Relationship between Gut Microbiota and Bone Health

Page: [2406 - 2418] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Gut Microbiota (GM) are microorganisms that live in the host gastrointestinal tract, and their abundance varies throughout the host’s life. With the development of sequencing technology, the role of GM in various diseases has been increasingly elucidated. Unlike earlier studies on orthopedic diseases, this review elucidates the correlation between GM health and bone health and discusses the potential mechanism of GM effects on host metabolism, inflammation, and ability to induce or aggravate some common orthopedic diseases, such as osteoarthritis, osteoporosis, rheumatoid arthritis, etc. Finally, the prospective methods of GM manipulation and evaluation of potential GM-targeting strategies in the diagnosis and treatment of orthopedic diseases are reviewed.

Graphical Abstract

[1]
Pearse, A.G. The diffuse neuroendocrine system and the apud concept: related “endocrine” peptides in brain, intestine, pituitary, placenta, and anuran cutaneous glands. Med. Biol., 1977, 55(3), 115-125.
[PMID: 330966]
[2]
Makino, H.; Kushiro, A.; Ishikawa, E.; Kubota, H.; Gawad, A.; Sakai, T.; Oishi, K.; Martin, R.; Ben-Amor, K.; Knol, J.; Tanaka, R. Mot-her-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s mi-crobiota. PLoS One, 2013, 8(11), e78331.
[http://dx.doi.org/10.1371/journal.pone.0078331] [PMID: 24244304]
[3]
Mancino, W.; Duranti, S.; Mancabelli, L.; Longhi, G.; Anzalone, R.; Milani, C.; Lugli, G.A.; Carnevali, L.; Statello, R.; Sgoifo, A.; van Sin-deren, D.; Ventura, M.; Turroni, F. Bifidobacterial transfer from mother to child as examined by an animal model. Microorganisms, 2019, 7(9), 7.
[http://dx.doi.org/10.3390/microorganisms7090293] [PMID: 31461893]
[4]
Perez-Muñoz, M.E.; Arrieta, M.C.; Ramer-Tait, A.E.; Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome, 2017, 5(1), 48.
[http://dx.doi.org/10.1186/s40168-017-0268-4] [PMID: 28454555]
[5]
Stinson, L.F.; Boyce, M.C.; Payne, M.S.; Keelan, J.A. The not-so-sterile womb: Evidence that the human fetus is exposed to bacteria prior to birth. Front. Microbiol., 2019, 10, 1124.
[http://dx.doi.org/10.3389/fmicb.2019.01124] [PMID: 31231319]
[6]
Moossavi, S.; Azad, M.B. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes, 2020, 12(1), 1667722.
[http://dx.doi.org/10.1080/19490976.2019.1667722] [PMID: 31684806]
[7]
McGuire, M.K.; McGuire, M.A. Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. Curr. Opin. Biotechnol., 2017, 44, 63-68.
[http://dx.doi.org/10.1016/j.copbio.2016.11.013] [PMID: 27940404]
[8]
Davis, M.Y.; Zhang, H.; Brannan, L.E.; Carman, R.J.; Boone, J.H. Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colonized infant after transition from breast milk to cow milk. Microbiome, 2016, 4(1), 53.
[http://dx.doi.org/10.1186/s40168-016-0198-6] [PMID: 27717398]
[9]
Li, J.; Jia, H.; Cai, X.; Zhong, H.; Feng, Q.; Sunagawa, S.; Arumugam, M.; Kultima, J.R.; Prifti, E.; Nielsen, T.; Juncker, A.S.; Manichanh, C.; Chen, B.; Zhang, W.; Levenez, F.; Wang, J.; Xu, X.; Xiao, L.; Liang, S.; Zhang, D.; Zhang, Z.; Chen, W.; Zhao, H.; Al-Aama, J.Y.; Edris, S.; Yang, H.; Wang, J.; Hansen, T.; Nielsen, H.B.; Brunak, S.; Kristiansen, K.; Guarner, F.; Pedersen, O.; Doré, J.; Ehrlich, S.D.; Bork, P.; Wang, J. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol., 2014, 32(8), 834-841.
[http://dx.doi.org/10.1038/nbt.2942] [PMID: 24997786]
[10]
Zoetendal, E.G.; Vaughan, E.E.; de Vos, W.M. A microbial world within us. Mol. Microbiol., 2006, 59(6), 1639-1650.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05056.x] [PMID: 16553872]
[11]
Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature, 2016, 535(7610), 65-74.
[http://dx.doi.org/10.1038/nature18847] [PMID: 27383981]
[12]
Han, H.; Li, Y.; Fang, J.; Liu, G.; Yin, J.; Li, T.; Yin, Y. Gut microbiota and type 1 diabetes. Int. J. Mol. Sci., 2018, 19(4), 19.
[http://dx.doi.org/10.3390/ijms19040995] [PMID: 29584630]
[13]
Jia, W.; Xie, G.; Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(2), 111-128.
[http://dx.doi.org/10.1038/nrgastro.2017.119] [PMID: 29018272]
[14]
Gérard, P. Gut microbiota and obesity. Cell. Mol. Life Sci., 2016, 73(1), 147-162.
[http://dx.doi.org/10.1007/s00018-015-2061-5] [PMID: 26459447]
[15]
Bäumler, A.J.; Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 2016, 535(7610), 85-93.
[http://dx.doi.org/10.1038/nature18849] [PMID: 27383983]
[16]
Ianiro, G.; Tilg, H.; Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 2016, 65(11), 1906-1915.
[http://dx.doi.org/10.1136/gutjnl-2016-312297] [PMID: 27531828]
[17]
D’Amelio, P.; Sassi, F. Gut microbiota, immune system, and bone. Calcif. Tissue Int., 2018, 102(4), 415-425.
[http://dx.doi.org/10.1007/s00223-017-0331-y] [PMID: 28965190]
[18]
Rajasekaran, S.; Soundararajan, D.C.R.; Tangavel, C.; Muthurajan, R.; Sri Vijay Anand, K.S.; Matchado, M.S.; Nayagam, S.M.; Shetty, A.P.; Kanna, R.M.; Dharmalingam, K. Human intervertebral discs harbour a unique microbiome and dysbiosis determines health and di-sease. Eur. Spine J., 2020, 29(7), 1621-1640.
[http://dx.doi.org/10.1007/s00586-020-06446-z] [PMID: 32409889]
[19]
Ozaki, D.; Kubota, R.; Maeno, T.; Abdelhakim, M.; Hitosugi, N. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporos. Int., 2021, 32(1), 145-156.
[http://dx.doi.org/10.1007/s00198-020-05728-y] [PMID: 33241467]
[20]
Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gers-tein, M.; Sodergren, E.; Weinstock, G.M. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun., 2019, 10(1), 5029.
