Microwave Sol-gel Synthesis of Co, Ni, Cu, Mn Ferrites and the Investigation of Their Activity in the Oxidation Reaction of Carbon Monoxide

Page: [37 - 46] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The study effect of microwave radiation on the catalytic properties of transition metal ferrites synthesized by ceramic and sol-gel methods in the oxidation reaction of carbon monoxide into dioxide.

Objective: This work aims to study the effect of microwave radiation on the production of cobalt, copper, nickel, and manganese ferrites by sol-gel combustion technology using various organic reagents and to study their catalytic activity in the oxidative conversion of carbon monoxide into dioxide.

Methods: Microwave treatment was carried out on a setup based on an EM-G5593V microwave oven (Panasonic) with a magnetron power varying from 300 to 800 W with an operating frequency of 2450 MHz. X-ray phase analysis of the products was carried out on a Bruker D 2Phazer automatic diffractometer. The measurement of the specific surface area of the samples was determined by low-temperature nitrogen adsorption by the multipoint BET method on a SORBI-MS instrument (ZAO META, Russia). IR spectra were recorded using FT-IR LUMOS Bruker spectrometers. The micrographs of samples were analyzed on the Sigma VP (Carl Zeiss Jena) equipment.

Results: It was determined that the most active catalysts for the oxidation of carbon monoxide to dioxide are ferrites obtained by the sol-gel combustion method using microwave radiation to "ignite" the gel.

Conclusion: The use of microwave radiation in the preparation of ferrites by the sol-gel method with combustion can initiate a self-propagating exothermic combustion reaction in the entire volume of the sample in a very short time, measured in seconds. The catalytic activity in the oxidative conversion of carbon monoxide obtained by this method of ferrites is comparable to the activity of ferrites obtained by the sol-gel method with traditional combustion.

Keywords: Microwave, ferrite, sol-gel combustion method, carbon monoxide, oxidation, oxidation microwave.

