A Possible Causal Involvement of Neuroinflammatory, Purinergic P2X7 Receptors in Psychiatric Disorders

Page: [2142 - 2155] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

P2X7 receptors (Rs) are prominent members of the P2XR family, which after binding ATP, open non-selective cationic channels, thereby allowing the transmembrane passage of Na+, Ca2+, and K+. Long-lasting and repetitive stimulation of the receptor by its agonist leads to the formation of large membrane pores permeable for organic cations of up to 900 Da molecular size. These pores are believed to play a role in apoptosis and inflammation. P2X7Rs are located primarily at peripheral macrophages and microglial cells, the resident macrophages of the CNS. The coactivation of toll-like receptors 4 (TLR4) by lipopolysaccharide, a constituent of the cell membrane of gram-negative bacteria, and the P2X7R by ATP leads to the generation and release of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α. Together with the microglial release of chemokines, reactive oxygen and nitrogen species, proteases, and excitotoxic glutamate, these cytokines result in neurodegeneration. P2X7Rs were found not only to amplify various neurodegenerative illnesses, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, but also to participate in a range of psychiatric diseases, such as major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. Based on the prevention/reversal of neuroinflammation, pharmacological antagonists of P2X7Rs and their genetic deletion in animal experiments counteract these deleterious psychiatric conditions. Hence, brain penetrant P2X7R antagonists are potential therapeutics for psychiatric diseases, although the available evidence still needs to be extended and validated by further clinical data.

Keywords: P2X7 receptor, psychiatric disorders, neuroinflammation, interleukin-1β, clinical data, neurodegeneration.

Graphical Abstract

[1]
Kessler, R.C.; Bromet, E.J. The epidemiology of depression across cultures. Annu. Rev. Public Health, 2013, 34(1), 119-138.
[http://dx.doi.org/10.1146/annurev-publhealth-031912-114409] [PMID: 23514317]
[2]
Graeff, F.G.; Zangrossi, H., Jr The dual role of serotonin in defense and the mode of action of antidepressants on generalized anxiety and panic disorders. Cent. Nerv. Syst. Agents Med. Chem., 2010, 10(3), 207-217.
[http://dx.doi.org/10.2174/1871524911006030207] [PMID: 20528764]
[3]
Harmer, C.J.; Goodwin, G.M.; Cowen, P.J. Why do antidepressants take so long to work? A cognitive neuropsychological model of anti-depressant drug action. Br. J. Psychiatry, 2009, 195(2), 102-108.
[http://dx.doi.org/10.1192/bjp.bp.108.051193] [PMID: 19648538]
[4]
Haapakoski, R.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 66, 63-72.
[http://dx.doi.org/10.1016/j.pnpbp.2015.11.012] [PMID: 26631274]
[5]
Pariante, C.M. Neuroscience, mental health and the immune system: Overcoming the brain-mind-body trichotomy. Epidemiol. Psychiatr. Sci., 2016, 25(2), 101-105.
[http://dx.doi.org/10.1017/S204579601500089X] [PMID: 26503420]
[6]
Illes, P.; Burnstock, G.; Tang, Y. Astroglia-derived ATP modulates CNS neuronal circuits. Trends Neurosci., 2019, 42(12), 885-898.
[http://dx.doi.org/10.1016/j.tins.2019.09.006] [PMID: 31704181]
[7]
Li, Q.; Barres, B.A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol., 2018, 18(4), 225-242.
[http://dx.doi.org/10.1038/nri.2017.125] [PMID: 29151590]
[8]
Rech, J.C.; Bhattacharya, A.; Letavic, M.A.; Savall, B.M. The evolution of P2X7 antagonists with a focus on CNS indications. Bioorg. Med. Chem. Lett., 2016, 26(16), 3838-3845.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.048] [PMID: 27426304]
[9]
Yirmiya, R.; Rimmerman, N.; Reshef, R. Depression as a microglial disease. Trends Neurosci., 2015, 38(10), 637-658.
[http://dx.doi.org/10.1016/j.tins.2015.08.001] [PMID: 26442697]
[10]
Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the im-mune system subjugates the brain. Nat. Rev. Neurosci., 2008, 9(1), 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[11]
Kiecolt-Glaser, J.K.; Derry, H.M.; Fagundes, C.P. Inflammation: Depression fans the flames and feasts on the heat. Am. J. Psychiatry, 2015, 172(11), 1075-1091.
[http://dx.doi.org/10.1176/appi.ajp.2015.15020152] [PMID: 26357876]
[12]
North, R.A. Molecular physiology of P2X receptors. Physiol. Rev., 2002, 82(4), 1013-1067.
[http://dx.doi.org/10.1152/physrev.00015.2002] [PMID: 12270951]
[13]
Bartlett, R.; Stokes, L.; Sluyter, R. The P2X7 receptor channel: Recent developments and the use of P2X7 antagonists in models of dis-ease. Pharmacol. Rev., 2014, 66(3), 638-675.
[http://dx.doi.org/10.1124/pr.113.008003] [PMID: 24928329]
[14]
Burnstock, G.; Kennedy, C. P2X receptors in health and disease. Adv. Pharmacol., 2011, 61, 333-372.
[http://dx.doi.org/10.1016/B978-0-12-385526-8.00011-4] [PMID: 21586364]
[15]
Surprenant, A.; Rassendren, F.; Kawashima, E.; North, R.A.; Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science, 1996, 272(5262), 735-738.
[http://dx.doi.org/10.1126/science.272.5262.735] [PMID: 8614837]
[16]
Sperlágh, B.; Vizi, E.S.; Wirkner, K.; Illes, P. P2X7 receptors in the nervous system. Prog. Neurobiol., 2006, 78(6), 327-346.
[http://dx.doi.org/10.1016/j.pneurobio.2006.03.007] [PMID: 16697102]
[17]
Di Virgilio, F.; Dal Ben, D.; Sarti, A.C.; Giuliani, A.L.; Falzoni, S. The P2X7 receptor in infection and inflammation. Immunity, 2017, 47(1), 15-31.
[http://dx.doi.org/10.1016/j.immuni.2017.06.020] [PMID: 28723547]
[18]
Sluyter, R. The P2X7 receptor. Adv. Exp. Med. Biol., 2017, 1051, 17-53.
[http://dx.doi.org/10.1007/5584_2017_59] [PMID: 28676924]
[19]
Costa-Junior, H.M.; Sarmento Vieira, F.; Coutinho-Silva, R. C terminus of the P2X7 receptor: Treasure hunting. Purinergic Signal., 2011, 7(1), 7-19.
[http://dx.doi.org/10.1007/s11302-011-9215-1] [PMID: 21484094]
[20]
Virginio, C.; MacKenzie, A.; North, R.A.; Surprenant, A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J. Physiol., 1999, 519(Pt 2), 335-346.
[21]
Li, M.; Toombes, G.E.; Silberberg, S.D.; Swartz, K.J. Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nat. Neurosci., 2015, 18(11), 1577-1583.
[http://dx.doi.org/10.1038/nn.4120] [PMID: 26389841]
[22]
Pippel, A.; Stolz, M.; Woltersdorf, R.; Kless, A.; Schmalzing, G.; Markwardt, F. Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proc. Natl. Acad. Sci. USA, 2017, 114(11), E2156-E2165.
[http://dx.doi.org/10.1073/pnas.1610414114] [PMID: 28235784]
[23]
Pelegrin, P.; Surprenant, A. The P2X(7) receptor-pannexin connection to dye uptake and IL-1beta release. Purinergic Signal., 2009, 5(2), 129-137.