[http://dx.doi.org/10.1038/s41467-019-13036-1] [PMID: 31695033]
[21]
Poretsky, R.; Rodriguez-R, L.M.; Luo, C.; Tsementzi, D.; Konstantinidis, K.T. Strengths and limitations of 16S rRNA gene amplicon se-quencing in revealing temporal microbial community dynamics. PLoS One, 2014, 9(4), e93827.
[http://dx.doi.org/10.1371/journal.pone.0093827] [PMID: 24714158]
[22]
Zou, M.; Cai, Y.; Hu, P.; Cao, Y.; Luo, X.; Fan, X.; Zhang, B.; Wu, X.; Jiang, N.; Lin, Q.; Zhou, H.; Xue, Y.; Gao, F. Analysis of the com-position and functions of the microbiome in diabetic foot osteomyelitis based on 16S rRNA and metagenome sequencing technology. Diabetes, 2020, 69(11), 2423-2439.
[http://dx.doi.org/10.2337/db20-0503] [PMID: 32801139]
[23]
Zhou, C.; Zhao, H.; Xiao, X.Y.; Chen, B.D.; Guo, R.J.; Wang, Q.; Chen, H.; Zhao, L.D.; Zhang, C.C.; Jiao, Y.H.; Ju, Y.M.; Yang, H.X.; Fei, Y.Y.; Wang, L.; Shen, M.; Li, H.; Wang, X.H.; Lu, X.; Yang, B.; Liu, J.J.; Li, J.; Peng, L.Y.; Zheng, W.J.; Zhang, C.Y.; Zhou, J.X.; Wu, Q.J.; Yang, Y.J.; Su, J.M.; Shi, Q.; Wu, D.; Zhang, W.; Zhang, F.C.; Jia, H.J.; Liu, D.P.; Jie, Z.Y.; Zhang, X. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J. Autoimmun., 2020, 107, 102360.
[http://dx.doi.org/10.1016/j.jaut.2019.102360] [PMID: 31806420]
[24]
Ranjan, R.; Rani, A.; Metwally, A.; McGee, H.S.; Perkins, D.L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun., 2016, 469(4), 967-977.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.083] [PMID: 26718401]
[25]
van Dijk, E.L.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The third revolution in sequencing technology. Trends Genet., 2018, 34(9), 666-681.
[http://dx.doi.org/10.1016/j.tig.2018.05.008] [PMID: 29941292]
[26]
Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol., 2009, 9(5), 313-323.
[http://dx.doi.org/10.1038/nri2515] [PMID: 19343057]
[27]
Bäckhed, F.; Fraser, C.M.; Ringel, Y.; Sanders, M.E.; Sartor, R.B.; Sherman, P.M.; Versalovic, J.; Young, V.; Finlay, B.B. Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications. Cell Host Microbe, 2012, 12(5), 611-622.
[http://dx.doi.org/10.1016/j.chom.2012.10.012] [PMID: 23159051]
[28]
Sun, M.; Wu, W.; Liu, Z.; Cong, Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol., 2017, 52(1), 1-8.
[http://dx.doi.org/10.1007/s00535-016-1242-9] [PMID: 27448578]
[29]
Sharon, G.; Garg, N.; Debelius, J.; Knight, R.; Dorrestein, P.C.; Mazmanian, S.K. Specialized metabolites from the microbiome in health and disease. Cell Metab., 2014, 20(5), 719-730.
[http://dx.doi.org/10.1016/j.cmet.2014.10.016] [PMID: 25440054]
[30]
Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol., 2014, 28(8), 1221-1238.
[http://dx.doi.org/10.1210/me.2014-1108] [PMID: 24892638]
[31]
Han, Y.; You, X.; Xing, W.; Zhang, Z.; Zou, W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteo-blasts, osteocytes, and osteoclasts. Bone Res., 2018, 6, 16.
[http://dx.doi.org/10.1038/s41413-018-0019-6] [PMID: 29844945]
[32]
Yan, J.; Herzog, J.W.; Tsang, K.; Brennan, C.A.; Bower, M.A.; Garrett, W.S.; Sartor, B.R.; Aliprantis, A.O.; Charles, J.F. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. USA, 2016, 113(47), E7554-E7563.
[http://dx.doi.org/10.1073/pnas.1607235113] [PMID: 27821775]
[33]
Novince, C.M.; Whittow, C.R.; Aartun, J.D.; Hathaway, J.D.; Poulides, N.; Chavez, M.B.; Steinkamp, H.M.; Kirkwood, K.A.; Huang, E.; Westwater, C.; Kirkwood, K.L. Commensal gut microbiota immunomodulatory actions in bone marrow and liver have catabolic effects on skeletal homeostasis in health. Sci. Rep., 2017, 7(1), 5747.
[http://dx.doi.org/10.1038/s41598-017-06126-x] [PMID: 28720797]
[34]
Li, L.; Wang, Z. Ovarian aging and osteoporosis. Adv. Exp. Med. Biol., 2018, 1086, 199-215.
[http://dx.doi.org/10.1007/978-981-13-1117-8_13] [PMID: 30232761]
[35]
Li, J.Y.; Chassaing, B.; Tyagi, A.M.; Vaccaro, C.; Luo, T.; Adams, J.; Darby, T.M.; Weitzmann, M.N.; Mulle, J.G.; Gewirtz, A.T.; Jones, R.M.; Pacifici, R. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J. Clin. Invest., 2016, 126(6), 2049-2063.
[http://dx.doi.org/10.1172/JCI86062] [PMID: 27111232]
[36]
Britton, R.A.; Irwin, R.; Quach, D.; Schaefer, L.; Zhang, J.; Lee, T.; Parameswaran, N.; McCabe, L.R. Probiotic L. reuteri treatment pre-vents bone loss in a menopausal ovariectomized mouse model. J. Cell. Physiol., 2014, 229(11), 1822-1830.
[http://dx.doi.org/10.1002/jcp.24636] [PMID: 24677054]
[37]
Lorenzo, J. From the gut to bone: Connecting the gut microbiota with Th17 T lymphocytes and postmenopausal osteoporosis. J. Clin. Invest., 2021, 131(5), 131.
[http://dx.doi.org/10.1172/JCI146619] [PMID: 33645543]
[38]
He, J.; Xu, S.; Zhang, B.; Xiao, C.; Chen, Z.; Si, F.; Fu, J.; Lin, X.; Zheng, G.; Yu, G.; Chen, J. Gut microbiota and metabolite alterations associated with reduced bone mineral density or bone metabolic indexes in postmenopausal osteoporosis. Aging (Albany NY), 2020, 12(9), 8583-8604.