Graphical Abstract

[1]
Kharisov, B.I.; Rasika Dias, H.V.; Kharissova, O.V. Mini-review: Ferrite nanoparticles in the catalysis. Arab. J. Chem., 2014, 12(7), 1234-1246.
[http://dx.doi.org/10.1016/j.arabjc.2014.10.049]
[2]
Ilyin, A.A.; Rumyantsev, R.N.; Dubova, I.A.; Ilyin, A.P. Synthesis and catalytic properties of cobalt ferrite in the decomposition reaction of nitric oxide (I). Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya, 2012, 55(10), 62-64.
[3]
Kefeni, K.K.; Mamba, B.B. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment. Sustain. Mater. Technol., 2020, 23, e00140.
[4]
Rahman, A.; Jayaganthan, R. Photocatalytic studies of composite ferrite nanoparticles. Russ. J. Inorg. Chem., 2019, 64, 946-954.
[http://dx.doi.org/10.1134/S0036023619070131]
[5]
Liu, F.; Zhou, K.; Chen, Q.; Wang, A. Comparative study on the synthesis of magnetic ferrite adsorbent for the removal of Cd(II) from wastewater. Adsorpt. Sci. Technol., 2018, 36(7), 026361741877972.
[http://dx.doi.org/10.1177/0263617418779729]
[6]
Harikishore Kumar Reddy, D.; Lee, S-M. Three-dimensional porous spinel ferrite as an adsorbent for Pb(II) removal from aqueous solutions. Ind. Eng. Chem. Res., 2013, 52(45), 15789-15800.
[http://dx.doi.org/10.1021/ie303359e]
[7]
Aniz, C.U.; Nair, T.D.R. A study on catalysis by ferrospinels for preventing atmospheric pollution from carbon monoxide. Open J. Phys. Chem., 2011, 1(3), 124-130.
[http://dx.doi.org/10.4236/ojpc.2011.13017]
[8]
TatarChuk. T. Catalytic oxidation of carbon monoxide on lithium-zinc ferrites with a spinel structure. Ekologia i Tecnika, 2014, 22, 70-75.
[9]
Radhakrishnan Naira, T.D.; Aniz, C.U. Effect of redox nature of impregnated ferrite catalysts on their carbon monoxide oxidation activity. J. Mater. Sci., 2013, 1, 45-52.
[10]
Dey, S.; Dhal, G.C. Catalytic conversion of carbon monoxide into carbon dioxide over spinel catalysts: An overview. Mater. Sci. Energy Technol., 2019, 2, 575-588.
[http://dx.doi.org/10.1016/j.mset.2019.06.003]
[11]
Xanthopouloua, G.G.; Novikova, V.A.; Knysha, Y.A.; Amosova, A.P. Nanocatalysts for low-temperature oxidation of CO. Eur. Chem. Technol. J., 2015, 17, 17-32.
[12]
Molchanov, V.V.; Buyanov, R.A.; Pavlyukhin, Yu.T. Effect of mechanochemical activation on the catalytic properties of spinel-structured ferrites. Kinet. Catal., 2003, 44(6), 860-864.
[http://dx.doi.org/10.1023/B:KICA.0000009055.02997.9c]
[13]
Manova, E.; Tsoncheva, T.; Paneva, D.; Popova, M.; Velinov, N.; Kunev, B.; Tenchev, K.; Mitov, I. Nanosized copper ferrite materials: mechanochemical synthesis and characterization. J. Solid State Chem., 2011, 184, 1153-1158.
[http://dx.doi.org/10.1016/j.jssc.2011.03.035]
[14]
He, Y.; Dai, C.; Zhou, X. Magnetic cobalt ferrite composite as an efficient catalyst for photocatalytic oxidation of carbamazepine. Environ. Sci. Pollut. Res. Int., 2017, 24(2), 2065-2074.
[http://dx.doi.org/10.1007/s11356-016-7978-1] [PMID: 27807790]
[15]
Tomina, E.V.; Kurkin, N.A.; Maltsev, S.A. Microwave synthesis of yttrium orthoferrite and doping with nickel. Condensed Matt. Interphases, 2019, 21(2), 306-312.
[16]
Litvishkov, Y.N.; Zulfugarova, S.M.; Aleskerova, Z.F.; Gasangulieva, N.M.; Shakunova, N.V.; Askerov, A.G. Microwave synthesis of ferrites of Co, Ni, Cu, Zn ferrites. Russ. J. Appl. Chem., 2018, 91(5), 679-687.
[http://dx.doi.org/10.1134/S1070427218050105]
[17]
Rakhmankulov, D.L.; Bikbulatov, I.Kh. Microwave radiation and intensification of chemical processes; Himiya Publ.: Moscow, 2003.