[http://dx.doi.org/10.1007/s11302-009-9141-7] [PMID: 19212823]
[24]
Harkat, M.; Peverini, L.; Cerdan, A.H.; Dunning, K.; Beudez, J.; Martz, A.; Calimet, N.; Specht, A.; Cecchini, M.; Chataigneau, T.; Grutter, T. On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proc. Natl. Acad. Sci. USA, 2017, 114(19), E3786-E3795.
[http://dx.doi.org/10.1073/pnas.1701379114] [PMID: 28442564]
[25]
Karasawa, A.; Michalski, K.; Mikhelzon, P.; Kawate, T. The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. eLife, 2017, 6, 6.
[http://dx.doi.org/10.7554/eLife.31186] [PMID: 28920575]
[26]
Panchin, Y.; Kelmanson, I.; Matz, M.; Lukyanov, K.; Usman, N.; Lukyanov, S. A ubiquitous family of putative gap junction molecules. Curr. Biol., 2000, 10(13), R473-R474.
[http://dx.doi.org/10.1016/S0960-9822(00)00576-5] [PMID: 10898987]
[27]
Adinolfi, E.; Giuliani, A.L.; De Marchi, E.; Pegoraro, A.; Orioli, E.; Di Virgilio, F. The P2X7 receptor: A main player in inflammation. Biochem. Pharmacol., 2018, 151, 234-244.
[http://dx.doi.org/10.1016/j.bcp.2017.12.021] [PMID: 29288626]
[28]
Illes, P.; Rubini, P.; Ulrich, H.; Zhao, Y.; Tang, Y. Regulation of microglial functions by purinergic mechanisms in the healthy and dis-eased CNS. Cells, 2020, 9(5), E1108.
[http://dx.doi.org/10.3390/cells9051108] [PMID: 32365642]
[29]
Gomez Perdiguero, E.; Schulz, C.; Geissmann, F. Development and homeostasis of “resident” myeloid cells: The case of the microglia. Glia, 2013, 61(1), 112-120.
[http://dx.doi.org/10.1002/glia.22393] [PMID: 22847963]
[30]
Salter, M.W.; Stevens, B. Microglia emerge as central players in brain disease. Nat. Med., 2017, 23(9), 1018-1027.
[http://dx.doi.org/10.1038/nm.4397] [PMID: 28886007]
[31]
Pellegatti, P.; Falzoni, S.; Pinton, P.; Rizzuto, R.; Di Virgilio, F. A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol. Biol. Cell, 2005, 16(8), 3659-3665.
[http://dx.doi.org/10.1091/mbc.e05-03-0222] [PMID: 15944221]
[32]
Kurashima, Y.; Amiya, T.; Nochi, T.; Fujisawa, K.; Haraguchi, T.; Iba, H.; Tsutsui, H.; Sato, S.; Nakajima, S.; Iijima, H.; Kubo, M.; Ku-nisawa, J.; Kiyono, H. Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat. Commun., 2012, 3(1), 1034.
[http://dx.doi.org/10.1038/ncomms2023] [PMID: 22948816]
[33]
Ferrari, D.; La Sala, A.; Chiozzi, P.; Morelli, A.; Falzoni, S.; Girolomoni, G.; Idzko, M.; Dichmann, S.; Norgauer, J.; Di Virgilio, F. The P2 purinergic receptors of human dendritic cells: Identification and coupling to cytokine release. FASEB J., 2000, 14(15), 2466-2476.
[http://dx.doi.org/10.1096/fj.00-0031com] [PMID: 11099464]
[34]
Shieh, C.H.; Heinrich, A.; Serchov, T.; van Calker, D.; Biber, K. P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-α in cultured mouse microglia. Glia, 2014, 62(4), 592-607.
[http://dx.doi.org/10.1002/glia.22628] [PMID: 24470356]
[35]
Shiratori, M.; Tozaki-Saitoh, H.; Yoshitake, M.; Tsuda, M.; Inoue, K. P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. J. Neurochem., 2010, 114(3), 810-819.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06809.x] [PMID: 20477948]
[36]
Panenka, W.; Jijon, H.; Herx, L.M.; Armstrong, J.N.; Feighan, D.; Wei, T.; Yong, V.W.; Ransohoff, R.M.; MacVicar, B.A. P2X7-like recep-tor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J. Neurosci., 2001, 21(18), 7135-7142.
[http://dx.doi.org/10.1523/JNEUROSCI.21-18-07135.2001] [PMID: 11549724]
[37]
Di Virgilio, F.; Adinolfi, E. Extracellular purines, purinergic receptors and tumor growth. Oncogene, 2017, 36(3), 293-303.
[http://dx.doi.org/10.1038/onc.2016.206] [PMID: 27321181]
[38]
Perregaux, D.; Gabel, C.A. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem., 1994, 269(21), 15195-15203.
[http://dx.doi.org/10.1016/S0021-9258(17)36591-2] [PMID: 8195155]
[39]
Ferrari, D.; Villalba, M.; Chiozzi, P.; Falzoni, S.; Ricciardi-Castagnoli, P.; Di Virgilio, F. Mouse microglial cells express a plasma mem-brane pore gated by extracellular ATP. J. Immunol., 1996, 156(4), 1531-1539.
[PMID: 8568257]
[40]
Ferrari, D.; Chiozzi, P.; Falzoni, S.; Dal Susino, M.; Melchiorri, L.; Baricordi, O.R.; Di Virgilio, F. Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J. Immunol., 1997, 159(3), 1451-1458.
[PMID: 9233643]
[41]
Muñoz-Planillo, R. Kuffa, P.; Martínez-Colón, G.; Smith, B.L.; Rajendiran, T.M.; Núñez, G. K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013, 38(6), 1142-1153.
[http://dx.doi.org/10.1016/j.immuni.2013.05.016] [PMID: 23809161]
[42]
Franceschini, A.; Capece, M.; Chiozzi, P.; Falzoni, S.; Sanz, J.M.; Sarti, A.C.; Bonora, M.; Pinton, P.; Di Virgilio, F. The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J., 2015, 29(6), 2450-2461.
[http://dx.doi.org/10.1096/fj.14-268714] [PMID: 25690658]
[43]
Verkhratsky, A.; Burnstock, G. Biology of purinergic signalling: Its ancient evolutionary roots, its omnipresence and its multiple function-al significance. BioEssays, 2014, 36(7), 697-705.
[http://dx.doi.org/10.1002/bies.201400024] [PMID: 24782352]
[44]
Di Virgilio, F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol. Rev., 2013, 65(3), 872-905.
[http://dx.doi.org/10.1124/pr.112.006171] [PMID: 23592611]
[45]
Thornberry, N.A.; Bull, H.G.; Calaycay, J.R.; Chapman, K.T.; Howard, A.D.; Kostura, M.J.; Miller, D.K.; Molineaux, S.M.; Weidner, J.R.; Aunins, J.; Elliston, K.O.; Ayala, J.M.; Casano, F.J.; Chin, J.; Ding, G.J-F.; Egger, L.A.; Gaffney, E.P.; Limjuco, G.; Palyha, O.C.; Raju, S.M.; Rolando, A.M.; Salley, J.P.; Yamin, T-T.; Lee, T.D.; Shively, J.E.; MacCross, M.; Mumford, R.A.; Schmidt, J.A.; Tocci, M.J. A nov-el heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 1992, 356(6372), 768-774.
[http://dx.doi.org/10.1038/356768a0] [PMID: 1574116]
[46]
Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and pro-cessing of proIL-beta. Mol. Cell, 2002, 10(2), 417-426.