[http://dx.doi.org/10.18632/aging.103168] [PMID: 32392181]
[39]
Lucas, S.; Omata, Y.; Hofmann, J.; Böttcher, M.; Iljazovic, A.; Sarter, K.; Albrecht, O.; Schulz, O.; Krishnacoumar, B.; Krönke, G.; Herr-mann, M.; Mougiakakos, D.; Strowig, T.; Schett, G.; Zaiss, M.M. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun., 2018, 9(1), 55.
[http://dx.doi.org/10.1038/s41467-017-02490-4] [PMID: 29302038]
[40]
Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelle-tier, J.P. Osteoarthritis. Nat. Rev. Dis. Primers, 2016, 2, 16072.
[http://dx.doi.org/10.1038/nrdp.2016.72] [PMID: 27734845]
[41]
Jin, X.; Beguerie, J.R.; Zhang, W.; Blizzard, L.; Otahal, P.; Jones, G.; Ding, C. Circulating C reactive protein in osteoarthritis: A systematic review and meta-analysis. Ann. Rheum. Dis., 2015, 74(4), 703-710.
[http://dx.doi.org/10.1136/annrheumdis-2013-204494] [PMID: 24363360]
[42]
Martel-Pelletier, J.; Tardif, G.; Rousseau Trépanier, J.; Abram, F.; Dorais, M.; Raynauld, J.P.; Pelletier, J.P. The ratio adipsin/MCP-1 is strongly associated with structural changes and CRP/MCP-1 with symptoms in obese knee osteoarthritis subjects: Data from the Os-teoarthritis Initiative. Osteoarthritis Cartilage, 2019, 27(8), 1163-1173.
[http://dx.doi.org/10.1016/j.joca.2019.04.016] [PMID: 31102776]
[43]
Liu, Y.; Ding, W.; Wang, H.L.; Dai, L.L.; Zong, W.H.; Wang, Y.Z.; Bi, J.; Han, W.; Dong, G.J. Gut microbiota and obesity-associated os-teoarthritis. Osteoarthritis Cartilage, 2019, 27(9), 1257-1265.
[http://dx.doi.org/10.1016/j.joca.2019.05.009] [PMID: 31146016]
[44]
Boutagy, N.E.; McMillan, R.P.; Frisard, M.I.; Hulver, M.W. Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie, 2016, 124, 11-20.
[http://dx.doi.org/10.1016/j.biochi.2015.06.020] [PMID: 26133659]
[45]
Huang, Z.Y.; Stabler, T.; Pei, F.X.; Kraus, V.B. Both systemic and local lipopolysaccharide (LPS) burden are associated with knee OA severity and inflammation. Osteoarthritis Cartilage, 2016, 24(10), 1769-1775.
[http://dx.doi.org/10.1016/j.joca.2016.05.008] [PMID: 27216281]
[46]
Collins, K.H.; Paul, H.A.; Reimer, R.A.; Seerattan, R.A.; Hart, D.A.; Herzog, W. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: Studies in a rat model. Osteoarthritis Cartilage, 2015, 23(11), 1989-1998.
[http://dx.doi.org/10.1016/j.joca.2015.03.014] [PMID: 26521745]
[47]
Schott, E.M.; Farnsworth, C.W.; Grier, A.; Lillis, J.A.; Soniwala, S.; Dadourian, G.H.; Bell, R.D.; Doolittle, M.L.; Villani, D.A.; Awad, H.; Ketz, J.P.; Kamal, F.; Ackert-Bicknell, C.; Ashton, J.M.; Gill, S.R.; Mooney, R.A.; Zuscik, M.J. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight, 2018, 3(8), 3.
[http://dx.doi.org/10.1172/jci.insight.95997] [PMID: 29669931]
[48]
Naumov, A.V.; Khovasova, N.O.; Moroz, V.I.; Tkacheva, O.N. The place of chondroitin sulfate and glucosamine sulfate in osteoarthritis pain therapy: A practical view from evidence-based medicine. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2019, 119(9), 112-117.
[http://dx.doi.org/10.17116/jnevro2019119091112] [PMID: 31626227]
[49]
Shmagel, A.; Demmer, R.; Knights, D.; Butler, M.; Langsetmo, L.; Lane, N.E.; Ensrud, K. The effects of glucosamine and chondroitin sulfate on gut microbial composition: A systematic review of evidence from animal and human studies. Nutrients, 2019, 11(2), 11.
[http://dx.doi.org/10.3390/nu11020294] [PMID: 30704054]
[50]
Hori, Y.; Hoshino, J.; Yamazaki, C.; Sekiguchi, T.; Miyauchi, S.; Horie, K. Effects of chondroitin sulfate on colitis induced by dextran sulfate sodium in rats. Jpn. J. Pharmacol., 2001, 85(2), 155-160.
[http://dx.doi.org/10.1254/jjp.85.155] [PMID: 11286397]
[51]
Louis, P. Different substrate preferences help closely related bacteria to coexist in the gut. MBio, 2017, 8(6), 8.
[http://dx.doi.org/10.1128/mBio.01824-17] [PMID: 29114031]
[52]
Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet, 2010, 376(9746), 1094-1108.
[http://dx.doi.org/10.1016/S0140-6736(10)60826-4] [PMID: 20870100]
[53]
Guerreiro, C.S.; Calado, Â.; Sousa, J.; Fonseca, J.E. Diet, microbiota, and gut permeability-the unknown triad in rheumatoid arthritis. Front. Med. (Lausanne), 2018, 5, 349.
[http://dx.doi.org/10.3389/fmed.2018.00349] [PMID: 30619860]
[54]
van den Broek, M.F. Streptococcal cell wall-induced polyarthritis in the rat. Mechanisms for chronicity and regulation of susceptibility. Acta Pathol. Microbiol. Scand. Suppl., 1989, 97(10), 861-878.
[http://dx.doi.org/10.1111/j.1699-0463.1989.tb00491.x] [PMID: 2679806]
[55]
Scher, J.U.; Sczesnak, A.; Longman, R.S.; Segata, N.; Ubeda, C.; Bielski, C.; Rostron, T.; Cerundolo, V.; Pamer, E.G.; Abramson, S.B.; Huttenhower, C.; Littman, D.R. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife, 2013, 2, e01202.
[http://dx.doi.org/10.7554/eLife.01202] [PMID: 24192039]
[56]
Maeda, Y.; Kurakawa, T.; Umemoto, E.; Motooka, D.; Ito, Y.; Gotoh, K.; Hirota, K.; Matsushita, M.; Furuta, Y.; Narazaki, M.; Sakaguchi, N.; Kayama, H.; Nakamura, S.; Iida, T.; Saeki, Y.; Kumanogoh, A.; Sakaguchi, S.; Takeda, K. Dysbiosis contributes to arthritis develop-ment via activation of autoreactive T cells in the intestine. Arthritis Rheumatol., 2016, 68(11), 2646-2661.
