A Review on Properties, Synthesis, Surface Functionalization and Application of Nanodiamonds for Antimicrobial Activity

Page: [193 - 201] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Diamond is a metastable carbon allotrope. Microdiamonds are monocrystalline diamonds with particle sizes of less than 100 nm that have been explored over the last few decades. Nanodiamonds are particularly appealing to provide a variety of possible applications due to their superior mechanical and optical qualities, wide surface area, ease of bioconjugation, and high biocompatibility. In recent years, NDs have gotten a lot of attention in nanomedicine, and some significant progress has been made. The methods for creating various kinds of nanodiamonds are generalized, including detonation, CVD, hydrothermal and High-Pressure, High-Temperature Microdiamond Milling procedures. The characteristics, properties, synthesis, structure and surface functionalization, and applications of nanodiamonds for antimicrobial activity are discussed in this review paper.

Keywords: Nanodiamonds, antimicrobial, structure, functionalization, applications, synthesis.

Graphical Abstract

[1]
Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108(6): 2064-110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[2]
Sun Y, Xu J, Qiao W, et al. Constructing two-, zero-, and one-dimensional integrated nanostructures: An effective strategy for high microwave absorption performance. ACS Appl Mater Interfaces 2016; 8(46): 31878-86.
[http://dx.doi.org/10.1021/acsami.6b11443] [PMID: 27805359]
[3]
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: Gold nanoparticles for biomedicine. Chem Soc Rev 2012; 41(7): 2740-79.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[4]
Shin WK, Cho J, Kannan AG, Lee YS, Kim DW. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep 2016; 6(1): 1-0.
[http://dx.doi.org/10.1038/srep26332] [PMID: 28442746]
[5]
Lee JE, Lee N, Kim T, Kim J, Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 2011; 44(10): 893-902.
[http://dx.doi.org/10.1021/ar2000259] [PMID: 21848274]
[6]
Mansha M, Qurashi A, Ullah N, Bakare FO, Khan I, Yamani ZH. Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram Int 2016; 42(9): 11490-5.
[http://dx.doi.org/10.1016/j.ceramint.2016.04.035]
[7]
Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M. Recent progress in applications of nanoparticles in fish medicine: A review. Nanomedicine 2016; 12(3): 701-10.
[http://dx.doi.org/10.1016/j.nano.2015.11.005] [PMID: 26656532]
[8]
Rawal I, Kaur A. Synthesis of mesoporous polypyrrole nanowires/nanoparticles for ammonia gas sensing application. Sens Actuators Phys 2013; 203: 92-102.
[http://dx.doi.org/10.1016/j.sna.2013.08.023]
[9]
Kuthati Y, Kankala RK, Lin S-X, Weng C-F, Lee C-H. pH-triggered controllable release of silver-indole-3 acetic acid complexes from mesoporous silica nanoparticles (ibn-4) for effectively killing malignant bacteria. Mol Pharm 2015; 12(7): 2289-304.
[http://dx.doi.org/10.1021/mp500836w] [PMID: 25996616]
[10]
Su DS, Perathoner S, Centi G. Nanocarbons for the development of advanced catalysts. Chem Rev 2013; 113(8): 5782-816.
[http://dx.doi.org/10.1021/cr300367d] [PMID: 23721498]
[11]
Chang Y-R, Lee H-Y, Chen K, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 2008; 3(5): 284-8.
[http://dx.doi.org/10.1038/nnano.2008.99] [PMID: 18654525]
[12]
Greiner NR, Phillips DS, Johnson JD, Volk F. Diamonds in detonation soot. Nature 1988; 333(6172): 440-2.
[http://dx.doi.org/10.1038/333440a0]
[13]
Dai ZR, Bradley JP, Joswiak DJ, Brownlee DE, Hill HG, Genge MJ. Possible in situ formation of meteoritic nanodiamonds in the early Solar System. Nature 2002; 418(6894): 157-9.
[http://dx.doi.org/10.1038/nature00897] [PMID: 12110882]
[14]
Shirey SB, Cartigny P, Frost DJ, et al. Diamonds and the geology of mantle carbon. In: Rev Mineral Geochem. 2013; 75: pp. (1)355-421.
[http://dx.doi.org/10.2138/rmg.2013.75.12]
[15]
Davies G. Properties and growth of diamond. London, U.K.: INSPEC, the Institution of Electrical Engineers 1994.