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[47]
Ogura, Y.; Sutterwala, F.S.; Flavell, R.A. The inflammasome: First line of the immune response to cell stress. Cell, 2006, 126(4), 659-662.
[http://dx.doi.org/10.1016/j.cell.2006.08.002] [PMID: 16923387]
[48]
Minkiewicz, J.; de Rivero Vaccari, J.P.; Keane, R.W. Human astrocytes express a novel NLRP2 inflammasome. Glia, 2013, 61(7), 1113-1121.
[http://dx.doi.org/10.1002/glia.22499] [PMID: 23625868]
[49]
Savio, L.E.B.; de Andrade Mello, P.; da Silva, C.G.; Coutinho-Silva, R. The P2X7 receptor in inflammatory diseases: angel or demon? Front. Pharmacol., 2018, 9, 52.
[http://dx.doi.org/10.3389/fphar.2018.00052] [PMID: 29467654]
[50]
Ainscough, J.S.; Frank Gerberick, G.; Zahedi-Nejad, M.; Lopez-Castejon, G.; Brough, D.; Kimber, I.; Dearman, R.J. Dendritic cell IL-1α and IL-1β are polyubiquitinated and degraded by the proteasome. J. Biol. Chem., 2014, 289(51), 35582-35592.
[http://dx.doi.org/10.1074/jbc.M114.595686] [PMID: 25371210]
[51]
Soare, A.Y.; Freeman, T.L.; Min, A.K.; Malik, H.S.; Osota, E.O.; Swartz, T.H. P2RX7 at the host-pathogen interface of infectious diseases. Microbiol. Mol. Biol. Rev., 2021, 85(1), e00055-e20.
[http://dx.doi.org/10.1128/MMBR.00055-20] [PMID: 33441488]
[52]
Dubyak, G.R. P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell. Microbiol., 2012, 14(11), 1697-1706.
[http://dx.doi.org/10.1111/cmi.12001] [PMID: 22882764]
[53]
Yang, D.; He, Y.; Muñoz-Planillo, R.; Liu, Q.; Núñez, G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity, 2015, 43(5), 923-932.
[http://dx.doi.org/10.1016/j.immuni.2015.10.009] [PMID: 26572062]
[54]
de Gassart, A.; Martinon, F. Pyroptosis: Caspase-11 unlocks the gates of death. Immunity, 2015, 43(5), 835-837.
[http://dx.doi.org/10.1016/j.immuni.2015.10.024] [PMID: 26588774]
[55]
Wallach, D.; Kang, T.B. Programmed cell death in immune defense: Knowledge and presumptions. Immunity, 2018, 49(1), 19-32.
[http://dx.doi.org/10.1016/j.immuni.2018.06.019] [PMID: 30021143]
[56]
Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol., 2009, 7(2), 99-109.
[http://dx.doi.org/10.1038/nrmicro2070] [PMID: 19148178]
[57]
Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575), 660-665.
[http://dx.doi.org/10.1038/nature15514] [PMID: 26375003]
[58]
Irwin, M.R.; Cole, S.W. Reciprocal regulation of the neural and innate immune systems. Nat. Rev. Immunol., 2011, 11(9), 625-632.
[http://dx.doi.org/10.1038/nri3042] [PMID: 21818124]
[59]
Silberstein, S.; Liberman, A.C.; Dos Santos Claro, P.A.; Ugo, M.B.; Deussing, J.M.; Arzt, E. Stress-related brain neuroinflammation impact in depression: Role of the corticotropin-releasing hormone system and P2X7 receptor. Neuroimmunomodulation, 2021, 28(2), 52-60.
[http://dx.doi.org/10.1159/000515130] [PMID: 33845478]
[60]
Hodes, G.E.; Kana, V.; Menard, C.; Merad, M.; Russo, S.J. Neuroimmune mechanisms of depression. Nat. Neurosci., 2015, 18(10), 1386-1393.
[http://dx.doi.org/10.1038/nn.4113] [PMID: 26404713]
[61]
Bhattacharya, A.; Biber, K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia, 2016, 64(10), 1772-1787.
[http://dx.doi.org/10.1002/glia.23001] [PMID: 27219534]
[62]
Bhattacharya, A.; Jones, D.N.C. Emerging role of the P2X7-NLRP3-IL1β pathway in mood disorders. Psychoneuroendocrinology, 2018, 98, 95-100.
[http://dx.doi.org/10.1016/j.psyneuen.2018.08.015] [PMID: 30121550]
[63]
Mondelli, V.; Vernon, A.C.; Turkheimer, F.; Dazzan, P.; Pariante, C.M. Brain microglia in psychiatric disorders. Lancet Psychiatry, 2017, 4(7), 563-572.
[http://dx.doi.org/10.1016/S2215-0366(17)30101-3] [PMID: 28454915]
[64]
Franklin, T.C.; Xu, C.; Duman, R.S. Depression and sterile inflammation: Essential role of danger associated molecular patterns. Brain Behav. Immun., 2018, 72, 2-13.
[http://dx.doi.org/10.1016/j.bbi.2017.10.025] [PMID: 29102801]
[65]
Cheffer, A.; Castillo, A.R.G.; Corrêa-Velloso, J.; Gonçalves, M.C.B.; Naaldijk, Y.; Nascimento, I.C.; Burnstock, G.; Ulrich, H. Purinergic system in psychiatric diseases. Mol. Psychiatry, 2018, 23(1), 94-106.
[http://dx.doi.org/10.1038/mp.2017.188] [PMID: 28948971]
[66]
van Kesteren, C.F.; Gremmels, H.; de Witte, L.D.; Hol, E.M.; Van Gool, A.R.; Falkai, P.G.; Kahn, R.S.; Sommer, I.E. Immune involvement in the pathogenesis of schizophrenia: A meta-analysis on postmortem brain studies. Transl. Psychiatry, 2017, 7(3), e1075.
[http://dx.doi.org/10.1038/tp.2017.4] [PMID: 28350400]
[67]
Deussing, J.M.; Arzt, E. P2X7 receptor: A potential therapeutic target for depression? Trends Mol. Med., 2018, 24(9), 736-747.
[http://dx.doi.org/10.1016/j.molmed.2018.07.005] [PMID: 30093269]
[68]
De Marchi, E.; Orioli, E.; Dal Ben, D.; Adinolfi, E. P2X7 receptor as a therapeutic target. Adv. Protein Chem. Struct. Biol., 2016, 104, 39-79.
[http://dx.doi.org/10.1016/bs.apcsb.2015.11.004] [PMID: 27038372]
[69]
Chrovian, C.C.; Soyode-Johnson, A.; Peterson, A.A.; Gelin, C.F.; Deng, X.; Dvorak, C.A.; Carruthers, N.I.; Lord, B.; Fraser, I.; Aluisio, L.; Coe, K.J.; Scott, B.; Koudriakova, T.; Schoetens, F.; Sepassi, K.; Gallacher, D.J.; Bhattacharya, A.; Letavic, M.A. A dipolar cycloaddition reaction to access 6-Methyl-4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridines enables the discovery synthesis and preclinical profil-ing of a P2X7 antagonist clinical candidate. J. Med. Chem., 2018, 61(1), 207-223.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01279] [PMID: 29211470]
[70]
Letavic, M.A.; Savall, B.M.; Allison, B.D.; Aluisio, L.; Andres, J.I.; De Angelis, M.; Ao, H.; Beauchamp, D.A.; Bonaventure, P.; Bryant, S.; Carruthers, N.I.; Ceusters, M.; Coe, K.J.; Dvorak, C.A.; Fraser, I.C.; Gelin, C.F.; Koudriakova, T.; Liang, J.; Lord, B.; Lovenberg, T.W.; Otieno, M.A.; Schoetens, F.; Swanson, D.M.; Wang, Q.; Wickenden, A.D.; Bhattacharya, A. 4-Methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridine-Based P2X7 receptor antagonists: optimization of pharmacokinetic properties leading to the identification of a clinical candi-date. J. Med. Chem., 2017, 60(11), 4559-4572.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00408] [PMID: 28493698]
[71]
Eggers, M.; Rühl, F.; Haag, F.; Koch-Nolte, F. Nanobodies as probes to investigate purinergic signaling. Biochem. Pharmacol., 2021, 187, 114394.