[http://dx.doi.org/10.1002/art.39783] [PMID: 27333153]
[57]
Abdollahi-Roodsaz, S.; Joosten, L.A.; Koenders, M.I.; Devesa, I.; Roelofs, M.F.; Radstake, T.R.; Heuvelmans-Jacobs, M.; Akira, S.; Ni-cklin, M.J.; Ribeiro-Dias, F.; van den Berg, W.B. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest., 2008, 118(1), 205-216.
[http://dx.doi.org/10.1172/JCI32639] [PMID: 18060042]
[58]
Wu, H.J.; Ivanov, I.I.; Darce, J.; Hattori, K.; Shima, T.; Umesaki, Y.; Littman, D.R.; Benoist, C.; Mathis, D. Gut-residing segmented fila-mentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity, 2010, 32(6), 815-827.
[http://dx.doi.org/10.1016/j.immuni.2010.06.001] [PMID: 20620945]
[59]
Rosato, E.; Salsano, F. Immunity, autoimmunity and autoimmune diseases in older people. J. Biol. Regul. Homeost. Agents, 2008, 22(4), 217-224.
[PMID: 19036223]
[60]
Teng, F.; Felix, K.M.; Bradley, C.P.; Naskar, D.; Ma, H.; Raslan, W.A.; Wu, H.J. The impact of age and gut microbiota on Th17 and Tfh cells in K/BxN autoimmune arthritis. Arthritis Res. Ther., 2017, 19(1), 188.
[http://dx.doi.org/10.1186/s13075-017-1398-6] [PMID: 28810929]
[61]
Asquith, M.; Sternes, P.R.; Costello, M.E.; Karstens, L.; Diamond, S.; Martin, T.M.; Li, Z.; Marshall, M.S.; Spector, T.D.; le Cao, K.A.; Rosenbaum, J.T.; Brown, M.A. HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut mi-crobiome. Arthritis Rheumatol., 2019, 71(10), 1642-1650.
[http://dx.doi.org/10.1002/art.40917] [PMID: 31038287]
[62]
Gomez, A.; Luckey, D.; Yeoman, C.J.; Marietta, E.V.; Berg Miller, M.E.; Murray, J.A.; White, B.A.; Taneja, V. Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible 0401 mice but not arthritis-resistant 0402 mice. PLoS One, 2012, 7(4), e36095.
[http://dx.doi.org/10.1371/journal.pone.0036095] [PMID: 22553482]
[63]
Mena-Vázquez, N.; Ruiz-Limón, P.; Moreno-Indias, I.; Manrique-Arija, S.; Tinahones, F.J.; Fernández-Nebro, A. Expansion of rare and harmful lineages is associated with established rheumatoid arthritis. J. Clin. Med., 2020, 9(4), 9.
[http://dx.doi.org/10.3390/jcm9041044] [PMID: 32272752]
[64]
Pianta, A.; Arvikar, S.; Strle, K.; Drouin, E.E.; Wang, Q.; Costello, C.E.; Steere, A.C. Evidence of the immune relevance of prevotella co-pri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol., 2017, 69(5), 964-975.
[http://dx.doi.org/10.1002/art.40003] [PMID: 27863183]
[65]
Martín-Esteban, A.; Sanz-Bravo, A.; Guasp, P.; Barnea, E.; Admon, A.; López de Castro, J.A. Separate effects of the ankylosing spondyli-tis associated ERAP1 and ERAP2 aminopeptidases determine the influence of their combined phenotype on the HLA-B*27 peptidome. J. Autoimmun., 2017, 79, 28-38.
[http://dx.doi.org/10.1016/j.jaut.2016.12.008] [PMID: 28063628]
[66]
Brown, M.A.; Kennedy, L.G.; MacGregor, A.J.; Darke, C.; Duncan, E.; Shatford, J.L.; Taylor, A.; Calin, A.; Wordsworth, P. Susceptibility to ankylosing spondylitis in twins: The role of genes, HLA, and the environment. Arthritis Rheum., 1997, 40(10), 1823-1828.
[http://dx.doi.org/10.1002/art.1780401015] [PMID: 9336417]
[67]
Gill, T.; Asquith, M.; Brooks, S.R.; Rosenbaum, J.T.; Colbert, R.A. Effects of HLA-B27 on gut microbiota in experimental spondyloarthri-tis implicate an ecological model of dysbiosis. Arthritis Rheumatol., 2018, 70(4), 555-565.
[http://dx.doi.org/10.1002/art.40405] [PMID: 29287307]
[68]
Klingberg, E.; Magnusson, M.K.; Strid, H.; Deminger, A.; Ståhl, A.; Sundin, J.; Simrén, M.; Carlsten, H.; Öhman, L.; Forsblad-d’Elia, H. A distinct gut microbiota composition in patients with ankylosing spondylitis is associated with increased levels of fecal calprotectin. Arthritis Res. Ther., 2019, 21(1), 248.
[http://dx.doi.org/10.1186/s13075-019-2018-4] [PMID: 31771630]
[69]
Rosenbaum, J.T.; Asquith, M. The microbiome and HLA-B27-associated acute anterior uveitis. Nat. Rev. Rheumatol., 2018, 14(12), 704-713.
[http://dx.doi.org/10.1038/s41584-018-0097-2] [PMID: 30301938]
[70]
Hammer, R.E.; Maika, S.D.; Richardson, J.A.; Tang, J.P.; Taurog, J.D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell, 1990, 63(5), 1099-1112.
[http://dx.doi.org/10.1016/0092-8674(90)90512-D] [PMID: 2257626]
[71]
Taurog, J.D.; Richardson, J.A.; Croft, J.T.; Simmons, W.A.; Zhou, M.; Fernández-Sueiro, J.L.; Balish, E.; Hammer, R.E. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med., 1994, 180(6), 2359-2364.
[http://dx.doi.org/10.1084/jem.180.6.2359] [PMID: 7964509]
[72]
Wen, C.; Zheng, Z.; Shao, T.; Liu, L.; Xie, Z.; Le Chatelier, E.; He, Z.; Zhong, W.; Fan, Y.; Zhang, L.; Li, H.; Wu, C.; Hu, C.; Xu, Q.; Zhou, J.; Cai, S.; Wang, D.; Huang, Y.; Breban, M.; Qin, N.; Ehrlich, S.D. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol., 2017, 18(1), 142.
[http://dx.doi.org/10.1186/s13059-017-1271-6] [PMID: 28750650]
[73]
Fragoulis, G.E.; Liava, C.; Daoussis, D.; Akriviadis, E.; Garyfallos, A.; Dimitroulas, T. Inflammatory bowel diseases and spondyloarthro-pathies: From pathogenesis to treatment. World J. Gastroenterol., 2019, 25(18), 2162-2176.