[18]
Vanetsev, A.S.; Tretyakov, Yu.D. Microwave synthesis of individual and multicomponent oxides. Russ. Chem. Rev., 2007, 76(5), 435-453.
[http://dx.doi.org/10.1070/RC2007v076n05ABEH003650]
[19]
Litvishkov, Y.N.; Zulfugarova, S.M.; Efendiyev, M.R.; Huseynova, E.M.; Shakunova, N.V.; Askerova, A.I.; Muradova, P.A.; Quliyeva, L.A. Research into some typical parameters of heterogene catalysts carriers under the effect of electromaqnetic radiation in microwave range. Chem. Prob., 2014, 2, 126-132.
[20]
Zulfugarova, S.M.; Askerov, A.G.; Gasangulieva, N.M.; Shakunova, N.V.; Aleskerova, Z.F.; Litvishkov, Yu.N.; Talyshinsky, R.M. New research method of the surface acidity of thermal desorption of ammonia in heterogeneous catalysts by electromagnetic microwave radiation. Oil Gas Chem., 2017, 1, 54-59.
[21]
Bhagwata, V.R.; Ashok, V.H.; Morec, S.D.; Jadhavb, K.M. Sol-gel auto combustion synthesis and characterizations of cobalt ferritenanoparticles: Different fuels approach. Mater. Sci. Eng., 2019, 248, 11438.
[22]
Kaufmann, C.G. Junior.; Zampiva, R.Y.S.; Alves, A.K.; Bergmann, C.P.; Giorgini, L. Synthesis of cobalt ferrite (CoFe2O4) by combustion with different concentrations of glycine. IOP Conf. Ser. Mater. Sci. Eng., 2019, 659, 012079.
[http://dx.doi.org/10.1088/1757-899X/659/1/012079]
[23]
Kesavamoorthi, R.; Vigneshwaran, A.N.; Sanyal, V.; Raja, C. Ramachandra Synthesis and characterization of nickel ferrite nanoparticles by sol - gel auto combustion method. J. Chem. Pharmaceut. Sci., 2016, 9(1), 160-162.
[24]
Zhuravlev, V.A.; Minin, R.V.; Itin, V.I.; Lilenko, I.Y. Structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion. J. Alloys Compd., 2016, 3, 705-712.
[25]
Desai, I.; Nadagouda, M.N.; Elovitz, M.; Mills, M.; Boulanger, B. Synthesis and characterization of magnetic manganese ferrites. Mater. Sci. Energy Technol., 2019, 2(2), 150-160.
[http://dx.doi.org/10.1016/j.mset.2019.01.009] [PMID: 33623896]
[26]
Roberto de Freitasa, M.; Lisboa de Gouveiaa, G.; Leonardo, J.D.C.; Aparecido de Oliveirab, A.J.; Kiminamib, R.H.G.A. Microwave assisted combustion synthesis and characterization of nanocrystalline nickel-doped cobalt ferrites. Mater. Res., 2016, 19, 27-32.
[http://dx.doi.org/10.1590/1980-5373-mr-2016-0077]
[27]
Rachna, N.B.; Singh, A.A. Preparation, characterization, properties and applications of nano zinc ferrite. Mater. Today Proc., 2018, 5, 9148-9155.
[http://dx.doi.org/10.1016/j.matpr.2017.10.035]
[28]
Venkatesh, M.; Suresh Kumar, G.; Viji, S.; Karthi, S.; Girija, E.K. Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets. Mod. Electron. Mater., 2016, 1, 1-19.
[http://dx.doi.org/10.1016/j.moem.2016.10.003]
[29]
Hema, E.; Manikandan, A.; Karthika, P.; Durka, M.; Arul Antony, S.; Venkatraman, B.R. Magneto-optical properties of reusable spinel NiX Mg1−x Fe2O4 (0.0 ≤ x ≤ 1.0) nanocatalysts. J. Nanosci. Nanotechnol., 2016, 16, 7325-7336.
[http://dx.doi.org/10.1166/jnn.2016.11109]
[30]
Penchal Reddy, M.; Madhuri, W.; Sadhana, K.; Kim, I.G.; Hui, K.N.; Hui, K.S.; Siva Kumar, K.V.; Ramakrishna Red, R. Microwave sintering of nickel ferrite nanoparticles processed via sol-gel method. J. Sol-Gel Sci. Technol., 2014, 70, 400-404.
[http://dx.doi.org/10.1007/s10971-014-3295-7]
[31]
Liu, Y-C.; Fu, Y-P. Magnetic and catalytic properties of copper ferrite nanopowders prepared by a microwave-induced combustion process. Ceram. Int., 2010, 36, 1597-1601.