[http://dx.doi.org/10.1016/j.bcp.2020.114394] [PMID: 33388283]
[72]
Menzel, S.; Schwarz, N.; Haag, F.; Koch-Nolte, F. Nanobody-based biologics for modulating purinergic signaling in inflammation and immunity. Front. Pharmacol., 2018, 9, 266.
[http://dx.doi.org/10.3389/fphar.2018.00266] [PMID: 29636685]
[73]
Danquah, W.; Meyer-Schwesinger, C.; Rissiek, B.; Pinto, C.; Serracant-Prat, A.; Amadi, M.; Iacenda, D.; Knop, J.H.; Hammel, A.; Berg-mann, P.; Schwarz, N.; Assunção, J.; Rotthier, W.; Haag, F.; Tolosa, E.; Bannas, P.; Boué-Grabot, E.; Magnus, T.; Laeremans, T.; Stortel-ers, C.; Koch-Nolte, F. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci. Transl. Med., 2016, 8(366), 366ra162.
[http://dx.doi.org/10.1126/scitranslmed.aaf8463] [PMID: 27881823]
[74]
Wulff, H.; Christophersen, P.; Colussi, P.; Chandy, K.G.; Yarov-Yarovoy, V. Antibodies and venom peptides: New modalities for ion channels. Nat. Rev. Drug Discov., 2019, 18(5), 339-357.
[http://dx.doi.org/10.1038/s41573-019-0013-8] [PMID: 30728472]
[75]
Bhattacharya, A.; Wang, Q.; Ao, H.; Shoblock, J.R.; Lord, B.; Aluisio, L.; Fraser, I.; Nepomuceno, D.; Neff, R.A.; Welty, N.; Lovenberg, T.W.; Bonaventure, P.; Wickenden, A.D.; Letavic, M.A. Pharmacological characterization of a novel centrally permeable P2X7 receptor an-tagonist: JNJ-47965567. Br. J. Pharmacol., 2013, 170(3), 624-640.
[http://dx.doi.org/10.1111/bph.12314] [PMID: 23889535]
[76]
Lord, B.; Aluisio, L.; Shoblock, J.R.; Neff, R.A.; Varlinskaya, E.I.; Ceusters, M.; Lovenberg, T.W.; Carruthers, N.; Bonaventure, P.; Letavic, M.A.; Deak, T.; Drinkenburg, W.; Bhattacharya, A. Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432. J. Pharmacol. Exp. Ther., 2014, 351(3), 628-641.
[http://dx.doi.org/10.1124/jpet.114.218487] [PMID: 25271258]
[77]
Bhattacharya, A. Recent advances in CNS P2X7 physiology and pharmacology: Focus on neuropsychiatric disorders. Front. Pharmacol., 2018, 9, 30.
[http://dx.doi.org/10.3389/fphar.2018.00030] [PMID: 29449810]
[78]
Cully, M. Can anti-inflammatory strategies light up the dim depression pipeline? Nat. Rev. Drug Discov., 2020, 19(4), 224-225.
[http://dx.doi.org/10.1038/d41573-020-00049-5] [PMID: 32203290]
[79]
Timmers, M.; Ravenstijn, P.; Xi, L.; Triana-Baltzer, G.; Furey, M.; Van Hemelryck, S.; Biewenga, J.; Ceusters, M.; Bhattacharya, A.; van den Boer, M.; van Nueten, L.; de Boer, P. Clinical pharmacokinetics, pharmacodynamics, safety, and tolerability of JNJ-54175446, a brain permeable P2X7 antagonist, in a randomised single-ascending dose study in healthy participants. J. Psychopharmacol., 2018, 32(12), 1341-1350.
[http://dx.doi.org/10.1177/0269881118800067] [PMID: 30260294]
[80]
Recourt, K.; van der Aart, J.; Jacobs, G.; de Kam, M.; Drevets, W.; van Nueten, L.; Kanhai, K.; Siebenga, P.; Zuiker, R.; Ravenstijn, P.; Timmers, M.; van Gerven, J.; de Boer, P. Characterisation of the pharmacodynamic effects of the P2X7 receptor antagonist JNJ-54175446 using an oral dexamphetamine challenge model in healthy males in a randomised, double-blind, placebo-controlled, multiple ascending dose trial. J. Psychopharmacol., 2020, 34(9), 1030-1042.
[http://dx.doi.org/10.1177/0269881120914206] [PMID: 32248747]
[81]
Ribeiro, D.E.; Roncalho, A.L.; Glaser, T.; Ulrich, H.; Wegener, G.; Joca, S. P2X7 receptor signaling in stress and depression. Int. J. Mol. Sci., 2019, 20(11), E2778.
[http://dx.doi.org/10.3390/ijms20112778] [PMID: 31174279]
[82]
Illes, P.; Verkhratsky, A.; Tang, Y. Pathological ATPergic signaling in major depression and bipolar disorder. Front. Mol. Neurosci., 2020, 12, 331.
[http://dx.doi.org/10.3389/fnmol.2019.00331] [PMID: 32076399]
[83]
Manoli, D.S.; State, M.W. Autism spectrum disorder genetics and the search for pathological mechanisms. Am. J. Psychiatry, 2021, 178(1), 30-38.
[http://dx.doi.org/10.1176/appi.ajp.2020.20111608] [PMID: 33384012]
[84]
McQuillin, A.; Bass, N.J.; Choudhury, K.; Puri, V.; Kosmin, M.; Lawrence, J.; Curtis, D.; Gurling, H.M. Case-control studies show that a non-conservative amino-acid change from a glutamine to arginine in the P2RX7 purinergic receptor protein is associated with both bipolar- and unipolar-affective disorders. Mol. Psychiatry, 2009, 14(6), 614-620.
[http://dx.doi.org/10.1038/mp.2008.6] [PMID: 18268501]
[85]
Czamara, D.; Müller-Myhsok, B.; Lucae, S. The P2RX7 polymorphism rs2230912 is associated with depression: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 82, 272-277.
[http://dx.doi.org/10.1016/j.pnpbp.2017.11.003] [PMID: 29122639]
[86]
Green, E.K.; Grozeva, D.; Raybould, R.; Elvidge, G.; Macgregor, S.; Craig, I.; Farmer, A.; McGuffin, P.; Forty, L.; Jones, L.; Jones, I.; O’Donovan, M.C.; Owen, M.J.; Kirov, G.; Craddock, N. P2RX7: A bipolar and unipolar disorder candidate susceptibility gene? Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2009, 150B(8), 1063-1069.
[http://dx.doi.org/10.1002/ajmg.b.30931] [PMID: 19160446]
[87]
Feng, W.P.; Zhang, B.; Li, W.; Liu, J. Lack of association of P2RX7 gene rs2230912 polymorphism with mood disorders: A meta-analysis. PLoS One, 2014, 9(2), e88575.