[http://dx.doi.org/10.3748/wjg.v25.i18.2162] [PMID: 31143068]
[74]
Robinson, P.C.; Leo, P.J.; Pointon, J.J.; Harris, J.; Cremin, K.; Bradbury, L.A.; Stebbings, S.; Harrison, A.A.; Duncan, E.L.; Evans, D.M.; Wordsworth, P.B.; Brown, M.A. Exome-wide study of ankylosing spondylitis demonstrates additional shared genetic background with in-flammatory bowel disease. NPJ Genom. Med., 2016, 1, 16008.
[http://dx.doi.org/10.1038/npjgenmed.2016.8] [PMID: 29263810]
[75]
Tian, P.; Li, B.; He, C.; Song, W.; Hou, A.; Tian, S.; Meng, X.; Li, K.; Shan, Y. Antidiabetic (type 2) effects of Lactobacillus G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food Funct., 2016, 7(9), 3789-3797.
[http://dx.doi.org/10.1039/C6FO00831C] [PMID: 27713957]
[76]
Liu, B.; Yang, L.; Cui, Z.; Zheng, J.; Huang, J.; Zhao, Q.; Su, Z.; Wang, M.; Zhang, W.; Liu, J.; Wang, T.; Li, Q.; Lu, H. Anti-TNF-α thera-py alters the gut microbiota in proteoglycan-induced ankylosing spondylitis in mice. MicrobiologyOpen, 2019, 8(12), e927.
[http://dx.doi.org/10.1002/mbo3.927] [PMID: 31556231]
[77]
Liu, G.; Ma, Y.; Yang, Q.; Deng, S. Modulation of inflammatory response and gut microbiota in ankylosing spondylitis mouse model by bioactive peptide IQW. J. Appl. Microbiol., 2020, 128(6), 1669-1677.
[http://dx.doi.org/10.1111/jam.14588] [PMID: 31977125]
[78]
Calguneri, M.; Swinburne, L.; Shinebaum, R.; Cooke, E.M.; Wright, V. Secretory IgA: immune defence pattern in ankylosing spondylitis and Klebsiella. Ann. Rheum. Dis., 1981, 40(6), 600-604.
[http://dx.doi.org/10.1136/ard.40.6.600] [PMID: 7332381]
[79]
Collado, A.; Sanmarti, R.; Serra, C.; Gallart, T.; Cañeté, J.D.; Gratacos, J.; Vives, J.; Muñoz-Gomeź, J. Serum levels of secretory IgA in ankylosing spondylitis. Scand. J. Rheumatol., 1991, 20(3), 153-158.
[http://dx.doi.org/10.3109/03009749109103015] [PMID: 2068536]
[80]
Muntean, L.; Lungu, A.; Gheorghe, S.R.; Valeanu, M.; Craciun, A.M.; Felea, I.; Petcu, A.; Filipescu, I.; Simon, S.P.; Rednic, S. Elevated serum levels of sclerostin are associated with high disease activity and functional impairment in patients with axial spondyloarthritis. Clin. Lab., 2016, 62(4), 589-597.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150801] [PMID: 27215077]
[81]
Sode, J.; Bank, S.; Vogel, U.; Andersen, P.S.; Sørensen, S.B.; Bojesen, A.B.; Andersen, M.R.; Brandslund, I.; Dessau, R.B.; Hoffmann, H.J.; Glintborg, B.; Hetland, M.L.; Locht, H.; Heegaard, N.H.; Andersen, V. Genetically determined high activities of the TNF-alpha, IL23/IL17, and NFkB pathways were associated with increased risk of ankylosing spondylitis. BMC Med. Genet., 2018, 19(1), 165.
[http://dx.doi.org/10.1186/s12881-018-0680-z] [PMID: 30208882]
[82]
Wendling, D.; Cedoz, J.P.; Racadot, E.; Dumoulin, G. Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis. Joint Bone Spine, 2007, 74(3), 304-305.
[http://dx.doi.org/10.1016/j.jbspin.2006.11.005] [PMID: 17369068]
[83]
Lane, J.M.; Russell, L.; Khan, S.N. Osteoporosis. Clin. Orthop. Relat. Res., 2000, (372), 139-150.
[http://dx.doi.org/10.1097/00003086-200003000-00016] [PMID: 10738423]
[84]
Radominski, S.C.; Bernardo, W.; Paula, A.P.; Albergaria, B.H.; Moreira, C.; Fernandes, C.E.; Castro, C.H.M.; Zerbini, C.A.F.; Domiciano, D.S.; Mendonça, L.M.C.; Pompei, L.M.; Bezerra, M.C.; Loures, M.A.R.; Wender, M.C.O.; Lazaretti-Castro, M.; Pereira, R.M.R.; Maeda, S.S.; Szejnfeld, V.L.; Borba, V.Z.C. Brazilian guidelines for the diagnosis and treatment of postmenopausal osteoporosis. Rev. Bras. Reumatol. Engl. Ed., 2017, 57(Suppl. 2), 452-466.
[http://dx.doi.org/10.1016/j.rbre.2017.07.001] [PMID: 28838768]
[85]
Rocha-Braz, M.G.; Ferraz-de-Souza, B. Genetics of osteoporosis: Searching for candidate genes for bone fragility. Arch. Endocrinol. Metab., 2016, 60(4), 391-401.
[http://dx.doi.org/10.1590/2359-3997000000178] [PMID: 27533615]
[86]
Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E.M.; Xie, C. Osteoblast-osteoclast interactions. Connect. Tissue Res., 2018, 59(2), 99-107.
[http://dx.doi.org/10.1080/03008207.2017.1290085] [PMID: 28324674]
[87]
Cho, I.J.; Choi, K.H.; Oh, C.H.; Hwang, Y.C.; Jeong, I.K.; Ahn, K.J.; Chung, H.Y. Effects of C-reactive protein on bone cells. Life Sci., 2016, 145, 1-8.
[http://dx.doi.org/10.1016/j.lfs.2015.12.021] [PMID: 26687448]
[88]
Kim, D.E.; Kim, J.K.; Han, S.K.; Jang, S.E.; Han, M.J.; Kim, D.H. Lactobacillus plantarum NK3 and Bifidobacterium longum NK49 alle-viate bacterial vaginosis and osteoporosis in mice by suppressing NF-κB-Linked TNF-α expression. J. Med. Food, 2019, 22(10), 1022-1031.