[16]
Shenderova OA, Gruen DM. Ultrananocrystalline diamond: Synthesis, properties and applications. William Andrew 2012.
[17]
Butler JE, Sumant AV. The CVD of nanodiamond materials. Chem Vap Depos 2008; 14(7–8): 145-60.
[http://dx.doi.org/10.1002/cvde.200700037]
[18]
May PW, Ashfold MNR, Mankelevich YA. Microcrystalline, nanocrystalline, and ultrananocrystalline diamond chemical vapor deposition: Experiment and Modeling of the factors controlling growth rate, nucleation and crystal size. J Appl Phys 2007; 101(5053115): 1-9.
[19]
Park J-W, Kim K-S, Hwang N-M. Gas phase generation of diamond nanoparticles in the hot filament chemical vapor deposition reactor. Carbon 2016; C(106): 289-94.
[http://dx.doi.org/10.1016/j.carbon.2016.05.035]
[20]
Akaishi M, Kanda H, Yamaoka S. Synthesis of diamond from graphite-carbonate system under very high temperature and pressure. J Cryst Growth 1990; 104: 578-81.
[http://dx.doi.org/10.1016/0022-0248(90)90159-I]
[21]
Boudou J-P, Curmi PA, Jelezko F, et al. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 2009; 20(23)235602
[http://dx.doi.org/10.1088/0957-4484/20/23/235602] [PMID: 19451687]
[22]
Rehor I, Cigler P. Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam Relat Mater. Complete 2014; (46): 21-4.
[23]
Khan MB, Khan ZH. anodiamonds: Synthesis and Applications. In: Khan ZH, Ed. Nanomaterials and Their Applications. Singapore: Springer 2018; pp. 1-26.
[http://dx.doi.org/10.1007/978-981-10-6214-8_1]
[24]
Masato Araki M, Akira H. The Review of high pressure science and technology. High Pressure Sci Technol 2008; 18(1): 69-72.
[25]
Zousman B, Levinson O. Pure nanodiamonds produced by laser-assisted technique. Nanodiamond 2014; pp. 112-27.
[http://dx.doi.org/10.1039/9781849737616-00112]
[26]
Ultrasonic Synthesis of Nanodiamonds. Hielscher Ultrasound Technology Available from:. https://www.hielscher.com/ultra sonic-synthesis-of-nanodiamonds.htm [cited 2021 Nov 6].
[27]
Gogotsi Y, Welz S, Ersoy DA, McNallan MJ. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature 2001; 411(6835): 283-7.
[http://dx.doi.org/10.1038/35077031] [PMID: 11357125]
[28]
Iqbal T, Aziz A, Khan MA, Andleeb S, Mahmood H, Khan Ayaz A, et al. Surfactant assisted synthesis of ZnO nanostructures using atmospheric pressure microplasma electrochemical process with antibacterial applications. Mater Sci Eng B 2018; 228: 153-9.
[http://dx.doi.org/10.1016/j.mseb.2017.11.027]
[29]
Díez-Pascual AM, Díez-Vicente AL. Antibacterial SnO2 nanorods as efficient fillers of poly(propylene fumarate-co-ethylene glycol) biomaterials. Mater Sci Eng C 2017; 78: 806-16.
[http://dx.doi.org/10.1016/j.msec.2017.04.114] [PMID: 28576053]
[30]
Ivanova EP, Hasan J, Webb HK, et al. Natural bactericidal surfaces: Mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 2012; 8(16): 2489-94.
[http://dx.doi.org/10.1002/smll.201200528] [PMID: 22674670]
[31]
Hasan J, Jain S, Padmarajan R, Purighalla S, Sambandamurthy VK, Chatterjee K. Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria. Mater Des 2018; 140: 332-44.
[http://dx.doi.org/10.1016/j.matdes.2017.11.074] [PMID: 29391661]
[32]
Dunseath O, Smith EJW, Al-Jeda T, et al. Studies of Black Diamond as an antibacterial surface for Gram Negative bacteria: The interplay between chemical and mechanical bactericidal activity. Sci Rep 2019; 9(1): 8815.
[http://dx.doi.org/10.1038/s41598-019-45280-2] [PMID: 31217508]
[33]
May PW, Clegg M, Silva TA, et al. Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces. J Mater Chem B Mater Biol Med 2016; 4(34): 5737-46.
[http://dx.doi.org/10.1039/C6TB01774F] [PMID: 32263865]
[34]
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1803-15.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[35]
Holt K. Diamond at the nanoscale: Applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos Trans R Soc Math Phys Eng Sci 2007.