[http://dx.doi.org/10.1371/journal.pone.0088575] [PMID: 24533115]
[88]
Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; Bacanu, S.A.; Bækvad-Hansen, M.; Beekman, A.F.T.; Bigdeli, T.B.; Binder, E.B.; Blackwood, D.R.H.; Bryois, J.; Buttenschøn, H.N.; Bybjerg-Grauholm, J.; Cai, N.; Castelao, E.; Christensen, J.H.; Clarke, T.K.; Coleman, J.I.R.; Colodro-Conde, L.; Couvy-Duchesne, B.; Craddock, N.; Crawford, G.E.; Crowley, C.A.; Dashti, H.S.; Davies, G.; Deary, I.J.; Degenhardt, F.; Derks, E.M.; Direk, N.; Dolan, C.V.; Dunn, E.C.; Eley, T.C.; Eriksson, N.; Escott-Price, V.; Kiadeh, F.H.F.; Finucane, H.K.; Forstner, A.J.; Frank, J.; Gaspar, H.A.; Gill, M.; Giusti-Rodríguez, P.; Goes, F.S.; Gordon, S.D.; Grove, J.; Hall, L.S.; Hannon, E.; Hansen, C.S.; Hansen, T.F.; Herms, S.; Hickie, I.B.; Hoffmann, P.; Homuth, G.; Horn, C.; Hottenga, J.J.; Hougaard, D.M.; Hu, M.; Hyde, C.L.; Ising, M.; Jansen, R.; Jin, F.; Jorgenson, E.; Knowles, J.A.; Kohane, I.S.; Kraft, J.; Kretzschmar, W.W.; Krogh, J.; Kutalik, Z.; Lane, J.M.; Li, Y.; Li, Y.; Lind, P.A.; Liu, X.; Lu, L.; MacIntyre, D.J.; MacKinnon, D.F.; Maier, R.M.; Maier, W.; Marchini, J.; Mbarek, H.; McGrath, P.; McGuffin, P.; Medland, S.E.; Mehta, D.; Middeldorp, C.M.; Mihailov, E.; Milaneschi, Y.; Milani, L.; Mill, J.; Mondimore, F.M.; Montgomery, G.W.; Mostafavi, S.; Mullins, N.; Nauck, M.; Ng, B.; Nivard, M.G.; Nyholt, D.R.; O’Reilly, P.F.; Oskarsson, H.; Owen, M.J.; Painter, J.N.; Pedersen, C.B.; Pedersen, M.G.; Peterson, R.E.; Pettersson, E.; Peyrot, W.J.; Pistis, G.; Posthuma, D.; Purcell, S.M.; Quiroz, J.A.; Qvist, P.; Rice, J.P.; Riley, B.P.; Rivera, M.; Saeed Mirza, S.; Saxena, R.; Schoevers, R.; Schulte, E.C.; Shen, L.; Shi, J.; Shyn, S.I.; Sigurdsson, E.; Sinnamon, G.B.C.; Smit, J.H.; Smith, D.J.; Stefansson, H.; Steinberg, S.; Stockmeier, C.A.; Streit, F.; Strohmaier, J.; Tansey, K.E.; Teismann, H.; Teumer, A.; Thompson, W.; Thomson, P.A.; Thorgeirsson, T.E.; Tian, C.; Traylor, M.; Treutlein, J.; Trubetskoy, V.; Uitterlinden, A.G.; Umbricht, D.; Van der Auwera, S.; van Hemert, A.M.; Viktorin, A.; Visscher, P.M.; Wang, Y.; Webb, B.T.; Weinsheimer, S.M.; Wellmann, J.; Willemsen, G.; Witt, S.H.; Wu, Y.; Xi, H.S.; Yang, J.; Zhang, F.; Arolt, V.; Baune, B.T.; Berger, K.; Boomsma, D.I.; Cichon, S.; Dannlowski, U.; de Geus, E.C.J.; DePaulo, J.R.; Domenici, E.; Domschke, K.; Esko, T.; Grabe, H.J.; Hamilton, S.P.; Hayward, C.; Heath, A.C.; Hinds, D.A.; Kendler, K.S.; Kloiber, S.; Lewis, G.; Li, Q.S.; Lucae, S.; Madden, P.F.A.; Magnusson, P.K.; Martin, N.G.; McIntosh, A.M.; Metspalu, A.; Mors, O.; Mortensen, P.B.; Müller-Myhsok, B.; Nordentoft, M.; Nöthen, M.M.; O’Donovan, M.C.; Paciga, S.A.; Pedersen, N.L.; Penninx, B.W.J.H.; Perlis, R.H.; Porteous, D.J.; Potash, J.B.; Preisig, M.; Rietschel, M.; Schaefer, C.; Schulze, T.G.; Smoller, J.W.; Stefansson, K.; Tiemeier, H.; Uher, R.; Völzke, H.; Weissman, M.M.; Werge, T.; Winslow, A.R.; Lewis, C.M.; Levinson, D.F.; Breen, G.; Børglum, A.D.; Sullivan, P.F. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet., 2018, 50(5), 668-681.
[http://dx.doi.org/10.1038/s41588-018-0090-3] [PMID: 29700475]
[89]
Gu, B.J.; Zhang, W.; Worthington, R.A.; Sluyter, R.; Dao-Ung, P.; Petrou, S.; Barden, J.A.; Wiley, J.S.A.A. Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J. Biol. Chem., 2001, 276(14), 11135-11142.
[http://dx.doi.org/10.1074/jbc.M010353200] [PMID: 11150303]
[90]
Roger, S.; Mei, Z.Z.; Baldwin, J.M.; Dong, L.; Bradley, H.; Baldwin, S.A.; Surprenant, A.; Jiang, L.H. Single nucleotide polymorphisms that were identified in affective mood disorders affect ATP-activated P2X7 receptor functions. J. Psychiatr. Res., 2010, 44(6), 347-355.
[http://dx.doi.org/10.1016/j.jpsychires.2009.10.005] [PMID: 19931869]
[91]
Sun, C.; Chu, J.; Singh, S.; Salter, R.D. Identification and characterization of a novel variant of the human P2X(7) receptor resulting in gain of function. Purinergic Signal., 2010, 6(1), 31-45.
[http://dx.doi.org/10.1007/s11302-009-9168-9] [PMID: 19838818]
[92]
Aprile-Garcia, F.; Metzger, M.W.; Paez-Pereda, M.; Stadler, H.; Acuña, M.; Liberman, A.C.; Senin, S.A.; Gerez, J.; Hoijman, E.; Refojo, D.; Mitkovski, M.; Panhuysen, M.; Stühmer, W.; Holsboer, F.; Deussing, J.M.; Arzt, E. Co-expression of wild-type P2X7R with Gln460Arg variant alters receptor function. PLoS One, 2016, 11(3), e0151862.
[http://dx.doi.org/10.1371/journal.pone.0151862] [PMID: 26986975]
[93]
Metzger, M.W.; Walser, S.M.; Dedic, N.; Aprile-Garcia, F.; Jakubcakova, V.; Adamczyk, M.; Webb, K.J.; Uhr, M.; Refojo, D.; Schmidt, M.V.; Friess, E.; Steiger, A.; Kimura, M.; Chen, A.; Holsboer, F.; Arzt, E.; Wurst, W.; Deussing, J.M. Heterozygosity for the mood disor-der-associated variant Gln460Arg alters P2X7 receptor function and sleep quality. J. Neurosci., 2017, 37(48), 11688-11700.
[http://dx.doi.org/10.1523/JNEUROSCI.3487-16.2017] [PMID: 29079688]
[94]
Monif, M.; Burnstock, G.; Williams, D.A. Microglia: Proliferation and activation driven by the P2X7 receptor. Int. J. Biochem. Cell Biol., 2010, 42(11), 1753-1756.