[http://dx.doi.org/10.1089/jmf.2019.4419] [PMID: 31381476]
[89]
Yu, M.; Malik Tyagi, A.; Li, J.Y.; Adams, J.; Denning, T.L.; Weitzmann, M.N.; Jones, R.M.; Pacifici, R. PTH induces bone loss via micro-bial-dependent expansion of intestinal TNF+ T cells and Th17 cells. Nat. Commun., 2020, 11(1), 468.
[http://dx.doi.org/10.1038/s41467-019-14148-4] [PMID: 31980603]
[90]
Canyelles, M.; Tondo, M.; Cedó, L.; Farràs, M.; Escolà-Gil, J.C.; Blanco-Vaca, F. Trimethylamine N-oxide: A link among diet, gut micro-biota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int. J. Mol. Sci., 2018, 19(10), 19.
[http://dx.doi.org/10.3390/ijms19103228] [PMID: 30347638]
[91]
Sharma, M.; Li, Y.; Stoll, M.L.; Tollefsbol, T.O. The epigenetic connection between the gut microbiome in obesity and diabetes. Front. Genet., 2020, 10, 1329.
[http://dx.doi.org/10.3389/fgene.2019.01329] [PMID: 32010189]
[92]
Schepper, J.D.; Collins, F.; Rios-Arce, N.D.; Kang, H.J.; Schaefer, L.; Gardinier, J.D.; Raghuvanshi, R.; Quinn, R.A.; Britton, R.; Para-meswaran, N.; McCabe, L.R. Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis. J. Bone Miner. Res., 2020, 35(4), 801-820.
[http://dx.doi.org/10.1002/jbmr.3947] [PMID: 31886921]
[93]
Liu, Y.; Guo, Y.L.; Meng, S.; Gao, H.; Sui, L.J.; Jin, S.; Li, Y.; Fan, S.G. Gut microbiota-dependent Trimethylamine N-Oxide are related with hip fracture in postmenopausal women: A matched case-control study. Aging (Albany NY), 2020, 12(11), 10633-10641.
[http://dx.doi.org/10.18632/aging.103283] [PMID: 32482913]
[94]
Chung, H.J.; Kyung Kim, W.; Joo Park, H.; Cho, L.; Kim, M.R.; Kim, M.J.; Shin, J.S.; Ho Lee, J.; Ha, I.H.; Kook Lee, S. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models. J. Ethnopharmacol., 2016, 179, 66-75.
[http://dx.doi.org/10.1016/j.jep.2015.12.025] [PMID: 26712566]
[95]
Xie, W.; Han, Y.; Li, F.; Gu, X.; Su, D.; Yu, W.; Li, Z.; Xiao, J. Neuropeptide Y1 receptor antagonist alters gut microbiota and alleviates the ovariectomy-induced osteoporosis in rats. Calcif. Tissue Int., 2020, 106(4), 444-454.
[http://dx.doi.org/10.1007/s00223-019-00647-5] [PMID: 31844916]
[96]
Chlebowski, R.T.; Anderson, G.L.; Aragaki, A.K.; Manson, J.E.; Stefanick, M.L.; Pan, K.; Barrington, W.; Kuller, L.H.; Simon, M.S.; La-ne, D.; Johnson, K.C.; Rohan, T.E.; Gass, M.L.S.; Cauley, J.A.; Paskett, E.D.; Sattari, M.; Prentice, R.L. Association of menopausal hor-mone therapy with breast cancer incidence and mortality during long-term follow-up of the women’s health initiative randomized clinical trials. JAMA, 2020, 324(4), 369-380.
[http://dx.doi.org/10.1001/jama.2020.9482] [PMID: 32721007]
[97]
El Khoudary, S.R.; Venugopal, V.; Manson, J.E.; Brooks, M.M.; Santoro, N.; Black, D.M.; Harman, M.; Naftolin, F.; Hodis, H.N.; Brinton, E.A.; Miller, V.M.; Taylor, H.S.; Budoff, M.J. Heart fat and carotid artery atherosclerosis progression in recently menopausal women: im-pact of menopausal hormone therapy: The KEEPS trial. Menopause, 2020, 27(3), 255-262.
[http://dx.doi.org/10.1097/GME.0000000000001472] [PMID: 32015261]
[98]
Li, B.; Liu, M.; Wang, Y.; Gong, S.; Yao, W.; Li, W.; Gao, H.; Wei, M. Puerarin improves the bone micro-environment to inhibit OVX-induced osteoporosis via modulating SCFAs released by the gut microbiota and repairing intestinal mucosal integrity. Biomed. Pharmacother., 2020, 132, 110923.
[http://dx.doi.org/10.1016/j.biopha.2020.110923] [PMID: 33125971]
[99]
Xu, X.; Feng, X.; He, M.; Zhang, Z.; Wang, J.; Zhu, H.; Li, T.; Wang, F.; Sun, M.; Wang, Z. The effect of acupuncture on tumor growth and gut microbiota in mice inoculated with osteosarcoma cells. Chin. Med., 2020, 15, 33.
[http://dx.doi.org/10.1186/s13020-020-00315-z] [PMID: 32292489]
[100]
Bishop, M.W.; Janeway, K.A.; Gorlick, R. Future directions in the treatment of osteosarcoma. Curr. Opin. Pediatr., 2016, 28(1), 26-33.
[http://dx.doi.org/10.1097/MOP.0000000000000298] [PMID: 26626558]
[101]
Zhen, H.; Qian, X.; Fu, X.; Chen, Z.; Zhang, A.; Shi, L. Regulation of shaoyao ruangan mixture on intestinal flora in mice with primary liver cancer. Integr. Cancer Ther., 2019, 18, 1534735419843178.
[http://dx.doi.org/10.1177/1534735419843178] [PMID: 31006277]
[102]
Sugiyama, Y.; Masumori, N.; Fukuta, F.; Yoneta, A.; Hida, T.; Yamashita, T.; Minatoya, M.; Nagata, Y.; Mori, M.; Tsuji, H.; Akaza, H.; Tsukamoto, T. Influence of isoflavone intake and equol-producing intestinal flora on prostate cancer risk. Asian Pac. J. Cancer Prev., 2013, 14(1), 1-4.
[http://dx.doi.org/10.7314/APJCP.2013.14.1.1] [PMID: 23534704]
[103]
Xue, M.; Ji, X.; Liang, H.; Liu, Y.; Wang, B.; Sun, L.; Li, W. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer. Food Funct., 2018, 9(2), 1214-1223.
[http://dx.doi.org/10.1039/C7FO01677H] [PMID: 29384543]
[104]
Salguero, D.A.; Barletta, P.A.; Sierraalta, W. Severe abdominal pain and diarrhea - unusual multiple myeloma presentation with a severe prognosis: A case report. J. Med. Case Reports, 2018, 12(1), 70.
