.2021.08.008] [PMID: 34426019]
[7]
Shehata F, Abdelhameed M, Fathy A, Elmahdy M. Preparation and characteristics of Cu-Al2O3 nanocomposite. Open J Met 2011; 1(2): 25-33.
[http://dx.doi.org/10.4236/ojmetal.2011.12004]
[8]
Cao G, Konishi H, Li X. Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Mater Sci Eng A 2008; 486(1-2): 357-62.
[http://dx.doi.org/10.1016/j.msea.2007.09.054]
[9]
Forn A, Baile MT, Rupérez E, Martín E, Rapoport A. Fracture behavior of alloy 6061 reinforced with alumina. Bol Soc Esp Ceram Vidr 2004; 43(2): 434-7.
[http://dx.doi.org/10.3989/cyv.2004.v43.i2.560]
[10]
Vera-Sirera B, Risueño-Mata P, Ricart-Vayá JM, Baquero Ruíz de la Hermosa C, Vera-Sempere F. Clinicopathological and immunohistochemical study of oral amalgam pigmentation. Acta Otorrinolaringol Esp 2012; 63(5): 376-81.
[http://dx.doi.org/10.1016/j.otorri.2012.02.004] [PMID: 22502738]
[11]
Marquez JA, Murr LE, Aguero V. A study of alternative metal particle structures and mixtures for dental amalgams based on mercury additions. J Mater Sci 1987; 22: 3949-55.
[12]
Friedman A, Kaufman A. Structure and strength of low-mercury dental amalgams prepared with liquid Hg-47.4% In alloy. J Mater Sci Mater Med 1998; 9(6): 347-54.
[http://dx.doi.org/10.1023/A:1008807014747] [PMID: 15348878]
[13]
Shen TD, Zhang X, Han K, et al. Structure and properties of bulk nanostructured alloys synthesized by flux-melting. J Mater Sci 2007; 42(5): 1638-48.
[http://dx.doi.org/10.1007/s10853-006-1096-2]
[14]
Suh YC, Lee ZH, Ohta M. Precipitation behavior of Ag-Pd-In dental alloys. J Mater Sci Mater Med 2000; 11(1): 43-8.
[http://dx.doi.org/10.1023/A:1008937702722] [PMID: 15348098]
[15]
Syutkin VI, Syutkin NN. The formation of an ultrafine-grained structure in long-range order metals and alloys subjected to phase transformations and irradiation. Russ Phys J 2004; 47(8): 872-81.
[http://dx.doi.org/10.1007/s11182-005-0006-4]
[16]
Salem HG, El-Eskandarany S, Amr K, Fattah HA. Bulk behavior of ball-milled aa2124 nanostructured powders reinforced with TiC. J Nanomater 2009; 2009(2)
[http://dx.doi.org/10.1155/2009/47918]
[17]
Venugopal T, Prasad Rao K, Murty BS. Mechanical and electrical properties of Cu–Ta nanocomposites prepared by high-energy ball milling. Acta Mater 2007; 55(13): 4439-45.
[http://dx.doi.org/10.1016/j.actamat.2007.04.025]
[18]
Song JM, Lin JJ, Huang CF, Chuang HY. Crystallization, morphology and distribution of Ag3Sn in Sn–Ag–Cu alloys and their influence on the vibration fracture properties. Mater Sci Eng A 2007; 466(1-2): 9-17.
[http://dx.doi.org/10.1016/j.msea.2007.04.121]
[19]
Cvijović Z, Vratnica M, Cvijović-Alagić I. The influences of multiscale-sized second-phase particles on fracture behaviour of overaged 7000 alloys. Procedia Eng 2009; 1(1): 35-8.
[http://dx.doi.org/10.1016/j.proeng.2009.06.010]
[20]
Ortega-Arroyo L, San Martin-Martínez E, Aguilar-Méndez MA, Cruz-Orea A, Isaias H-P, Glorieux C. Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response. Stärke 2013; 65(9-10): 1-8.
[http://dx.doi.org/10.1002/star.201200255]
[21]
Bastida FR. Propiedades de los materiales II. D.F., México: Instituto Politécnico Nacional. 2008.
[http://dx.doi.org/10.1002/star.201200255]
[22]
Apps PJ, Bowen JR, Prangnell PB. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing. Acta Mater 2003; 51(10): 2811-22.
[http://dx.doi.org/10.1016/S1359-6454(03)00086-7]
[23]
Ohkubo C, Shimura I, Aoki T, et al. Wear resistance of experimental Ti-Cu alloys. Biomaterials 2003; 24(20): 3377-81.
[http://dx.doi.org/10.1016/S0142-9612(03)00157-1] [PMID: 12809765]
[24]
Mazahery A, Shabani MO. Mechanical properties of A356 matrix composites reinforced with Nano-SiC particles. Strength Mater 2012; 44(6): 686-92.
[http://dx.doi.org/10.1007/s11223-012-9423-0]
[25]
Yeung B, Jang JW. Correlation between mechanical tensile properties and microstructure of eutectic Sn-3.5Ag solder. J Mater Sci Lett 2002; 21(9): 723-6.
[http://dx.doi.org/10.1023/A:1015741206911]
[26]
Dasgupta R. Aluminium alloy-based metal matrix composites: A potential material for wear resistant applications. Inter Scholar Res Network Metallur 2012; 14: 1-14.
[http://dx.doi.org/10.5402/2012/594573]
[27]
Macchi RL. Materiales Dentales Third Ed México: Pan American Medicine. 2000; p. 373.
[http://dx.doi.org/10.1016/j.msea.2008.10.023]
[28]
Zhu QS, Wang ZG, Wu SD, Shang JK. Enhanced rate-dependent tensile deformation in equal channel angularly pressed Sn–Ag–Cu alloy. Mater Sci Eng A 2009; 502(1-2): 153-8.
[29]
Seol HJ, Park YG, Hoon Kwon Y, Takada Y, Kim HI. Age-hardening behaviour and microstructure of a silver alloy with high Cu content for dental application. J Mater Sci Mater Med 2005; 16(11): 977-83.
[http://dx.doi.org/10.1007/s10856-005-4752-1] [PMID: 16388379]
[30]
Nakayama T, Kim BS, Kondo H, et al. Fabrication of MgO based nanocomposites with multifunctionality. J Eur Ceram Soc 2004; 24(2): 259-64.
[http://dx.doi.org/10.1016/S0955-2219(03)00237-1]
[31]
Srivatsan TS, Godbole C, Quick T, Paramsothy M, Gupta M. Mechanical behavior of a magnesium alloy nanocomposite under conditions of static tension and dynamic fatigue. J Mater Eng Perform 2013; 22(2): 439-53.
[http://dx.doi.org/10.1007/s11665-012-0276-2]
[32]
Cao G, Choi H, Oportus J, Konishi H, Li X. Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites. Mater Sci Eng A 2008; 494(1-2): 127-31.
[http://dx.doi.org/10.1016/j.msea.2008.04.070]