[http://dx.doi.org/10.1016/j.biocel.2010.06.021] [PMID: 20599520]
[95]
Illes, P.; Khan, T.M.; Rubini, P. Neuronal P2X7 receptors revisited: Do they really exist? J. Neurosci., 2017, 37(30), 7049-7062.
[http://dx.doi.org/10.1523/JNEUROSCI.3103-16.2017] [PMID: 28747388]
[96]
Zhao, Y.F.; Tang, Y.; Illes, P. Astrocytic and oligodendrocytic P2X7 receptors determine neuronal functions in the CNS. Front. Mol. Neurosci., 2021, 14, 641570.
[http://dx.doi.org/10.3389/fnmol.2021.641570] [PMID: 33642994]
[97]
He, Y.; Taylor, N.; Fourgeaud, L.; Bhattacharya, A. The role of microglial P2X7: Modulation of cell death and cytokine release. J. Neuroinflammation, 2017, 14(1), 135.
[http://dx.doi.org/10.1186/s12974-017-0904-8] [PMID: 28716092]
[98]
Iwata, M.; Ota, K.T.; Li, X.Y.; Sakaue, F.; Li, N.; Dutheil, S.; Banasr, M.; Duric, V.; Yamanashi, T.; Kaneko, K.; Rasmussen, K.; Glasebrook, A.; Koester, A.; Song, D.; Jones, K.A.; Zorn, S.; Smagin, G.; Duman, R.S. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol. Psychiatry, 2016, 80(1), 12-22.
[http://dx.doi.org/10.1016/j.biopsych.2015.11.026] [PMID: 26831917]
[99]
Liu, X.; Xie, Z.; Li, S.; He, J.; Cao, S.; Xiao, Z. PRG-1 relieves pain and depressive-like behaviors in rats of bone cancer pain by regula-tion of dendritic spine in hippocampus. Int. J. Biol. Sci., 2021, 17(14), 4005-4020.
[http://dx.doi.org/10.7150/ijbs.59032] [PMID: 34671215]
[100]
Zou, Y.; Yang, R.; Li, L.; Xu, X.; Liang, S. Purinergic signaling: A potential therapeutic target for depression and chronic pain. Purinergic Signal., 2021. [online ahead of print
[http://dx.doi.org/10.1007/s11302-021-09801-x] [PMID: 34338957]
[101]
Eren-Koçak, E.; Dalkara, T. Ion channel dysfunction and neuroinflammation in migraine and depression. Front. Pharmacol., 2021, 12, 777607.
[http://dx.doi.org/10.3389/fphar.2021.777607] [PMID: 34858192]
[102]
Jiang, L.H.; Baldwin, J.M.; Roger, S.; Baldwin, S.A. Insights into the molecular mechanisms underlying mammalian P2X7 receptor func-tions and contributions in diseases, revealed by structural modeling and single nucleotide polymorphisms. Front. Pharmacol., 2013, 4, 55.
[http://dx.doi.org/10.3389/fphar.2013.00055] [PMID: 23675347]
[103]
Evans, D.L.; Charney, D.S.; Lewis, L.; Golden, R.N.; Gorman, J.M.; Krishnan, K.R.; Nemeroff, C.B.; Bremner, J.D.; Carney, R.M.; Coyne, J.C.; Delong, M.R.; Frasure-Smith, N.; Glassman, A.H.; Gold, P.W.; Grant, I.; Gwyther, L.; Ironson, G.; Johnson, R.L.; Kanner, A.M.; Katon, W.J.; Kaufmann, P.G.; Keefe, F.J.; Ketter, T.; Laughren, T.P.; Leserman, J.; Lyketsos, C.G.; McDonald, W.M.; McEwen, B.S.; Mil-ler, A.H.; Musselman, D.; O’Connor, C.; Petitto, J.M.; Pollock, B.G.; Robinson, R.G.; Roose, S.P.; Rowland, J.; Sheline, Y.; Sheps, D.S.; Simon, G.; Spiegel, D.; Stunkard, A.; Sunderland, T.; Tibbits, P., Jr; Valvo, W.J. Mood disorders in the medically ill: Scientific review and recommendations. Biol. Psychiatry, 2005, 58(3), 175-189.
[http://dx.doi.org/10.1016/j.biopsych.2005.05.001] [PMID: 16084838]
[104]
Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom. Med., 2009, 71(2), 171-186.
[http://dx.doi.org/10.1097/PSY.0b013e3181907c1b] [PMID: 19188531]
[105]
Jimenez-Mateos, E.M.; Smith, J.; Nicke, A.; Engel, T. Regulation of P2X7 receptor expression and function in the brain. Brain Res. Bull., 2019, 151, 153-163.
[http://dx.doi.org/10.1016/j.brainresbull.2018.12.008] [PMID: 30593878]
[106]
Basso, A.M.; Bratcher, N.A.; Harris, R.R.; Jarvis, M.F.; Decker, M.W.; Rueter, L.E. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: Relevance for neuropsychiatric disorders. Behav. Brain Res., 2009, 198(1), 83-90.
[http://dx.doi.org/10.1016/j.bbr.2008.10.018] [PMID: 18996151]
[107]
Sperlagh, B.; Csolle, C.; Ando, R.D.; Goloncser, F.; Kittel, A.; Baranyi, M. The role of purinergic signaling in depressive disorders. Neuropsychopharmacol. Hung., 2012, 14(4), 231-238.
[PMID: 23269209]
[108]
Csölle, C.; Andó, R.D.; Kittel, Á.; Gölöncsér, F.; Baranyi, M.; Soproni, K.; Zelena, D.; Haller, J.; Németh, T.; Mócsai, A.; Sperlágh, B. The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice. Int. J. Neuropsychopharmacol., 2013, 16(1), 213-233.
[http://dx.doi.org/10.1017/S1461145711001933] [PMID: 22243662]
[109]
Csölle, C.; Baranyi, M.; Zsilla, G.; Kittel, A.; Gölöncsér, F.; Illes, P.; Papp, E.; Vizi, E.S.; Sperlágh, B. Neurochemical changes in the mouse hippocampus underlying the antidepressant effect of genetic deletion of P2X7 receptors. PLoS One, 2013, 8(6), e66547.
[http://dx.doi.org/10.1371/journal.pone.0066547] [PMID: 23805233]
[110]
Boucher, A.A.; Arnold, J.C.; Hunt, G.E.; Spiro, A.; Spencer, J.; Brown, C.; McGregor, I.S.; Bennett, M.R.; Kassiou, M. Resilience and reduced c-Fos expression in P2X7 receptor knockout mice exposed to repeated forced swim test. Neuroscience, 2011, 189, 170-177.
[http://dx.doi.org/10.1016/j.neuroscience.2011.05.049] [PMID: 21664437]
[111]
Yue, N.; Huang, H.; Zhu, X.; Han, Q.; Wang, Y.; Li, B.; Liu, Q.; Wu, G.; Zhang, Y.; Yu, J. Activation of P2X7 receptor and NLRP3 in-flammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J. Neuroinflammation, 2017, 14(1), 102.
[http://dx.doi.org/10.1186/s12974-017-0865-y] [PMID: 28486969]
[112]
Koo, J.W.; Duman, R.S. Interleukin-1 receptor null mutant mice show decreased anxiety-like behavior and enhanced fear memory. Neurosci. Lett., 2009, 456(1), 39-43.