[http://dx.doi.org/10.1186/s13256-018-1598-y] [PMID: 29549883]
[105]
Redman, M.G.; Ward, E.J.; Phillips, R.S. The efficacy and safety of probiotics in people with cancer: A systematic review. Ann. Oncol., 2014, 25(10), 1919-1929.
[http://dx.doi.org/10.1093/annonc/mdu106] [PMID: 24618152]
[106]
Behjati, S.; Tarpey, P.S.; Haase, K.; Ye, H.; Young, M.D.; Alexandrov, L.B.; Farndon, S.J.; Collord, G.; Wedge, D.C.; Martincorena, I.; Cooke, S.L.; Davies, H.; Mifsud, W.; Lidgren, M.; Martin, S.; Latimer, C.; Maddison, M.; Butler, A.P.; Teague, J.W.; Pillay, N.; Shlien, A.; McDermott, U.; Futreal, P.A.; Baumhoer, D.; Zaikova, O.; Bjerkehagen, B.; Myklebost, O.; Amary, M.F.; Tirabosco, R.; Van Loo, P.; Strat-ton, M.R.; Flanagan, A.M.; Campbell, P.J. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in os-teosarcoma. Nat. Commun., 2017, 8, 15936.
[http://dx.doi.org/10.1038/ncomms15936] [PMID: 28643781]
[107]
Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol., 2019, 51, 72-80.
[http://dx.doi.org/10.1016/j.mib.2019.10.008] [PMID: 31733401]
[108]
Rios-Arce, N.D.; Schepper, J.D.; Dagenais, A.; Schaefer, L.; Daly-Seiler, C.S.; Gardinier, J.D.; Britton, R.A.; McCabe, L.R.; Parameswaran, N. Post-antibiotic gut dysbiosis-induced trabecular bone loss is dependent on lymphocytes. Bone, 2020, 134, 115269.
[http://dx.doi.org/10.1016/j.bone.2020.115269] [PMID: 32061677]
[109]
Yang, L.; Liu, B.; Zheng, J.; Huang, J.; Zhao, Q.; Liu, J.; Su, Z.; Wang, M.; Cui, Z.; Wang, T.; Zhang, W.; Li, Q.; Lu, H. Rifaximin alters intestinal microbiota and prevents progression of ankylosing spondylitis in mice. Front. Cell. Infect. Microbiol., 2019, 9, 44.
[http://dx.doi.org/10.3389/fcimb.2019.00044] [PMID: 30886835]
[110]
Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., 2019, 74(2), 115-124.
[http://dx.doi.org/10.1159/000496426] [PMID: 30673668]
[111]
Jafarnejad, S.; Djafarian, K.; Fazeli, M.R.; Yekaninejad, M.S.; Rostamian, A.; Keshavarz, S.A. Effects of a multispecies probiotic supple-ment on bone health in osteopenic postmenopausal women: A randomized, double-blind, controlled trial. J. Am. Coll. Nutr., 2017, 36(7), 497-506.
[http://dx.doi.org/10.1080/07315724.2017.1318724] [PMID: 28628374]
[112]
Mu, Q.; Tavella, V.J.; Luo, X.M. Role of Lactobacillus reuteri in Human Health and Diseases. Front. Microbiol., 2018, 9, 757.
[http://dx.doi.org/10.3389/fmicb.2018.00757] [PMID: 29725324]
[113]
Collins, F.L.; Irwin, R.; Bierhalter, H.; Schepper, J.; Britton, R.A.; Parameswaran, N.; McCabe, L.R. Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS One, 2016, 11(4), e0153180.
[http://dx.doi.org/10.1371/journal.pone.0153180] [PMID: 27058036]
[114]
Collins, F.L.; Rios-Arce, N.D.; Schepper, J.D.; Jones, A.D.; Schaefer, L.; Britton, R.A.; McCabe, L.R.; Parameswaran, N. Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes. Sci. Rep., 2019, 9(1), 14708.
[http://dx.doi.org/10.1038/s41598-019-51293-8] [PMID: 31605025]
[115]
Nilsson, A.G.; Sundh, D.; Bäckhed, F.; Lorentzon, M. Lactobacillus reuteri reduces bone loss in older women with low bone mineral den-sity: A randomized, placebo-controlled, double-blind, clinical trial. J. Intern. Med., 2018, 284(3), 307-317.
[http://dx.doi.org/10.1111/joim.12805] [PMID: 29926979]
[116]
Kimoto-Nira, H.; Suzuki, C.; Kobayashi, M.; Sasaki, K.; Kurisaki, J.; Mizumachi, K. Anti-ageing effect of a lactococcal strain: Analysis using senescence-accelerated mice. Br. J. Nutr., 2007, 98(6), 1178-1186.
[http://dx.doi.org/10.1017/S0007114507787469] [PMID: 17617939]
[117]
Narva, M.; Collin, M.; Lamberg-Allardt, C.; Kärkkäinen, M.; Poussa, T.; Vapaatalo, H.; Korpela, R. Effects of long-term intervention with Lactobacillus helveticus-fermented milk on bone mineral density and bone mineral content in growing rats. Ann. Nutr. Metab., 2004, 48(4), 228-234.
[http://dx.doi.org/10.1159/000080455] [PMID: 15334032]
[118]
Narva, M.; Halleen, J.; Väänänen, K.; Korpela, R. Effects of Lactobacillus helveticus fermented milk on bone cells in vitro. Life Sci., 2004, 75(14), 1727-1734.
[http://dx.doi.org/10.1016/j.lfs.2004.04.011] [PMID: 15268972]
[119]
Narva, M.; Rissanen, J.; Halleen, J.; Vapaatalo, H.; Väänänen, K.; Korpela, R. Effects of bioactive peptide, valyl-prolyl-proline (VPP), and Lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Ann. Nutr. Metab., 2007, 51(1), 65-74.
[http://dx.doi.org/10.1159/000100823] [PMID: 17356257]
[120]
Whisner, C.M.; Castillo, L.F. Prebiotics, bone and mineral metabolism. Calcif. Tissue Int., 2018, 102(4), 443-479.
[http://dx.doi.org/10.1007/s00223-017-0339-3] [PMID: 29079996]
[121]
García-Vieyra, M.I.; Del Real, A.; López, M.G. Agave fructans: Their effect on mineral absorption and bone mineral content. J. Med. Food, 2014, 17(11), 1247-1255.
[http://dx.doi.org/10.1089/jmf.2013.0137] [PMID: 25069021]
[122]
Weaver, C.M.; Martin, B.R.; Nakatsu, C.H.; Armstrong, A.P.; Clavijo, A.; McCabe, L.D.; McCabe, G.P.; Duignan, S.; Schoterman, M.H.; van den Heuvel, E.G. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J. Agric. Food Chem., 2011, 59(12), 6501-6510.
