Alternative Models in Neuropharmacology: The Zebrafish (Danio rerio)

Page: [474 - 475] Pages: 2

  • * (Excluding Mailing and Handling)

[1]
Fontana, B.D.; Mezzomo, N.J.; Kalueff, A.V.; Rosemberg, D.B. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol., 2018, 299(Pt A), 157-171.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.004] [PMID: 28987462]
[2]
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliot, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Ürün, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberländer, M.; Rudolph-Geiger, S.; Teucke, M.; Lanz, C.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.; Enright, A.; Geisler, R.; Plasterk, R.H.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nüsslein-Volhard, C.; Hubbard, T.J.; Roest Crollius, H.; Rogers, J.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496(7446), 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[3]
Gerlai, R. Evolutionary conservation, translational relevance and cognitive function: The future of zebrafish in behavioral neuroscience. Neurosci. Biobehav. Rev., 2020, 116, 426-435.
[http://dx.doi.org/10.1016/j.neubiorev.2020.07.009] [PMID: 32681940]
[4]
Costa, F.V.; Rosa, L.V.; Quadros, V.A.; de Abreu, M.S.; Santos, A.R.S.; Sneddon, L.U.; Kalueff, A.V.; Rosemberg, D.B. The use of zebrafish as a non-traditional model organism in translational pain research: the knowns and the unknowns. Curr. Neuropharmacol., 2022, 20(3), 476-493.
[http://dx.doi.org/10.2174/1570159X19666210311104408] [PMID: 33719974]
[5]
Benvenutti, R.; Gallas-Lopes, M.; Marcon, M.; Reschke, C.R.; Herrmann, A.P.; Piato, A. Glutamate Nmda Receptor Antagonists With Relevance To Schizophrenia: A Review Of Zebrafish Behavioral Studies. Curr. Neuropharmacol., 2022, 20(3), 494-509.
[http://dx.doi.org/10.2174/1570159X19666210215121428] [PMID: 33588731]
[6]
Kiper, K.; Freeman, J.L. Use of Zebrafish Genetic Models to Study Etiology of the Amyloid-Beta and Neurofibrillary Tangle Pathways in Alzheimer’s Disease. Curr. Neuropharmacol., 2022, 20(3), 524-539.
[http://dx.doi.org/10.2174/1570159X19666210524155944] [PMID: 34030617]
[7]
Altenhofen, S.; Bonan, C.D. Zebrafish as a tool in the study of sleep and memory-related disorders. Curr. Neuropharmacol., 2022, 20(3), 540-549.
[http://dx.doi.org/10.2174/1570159X19666210712141041] [PMID: 34254919]
[8]
Faillace, M.P.; Bernabeu, R.O. Epigenetic Mechanisms Mediate Nicotine-Induced Reward and Behaviour in Zebrafish. Curr. Neuropharmacol., 2022, 20(3), 510-523.
[http://dx.doi.org/10.2174/1570159X19666210716112351] [PMID: 34279203]
[9]
de Abreu, M.S.; Costa, F.; Giacomini, A.C.V.V.; Demin, K.A.; Petersen, E.V.; Rosemberg, D.B.; Kalueff, A.V. Exploring CNS effects of American traditional medicines using zebrafish models. Curr. Neuropharmacol., 2022, 20(3), 550-559.
[http://dx.doi.org/10.2174/1570159X19666210712153329] [PMID: 34254921]
[10]
Clayman, C.L.; Connaughton, V.P. Neurochemical and Behavioral Consequences of Ethanol and/or Caffeine Exposure: Effects in Zebrafish and Rodents. Curr. Neuropharmacol., 2022, 20(3), 560-578.
[http://dx.doi.org/10.2174/1570159X19666211111142027] [PMID: 34766897]
[11]
Schaidhauer, F.G.; Caetano, H.A.; da Silva, G.P.; da Silva, R.S. Contributions of Zebrafish Studies on the Behavioural Consequences of Early Alcohol Exposure: A Systematic Review. Curr. Neuropharmacol., 2022, 20(3), 579-593.
[http://dx.doi.org/10.2174/1570159X19666210428114317] [PMID: 33913405]