[http://dx.doi.org/10.1098/rsta.2007.0005]
[36]
Datta A, Kirca M, Fu Y, To AC. Surface structure and properties of functionalized nanodiamonds: A first-principles study. Nanotechnology 2011; 22(6)065706
[http://dx.doi.org/10.1088/0957-4484/22/6/065706] [PMID: 21212485]
[37]
Barras A, Martin FA, Bande O, et al. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale 2013; 5(6): 2307-16.
[http://dx.doi.org/10.1039/c3nr33826f] [PMID: 23396565]
[38]
Hartmann M, Betz P, Sun Y, Gorb SN, Lindhorst TK, Krueger A. Saccharide-modified nanodiamond conjugates for the efficient detection and removal of pathogenic bacteria. Chemistry 2012; 18(21): 6485-92.
[http://dx.doi.org/10.1002/chem.201104069] [PMID: 22528128]
[39]
Khanal M, Larsonneur F, Raks V, et al. Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles. Nanoscale 2015; 7(6): 2325-35.
[http://dx.doi.org/10.1039/C4NR05906A] [PMID: 25559389]
[40]
Szunerits S, Barras A, Boukherroub R. Antibacterial applications of nanodiamonds. Int J Environ Res Public Health 2016; 13(4): 413.
[http://dx.doi.org/10.3390/ijerph13040413] [PMID: 27077871]
[41]
Jariwala DH, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Mater Sci Eng C 2020; 113110996
[http://dx.doi.org/10.1016/j.msec.2020.110996] [PMID: 32487405]
[42]
Turcheniuk V, Raks V, Issa R, Cooper IR, Cragg PJ, Jijie R, et al. Antimicrobial activity of menthol modified nanodiamond particles. Diam Relat Mater. Complete 2015; (57): 2-8.
[43]
Yoo JW, Kim DH, Moon SJ, et al. Menthol derivatives and processfor preparing the same United States patent US 6,566,545 2003.
[44]
Sharon N. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta BBA - Gen Subj 2006; 1760(4): 527-37.
[45]
Drickamer K. Multiplicity of lectin-carbohydrate interactions. Nat Struct Biol 1995; 2(6): 437-9.
[http://dx.doi.org/10.1038/nsb0695-437] [PMID: 7664103]
[46]
Zhou G, Mo WJ, Sebbel P, et al. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: Evidence from in vitro FimH binding. J Cell Sci 2001; 114(Pt 22): 4095-103.
[http://dx.doi.org/10.1242/jcs.114.22.4095] [PMID: 11739641]
[47]
Choudhury D, Thompson A, Stojanoff V, et al. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 1999; 285(5430): 1061-6.
[http://dx.doi.org/10.1126/science.285.5430.1061] [PMID: 10446051]
[48]
Liang Y, Meinhardt T, Jarre G, et al. Deagglomeration and surface modification of thermally annealed nanoscale diamond. J Colloid Interface Sci 2011; 354(1): 23-30.
[http://dx.doi.org/10.1016/j.jcis.2010.10.044] [PMID: 21092980]
[49]
Das D, Jayaseelan V, Ramamurti R, Kukreja RS, Guo L, Singh RN. Low surface temperature synthesis and characterization of diamond thin films. Diamond Related Materials 2006; 15(9): 1336-49.
[http://dx.doi.org/10.1016/j.diamond.2005.10.016]
[50]
Zaitsev AM. Optical properties of diamond: A data handbook. Springer Science & Business Media 2013.
[51]
Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2007; 2(6): 789-803.
[http://dx.doi.org/10.2217/17435889.2.6.789] [PMID: 18095846]
[52]
Pham NB, Ho TT, Nguyen GT, et al. Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein. J Nanobiotechnology 2017; 15(1): 69.
[http://dx.doi.org/10.1186/s12951-017-0305-2] [PMID: 28982373]
[53]
Seifi T, Kamali AR. Anti-pathogenic activity of graphene nanomaterials: A review. Colloids Surf B Biointerfaces 2021; 199111509
[http://dx.doi.org/10.1016/j.colsurfb.2020.111509] [PMID: 33340933]
[54]
Prasad K, Bazaka O, Chua M, et al. Metallic Biomaterials: Current Challenges and Opportunities. Materials (Basel) 2017; 10(8): 884.
[http://dx.doi.org/10.3390/ma10080884] [PMID: 28773240]