[32]
Rodrigues, A.P.G.; Gomes, D.K.S.; Araújo, J.H.; Melo, D.M.A.; Oliveira, N.A.S.; Braga, R.M. Nanoferrites of nickel doped with cobalt: Influence of Co2+ on the structural and magnetic properties. J. Magn. Magn. Mater., 2015, 374, 748-754.
[http://dx.doi.org/10.1016/j.jmmm.2014.09.045]
[33]
Bousquet-Berthelin, C.; Chaumont, D.; Stuerga, D. Flash microwave synthesis of trevorite nanoparticles. J. Solid State Chem., 2008, 181, 616-622.
[http://dx.doi.org/10.1016/j.jssc.2008.01.009]
[34]
Kombaiah, K.; Judith Vijaya, J.; John Kennedy, L.; Bououdina, M. Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyper thermia studies. J. Phys. Chem. Solids, 2018, (115), 162-171.
[http://dx.doi.org/10.1016/j.jpcs.2017.12.024]
[35]
Sertkol, M.; Köseoğlu, Y.; Baykal, A.; Kavas, H.; Bozkurt, A.; Toprak, M.S. Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J. Alloys Compd., 2009, 486(3), 325-329.
[http://dx.doi.org/10.1016/j.jallcom.2009.06.128]
[36]
Sertkol, M.; Köseoğlu, Y.; Baykal, A.; Kavas, H.; Toprak, M.S. Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater., 2010, 322, 866-871.
[http://dx.doi.org/10.1016/j.jmmm.2009.11.018]
[37]
Kumar, G.S.; Akbar, J.; Govindan, R.; Girija, E.K.; Kanagaraj, M. A novel rhombohedronlike nickel ferrite nanostructure: Microwave combustion synthesis, structural characterization and magnetic properties. J. Sci. Adv. Mater. Devices, 2016, 1, 282-285.
[38]
Köseoglu, Y. Rapid synthesis of nanocrystalline NiFe2O4 and CoFe2O4 powders by a microwave-assisted combustion method. J. Supercond. Nov. Magn., 2013, 26, 1391-1396.
[http://dx.doi.org/10.1007/s10948-012-1972-8]
[39]
Ji, F.; Wang, Y.; Zou, L.; Li, B.; He, X.; Ren, Y.; Lv, Y.; Fan, Z. Synthesis of magnetic ZnO/ZnFe2O4 by a microwave combustion method and its high rate of adsorption of methylene blue. J. Colloid Interface Sci., 2015, 438, 318-322.
[40]
Anchieta, C.G.; Severo, E.C.; Rigo, C.; Mazutti, M.A.; Kuhn, R.C.; Muller, E.I.; Flores, E.M.M.; Moreira, R.F.P.M.; Foletto, E.L. Rapid and facile preparation of zinc ferrite (ZnFe2O4) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction. Mater. Chem. Phys., 2015, 160, 141-147.
[http://dx.doi.org/10.1016/j.matchemphys.2015.04.016]
[41]
Manikandan, A.; Kennedy, L.J.; Bououdina, M.; Vijaya, J.J. Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J. Magn. Magn. Mater., 2014, 349, 249-258.
[http://dx.doi.org/10.1016/j.jmmm.2013.09.013]
[42]
Waldron, R.D. Infrared spectra of ferrites. Phys. Rev., 1955, 99(6), 1727-1735.
[http://dx.doi.org/10.1103/PhysRev.99.1727]
[43]
Liu, B.L.; Fu, Y.P.; Wang, M.L. Magnetic and catalytic properties of copper ferrite nanopowders prepared by combustion process. J. Nanosci. Nanotechnol., 2009, 9(2), 1491-1495.
[http://dx.doi.org/10.1166/jnn.2009.C186] [PMID: 19441554]
[44]
Rana, S.; Philip, J.; Raj, B. Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using fourier transform infrared transmission spectrometry and thermogravimetry. Mater. Chem. Phys., 2010, 124(1), 264-269.
[http://dx.doi.org/10.1016/j.matchemphys.2010.06.029]
[45]
Pui, A.; Gherca, D.; Carja, G. Characterization and magnetic properties of capped CoFe2O4 nanoparticles ferrite prepared in carboxymethylcelullose solution. Dig. J. Nanomater. Biostruct., 2011, 6(4), 1783-1791.
[46]
Srinivasan, T.T.; Srivastava, C.M.; Venkataramani, N.; Patni, M.J. Infrared absorption in spinel ferrites. Bull. Mater. Sci., 1984, 6(6), 1063-1067.
[http://dx.doi.org/10.1007/BF02743958]