[http://dx.doi.org/10.1021/jf2009777] [PMID: 21553845]
[123]
Drabińska, N.; Jarocka-Cyrta, E.; Złotkowska, D.; Abramowicz, P.; Krupa-Kozak, U. Daily oligofructose-enriched inulin intake impacts bone turnover markers but not the cytokine profile in pediatric patients with celiac disease on a gluten-free diet: Results of a randomised, placebo-controlled pilot study. Bone, 2019, 122, 184-192.
[http://dx.doi.org/10.1016/j.bone.2019.03.001] [PMID: 30840918]
[124]
Jakeman, S.A.; Henry, C.N.; Martin, B.R.; McCabe, G.P.; McCabe, L.D.; Jackson, G.S.; Peacock, M.; Weaver, C.M. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: A randomized crossover trial. Am. J. Clin. Nutr., 2016, 104(3), 837-843.
[http://dx.doi.org/10.3945/ajcn.116.132761] [PMID: 27465372]
[125]
Kerezoudi, E.N.; Mitsou, E.K.; Gioti, K.; Terzi, E.; Avgousti, I.; Panagiotou, A.; Koutrotsios, G.; Zervakis, G.I.; Mountzouris, K.C.; Tenta, R.; Kyriacou, A. Fermentation of Pleurotus ostreatus and Ganoderma lucidum mushrooms and their extracts by the gut microbiota of healthy and osteopenic women: potential prebiotic effect and impact of mushroom fermentation products on human osteoblasts. Food Funct., 2021, 12(4), 1529-1546.
[http://dx.doi.org/10.1039/D0FO02581J] [PMID: 33521800]
[126]
Alwarith, J.; Kahleova, H.; Rembert, E.; Yonas, W.; Dort, S.; Calcagno, M.; Burgess, N.; Crosby, L.; Barnard, N.D. Nutrition interventions in rheumatoid arthritis: The potential use of plant-based diets. A review. Front. Nutr., 2019, 6, 141.
[http://dx.doi.org/10.3389/fnut.2019.00141] [PMID: 31552259]
[127]
Bibbò, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G. The role of diet on gut microbiota composi-tion. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(22), 4742-4749.
[PMID: 27906427]
[128]
Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of dietary protein and peptides by intestinal microbes and their im-pacts on gut. Curr. Protein Pept. Sci., 2015, 16(7), 646-654.
[http://dx.doi.org/10.2174/1389203716666150630133657] [PMID: 26122784]
[129]
He, L.; Han, M.; Qiao, S.; He, P.; Li, D.; Li, N.; Ma, X. Soybean antigen proteins and their intestinal sensitization activities. Curr. Protein Pept. Sci., 2015, 16(7), 613-621.
[http://dx.doi.org/10.2174/1389203716666150630134602] [PMID: 26122781]
[130]
Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe, 2018, 23(6), 705-715.
[http://dx.doi.org/10.1016/j.chom.2018.05.012] [PMID: 29902436]
[131]
Hui, W.; Yu, D.; Cao, Z.; Zhao, X. Butyrate inhibit collagen-induced arthritis via Treg/IL-10/Th17 axis. Int. Immunopharmacol., 2019, 68, 226-233.
[http://dx.doi.org/10.1016/j.intimp.2019.01.018] [PMID: 30660077]
[132]
Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord., 2019, 20(4), 461-472.
[http://dx.doi.org/10.1007/s11154-019-09512-0] [PMID: 31707624]
[133]
Zhang, F.; Cui, B.; He, X.; Nie, Y.; Wu, K.; Fan, D. Microbiota transplantation: Concept, methodology and strategy for its modernization. Protein Cell, 2018, 9(5), 462-473.
[http://dx.doi.org/10.1007/s13238-018-0541-8] [PMID: 29691757]
[134]
Kragsnaes, M.S.; Kjeldsen, J.; Horn, H.C.; Munk, H.L.; Pedersen, F.M.; Holt, H.M.; Pedersen, J.K.; Holm, D.K.; Glerup, H.; Andersen, V.; Fredberg, U.; Kristiansen, K.; Christensen, R.; Ellingsen, T. Efficacy and safety of faecal microbiota transplantation in patients with pso-riatic arthritis: Protocol for a 6-month, double-blind, randomised, placebo-controlled trial. BMJ Open, 2018, 8(4), e019231.
[http://dx.doi.org/10.1136/bmjopen-2017-019231] [PMID: 29703851]
[135]
Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; Cogdill, A.P.; Zhao, L.; Hudgens, C.W.; Hutchinson, D.S.; Manzo, T.; Petaccia de Macedo, M.; Cotechini, T.; Kumar, T.; Chen, W.S.; Reddy, S.M.; Szczepaniak Sloane, R.; Galloway-Pena, J.; Jiang, H.; Chen, P.L.; Shpall, E.J.; Rezvani, K.; Alousi, A.M.; Chemaly, R.F.; Shelburne, S.; Vence, L.M.; Okhuysen, P.C.; Jensen, V.B.; Swennes, A.G.; McAllister, F.; Marcelo Riquelme Sanchez, E.; Zhang, Y.; Le Chatelier, E.; Zitvogel, L.; Pons, N.; Austin-Breneman, J.L.; Haydu, L.E.; Burton, E.M.; Gardner, J.M.; Sirmans, E.; Hu, J.; Lazar, A.J.; Tsujikawa, T.; Diab, A.; Tawbi, H.; Glitza, I.C.; Hwu, W.J.; Patel, S.P.; Woodman, S.E.; Amaria, R.N.; Davies, M.A.; Gershenwald, J.E.; Hwu, P.; Lee, J.E.; Zhang, J.; Coussens, L.M.; Cooper, Z.A.; Futreal, P.A.; Daniel, C.R.; Ajami, N.J.; Petrosino, J.F.; Tetzlaff, M.T.; Shar-ma, P.; Allison, J.P.; Jenq, R.R.; Wargo, J.A. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 2018, 359(6371), 97-103.
[http://dx.doi.org/10.1126/science.aan4236] [PMID: 29097493]
[136]
Gu, S.; Chen, Y.; Wu, Z.; Chen, Y.; Gao, H.; Lv, L.; Guo, F.; Zhang, X.; Luo, R.; Huang, C.; Lu, H.; Zheng, B.; Zhang, J.; Yan, R.; Zhang, H.; Jiang, H.; Xu, Q.; Guo, J.; Gong, Y.; Tang, L.; Li, L. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin. Infect. Dis., 2020, 71(10), 2669-2678.
[http://dx.doi.org/10.1093/cid/ciaa709] [PMID: 32497191]
[137]
Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol., 2021, 19(1), 55-71.
[http://dx.doi.org/10.1038/s41579-020-0433-9] [PMID: 32887946]