[http://dx.doi.org/10.1016/j.neulet.2009.03.068] [PMID: 19429130]
[113]
Ma, M.; Ren, Q.; Zhang, J.C.; Hashimoto, K. Effects of brilliant blue G on serum tumor necrosis factor-α levels and depression-like be-havior in mice after lipopolysaccharide administration. Clin. Psychopharmacol. Neurosci., 2014, 12(1), 31-36.
[http://dx.doi.org/10.9758/cpn.2014.12.1.31] [PMID: 24851118]
[114]
Farooq, R.K.; Tanti, A.; Ainouche, S.; Roger, S.; Belzung, C.; Camus, V.A. P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology, 2018, 97, 120-130.
[http://dx.doi.org/10.1016/j.psyneuen.2018.07.016] [PMID: 30015007]
[115]
Hong, S.; Xin, Y. JiaWen, W.; ShuQin, Z.; GuiLian, Z.; HaiQin, W.; Zhen, G.; HongWei, R.; YongNan, L. The P2X7 receptor in activated microglia promotes depression- and anxiety-like behaviors in lithium -pilocarpine induced epileptic rats. Neurochem. Int., 2020, 138, 104773.
[http://dx.doi.org/10.1016/j.neuint.2020.104773] [PMID: 32531197]
[116]
Yue, N.; Li, B.; Yang, L.; Han, Q.Q.; Huang, H.J.; Wang, Y.L.; Wang, J.; Yu, R.; Wu, G.C.; Liu, Q.; Yu, J. Electro-acupuncture alleviates chronic unpredictable stress-induced depressive- and anxiety-like behavior and hippocampal neuroinflammation in rat model of depres-sion. Front. Mol. Neurosci., 2018, 11, 149.
[http://dx.doi.org/10.3389/fnmol.2018.00149] [PMID: 29946236]
[117]
Rial, D.; Lemos, C.; Pinheiro, H.; Duarte, J.M.; Gonçalves, F.Q.; Real, J.I.; Prediger, R.D.; Gonçalves, N.; Gomes, C.A.; Canas, P.M.; Agostinho, P.; Cunha, R.A. Depression as a glial-based synaptic dysfunction. Front. Cell. Neurosci., 2016, 9, 521.
[http://dx.doi.org/10.3389/fncel.2015.00521] [PMID: 26834566]
[118]
Cao, X.; Li, L.P.; Wang, Q.; Wu, Q.; Hu, H.H.; Zhang, M.; Fang, Y.Y.; Zhang, J.; Li, S.J.; Xiong, W.C.; Yan, H.C.; Gao, Y.B.; Liu, J.H.; Li, X.W.; Sun, L.R.; Zeng, Y.N.; Zhu, X.H.; Gao, T.M. Astrocyte-derived ATP modulates depressive-like behaviors. Nat. Med., 2013, 19(6), 773-777.
[http://dx.doi.org/10.1038/nm.3162] [PMID: 23644515]
[119]
Ma, J.; Qi, X.; Yang, C.; Pan, R.; Wang, S.; Wu, J.; Huang, L.; Chen, H.; Cheng, J.; Wu, R.; Liao, Y.; Mao, L.; Wang, F.C.; Wu, Z.; An, J.X.; Wang, Y.; Zhang, X.; Zhang, C.; Yuan, Z. Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Mol. Psychiatry, 2018, 23(4), 883-891.
[http://dx.doi.org/10.1038/mp.2017.229] [PMID: 29180673]
[120]
Backlund, L.; Nikamo, P.; Hukic, D.S.; Ek, I.R.; Träskman-Bendz, L.; Landén, M.; Edman, G.; Schalling, M.; Frisén, L.; Osby, U. Cogni-tive manic symptoms associated with the P2RX7 gene in bipolar disorder. Bipolar Disord., 2011, 13(5-6), 500-508.
[http://dx.doi.org/10.1111/j.1399-5618.2011.00952.x] [PMID: 22017219]
[121]
Söderlund, J.; Olsson, S.K.; Samuelsson, M.; Walther-Jallow, L.; Johansson, C.; Erhardt, S.; Landén, M.; Engberg, G. Elevation of cere-brospinal fluid interleukin-1ß in bipolar disorder. J. Psychiatry Neurosci., 2011, 36(2), 114-118.
[http://dx.doi.org/10.1503/jpn.100080] [PMID: 21138659]
[122]
Jones, G.H.; Vecera, C.M.; Pinjari, O.F.; Machado-Vieira, R. Inflammatory signaling mechanisms in bipolar disorder. J. Biomed. Sci., 2021, 28(1), 45.
[http://dx.doi.org/10.1186/s12929-021-00742-6] [PMID: 34112182]
[123]
Winham, S.J.; Bobo, W.V.; Liu, J.; Coombes, B.; Backlund, L.; Frye, M.A.; Biernacka, J.M.; Schalling, M.; Lavebratt, C. Sex-specific ef-fects of gain-of-function P2RX7 variation on bipolar disorder. J. Affect. Disord., 2019, 245, 597-601.
[http://dx.doi.org/10.1016/j.jad.2018.11.007] [PMID: 30445384]
[124]
Salvadore, G.; Viale, C.I.; Luckenbaugh, D.A.; Zanatto, V.C.; Portela, L.V.; Souza, D.O.; Zarate, C.A., Jr; Machado-Vieira, R. Increased uric acid levels in drug-naïve subjects with bipolar disorder during a first manic episode. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(6), 819-821.
[http://dx.doi.org/10.1016/j.pnpbp.2010.02.027] [PMID: 20206224]
[125]
Gubert, C.; Fries, G.R.; Pfaffenseller, B.; Ferrari, P.; Coutinho-Silva, R.; Morrone, F.B.; Kapczinski, F.; Battastini, A.M.O. Role of P2X7 receptor in an animal model of mania induced by D-amphetamine. Mol. Neurobiol., 2016, 53(1), 611-620.
[http://dx.doi.org/10.1007/s12035-014-9031-z] [PMID: 25502294]
[126]
Gubert, C.; Andrejew, R.; Leite, C.E.; Moritz, C.E.J.; Scholl, J.; Figueiro, F.; Kapczinski, F.; da Silva Magalhães, P.V.; Battastini, A.M.O. P2X7 purinergic receptor is involved in the pathophysiology of mania: A preclinical study. Mol. Neurobiol., 2020, 57(3), 1347-1360.
[http://dx.doi.org/10.1007/s12035-019-01817-0] [PMID: 31729632]
[127]
Laskaris, L.E.; Di Biase, M.A.; Everall, I.; Chana, G.; Christopoulos, A.; Skafidas, E.; Cropley, V.L.; Pantelis, C. Microglial activation and progressive brain changes in schizophrenia. Br. J. Pharmacol., 2016, 173(4), 666-680.
[http://dx.doi.org/10.1111/bph.13364] [PMID: 26455353]
[128]
Tarasov, V.V.; Svistunov, A.A.; Chubarev, V.N.; Sologova, S.S.; Mukhortova, P.; Levushkin, D.; Somasundaram, S.G.; Kirkland, C.E.; Bachurin, S.O.; Aliev, G. Alterations of astrocytes in the context of schizophrenic dementia. Front. Pharmacol., 2020, 10, 1612.
[http://dx.doi.org/10.3389/fphar.2019.01612] [PMID: 32116664]
[129]
Hansen, T.; Jakobsen, K.D.; Fenger, M.; Nielsen, J.; Krane, K.; Fink-Jensen, A.; Lublin, H.; Ullum, H.; Timm, S.; Wang, A.G.; Jørgensen, N.R.; Werge, T. Variation in the purinergic P2RX(7) receptor gene and schizophrenia. Schizophr. Res., 2008, 104(1-3), 146-152.
