Abstract
Superparamagnetic nanoparticles, such as magnetite (Fe3O4) and maghemite (γ-Fe2O3), have been used to produce magnetic nanocomposites with several polymeric matrices including magnetic
styrene-divinylbenzene nanocomposites. Through the incorporation of these nanoparticles, the
nanocomposite presents superparamagnetism, low coercivity, and high magnetic susceptibility. Due
to these features, magnetic nanomaterials can be removed from the site where they are inserted
through an external magnetic field, thus distinguishing them from conventional systems such as those
used to treat oily water, which require expensive chemical agents for removal. These properties depend
directly on the size distribution of the nanoparticles and the presence or absence of interactions
between the surface of the polymeric matrix and the contaminants. These materials have many applications.
The objective of this article is to present a bibliographic review of the state-of-the-art evolution
of magnetic styrene-divinylbenzene nanocomposites over the years. According to the reports in
the literature, these systems are superior to those applied conventionally in the sectors of biotechnology,
agriculture, oil/gas, and nuclear chemistry, mainly for the removal of toxic metals from aqueous
media.
Keywords:
Magnetic styrene-divinylbenzene, magnetic nanocomposites, nanocomposites, nanoparticles, superparamagnetic nanoparticles, magnetite, maghemite.
Graphical Abstract
[10]
Shirokikh SA, Koroleva MY, Montalvan-Estrada A, Yurtov EV. Highly porous polymeric composite with γ-Fe2O3 nano-particles for oil products sorption. Rev Cuba Quím 2020; 32(1): 104-16.
[21]
Neves MAFS, Dias ML, Coutinho FMB. Styrene-divinylbenzene copolymers for application in size exclusion chromatography. Polym: Sci Technol 1997; 7(3): 71-7.
[22]
Barbosa CCR, Cunha JWSD, Teixeira VG, Coutinho FMB. Copolímeros de estireno-divinilbenzeno impregnados com agentes complexantes organofosforados para separação de terras raras. Polímeros: Ciência e Tecnologia 1998; 8(4): 31-41.
[23]
Rezende SM, Soares BG, Coutinho FMB, et al. Aplicação de resinas sulfônicas como catalisadores em reações de transesterificação de óleos vegetais. Polímeros: Ciência e Tecnologia 2005; 15(3): 186-92.
[24]
Cunha L, Gomes AS, Coutinho FMB, Teixeira VG. Principais rotas de síntese de resinas complexantes de mercúrio. Polímeros: Ciência e Tecnologia 2007; 17(2): 145-57. 2007;
[37]
Costa CN, Costa MAS, Maria Luiz C de S, Silva Manoel R, Souza Jr. Fernando G, Michel R. Síntese e Caracterização de Copolímeros à base de Metacrilato de Metila e Divinilbenzeno com Propriedades Magnéticas. Polímeros: Ciência e Tecnologia 2006; 9(3): 260-6.
[38]
Cardoso AM, Lucas EF, Barbosa CCR. Influência das condições reacionais nas características de copolímeros de metacrilato de metila e divinilbenzeno obtidos por polimerização em suspensão. Polímeros: Ciência e Tecnologia 2004; 14(3): 201-5.
[39]
Castanharo JA, Ferreira ILM, Costa MAS, Costa MR, Geraldo M, Oliveira MG. Microesferas magnéticas à base de poli(metacrilato de metila-co-divinilbenzeno) obtidas por polimerização em suspensão. Polímeros: Ciência e Tecnologia 2015; 25(2): 192-9.
[56]
O’Handley RC. Modern Magnetic Materials, Principles and Applications. New York: John Wiley and Sons 2000; p. 768.
[82]
Bhardwaj N, Bhaskarwar A N. A review on sorbent devices for oil-spill control. Environ Pollut 2018; 243(Pt B): 1758-71.