[http://dx.doi.org/10.1016/j.schres.2008.05.026] [PMID: 18614336]
[130]
Koványi, B.; Csölle, C.; Calovi, S.; Hanuska, A.; Kató, E.; Köles, L.; Bhattacharya, A.; Haller, J.; Sperlágh, B. The role of P2X7 receptors in a rodent PCP-induced schizophrenia model. Sci. Rep., 2016, 6(1), 36680.
[http://dx.doi.org/10.1038/srep36680] [PMID: 27824163]
[131]
Calovi, S.; Mut-Arbona, P.; Tod, P.; Iring, A.; Nicke, A.; Mato, S.; Vizi, E.S.; Tønnesen, J.; Sperlagh, B. P2X7 receptor-dependent layer-specific changes in neuron-microglia reactivity in the prefrontal cortex of a phencyclidine induced mouse model of schizophrenia. Front. Mol. Neurosci., 2020, 13, 566251.
[http://dx.doi.org/10.3389/fnmol.2020.566251] [PMID: 33262687]
[132]
Glaser, T.; Andrejew, R.; Oliveira-Giacomelli, Á.; Ribeiro, D.E.; Bonfim Marques, L.; Ye, Q.; Ren, W.J.; Semyanov, A.; Illes, P.; Tang, Y.; Ulrich, H. Purinergic receptors in basal ganglia diseases: Shared molecular mechanisms between Huntington’s and Parkinson’s disease. Neurosci. Bull., 2020, 36(11), 1299-1314.
[http://dx.doi.org/10.1007/s12264-020-00582-8] [PMID: 33026587]
[133]
Huang, H.; Zheng, S.; Chen, M.; Xie, L.; Li, Z.; Guo, M.; Wang, J.; Lu, M.; Zhu, X. The potential of the P2X7 receptor as a therapeutic target in a sub-chronic PCP-induced rodent model of schizophrenia. J. Chem. Neuroanat., 2021, 116, 101993.
[http://dx.doi.org/10.1016/j.jchemneu.2021.101993] [PMID: 34147620]
[134]
Solek, C.M.; Farooqi, N.; Verly, M.; Lim, T.K.; Ruthazer, E.S. Maternal immune activation in neurodevelopmental disorders. Dev. Dyn., 2018, 247(4), 588-619.
[http://dx.doi.org/10.1002/dvdy.24612] [PMID: 29226543]
[135]
Murray, K.N.; Edye, M.E.; Manca, M.; Vernon, A.C.; Oladipo, J.M.; Fasolino, V.; Harte, M.K.; Mason, V.; Grayson, B.; McHugh, P.C.; Knuesel, I.; Prinssen, E.P.; Hager, R.; Neill, J.C. Evolution of a maternal immune activation (mIA) model in rats: Early developmental ef-fects. Brain Behav. Immun., 2019, 75, 48-59.
[http://dx.doi.org/10.1016/j.bbi.2018.09.005] [PMID: 30218784]
[136]
Su, Y.; Lian, J.; Hodgson, J.; Zhang, W.; Deng, C. Prenatal Poly I:C challenge affects behaviors and neurotransmission via elevated neu-roinflammation responses in female juvenile rats. Int. J. Neuropsychopharmacol., 2022, 25(2), 160-171.
[http://dx.doi.org/10.1093/ijnp/pyab087] [PMID: 34893855]
[137]
van Gastel, W.A.; MacCabe, J.H.; Schubart, C.D.; Vreeker, A.; Tempelaar, W.; Kahn, R.S.; Boks, M.P. Cigarette smoking and cannabis use are equally strongly associated with psychotic-like experiences: A cross-sectional study in 1929 young adults. Psychol. Med., 2013, 43(11), 2393-2401.
[http://dx.doi.org/10.1017/S0033291713000202] [PMID: 23414608]
[138]
Di Forti, M.; Quattrone, D.; Freeman, T.P.; Tripoli, G.; Gayer-Anderson, C.; Quigley, H.; Rodriguez, V.; Jongsma, H.E.; Ferraro, L.; La Cascia, C.; La Barbera, D.; Tarricone, I.; Berardi, D.; Szöke, A.; Arango, C.; Tortelli, A.; Velthorst, E.; Bernardo, M.; Del-Ben, C.M.; Menezes, P.R.; Selten, J.P.; Jones, P.B.; Kirkbride, J.B.; Rutten, B.P.; de Haan, L.; Sham, P.C.; van Os, J.; Lewis, C.M.; Lynskey, M.; Mor-gan, C.; Murray, R.M.; Amoretti, S.; Arrojo, M.; Baudin, G.; Beards, S.; Bernardo, M.; Bobes, J.; Bonetto, C.; Cabrera, B.; Carracedo, A.; Charpeaud, T.; Costas, J.; Cristofalo, D.; Cuadrado, P.; Díaz-Caneja, C.M.; Ferchiou, A.; Franke, N.; Frijda, F.; García Bernardo, E. Gar-cia-Portilla, P.; González, E.; Hubbard, K.; Jamain, S.; Jiménez-López, E.; Leboyer, M.; López Montoya, G.; Lorente-Rovira, E.; Marcelino Loureiro, C.; Marrazzo, G.; Martínez, C.; Matteis, M.; Messchaart, E.; Moltó, M.D.; Nacher, J.; Olmeda, M.S.; Parellada, M.; González Pe-ñas, J.; Pignon, B.; Rapado, M.; Richard, J-R.; Rodríguez Solano, J.J.; Roldán Díaz, L.; Ruggeri, M.; Sáiz, P.A.; Sánchez, E.; Sanjuán, J.; Sartorio, C.; Schürhoff, F.; Seminerio, F.; Shuhama, R.; Sideli, L.; Stilo, S.A.; Termorshuizen, F.; Tosato, S.; Tronche, A-M.; van Dam, D.; van der Ven, E. The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): A multicen-tre case-control study. Lancet Psychiatry, 2019, 6(5), 427-436.
[http://dx.doi.org/10.1016/S2215-0366(19)30048-3] [PMID: 30902669]
[139]
Verweij, K.J.; Abdellaoui, A.; Nivard, M.G.; Sainz Cort, A.; Ligthart, L.; Draisma, H.H. Minică C.C.; Gillespie, N.A.; Willemsen, G.; Hot-tenga, J.J.; Boomsma, D.I.; Vink, J.M. Short communication: Genetic association between schizophrenia and cannabis use. Drug Alcohol Depend., 2017, 171, 117-121.
[http://dx.doi.org/10.1016/j.drugalcdep.2016.09.022] [PMID: 28086176]
[140]
Boks, M.P.; He, Y.; Schubart, C.D.; Gastel, W.V.; Elkrief, L.; Huguet, G.; Eijk, K.V.; Vinkers, C.H.; Kahn, R.S.; Paus, T.; Conrod, P.; Hol, E.M.; de Witte, L.D. Cannabinoids and psychotic symptoms: A potential role for a genetic variant in the P2X purinoceptor 7 (P2RX7) gene. Brain Behav. Immun., 2020, 88, 573-581.
[http://dx.doi.org/10.1016/j.bbi.2020.04.051] [PMID: 32330591]
[141]
Patterson, P.H. Modeling autistic features in animals. Pediatr. Res., 2011, 69(5 Pt 2), 34R-40R.
[http://dx.doi.org/10.1203/PDR.0b013e318212b80f] [PMID: 21289542]
[142]
Naviaux, R.K.; Zolkipli, Z.; Wang, L.; Nakayama, T.; Naviaux, J.C.; Le, T.P.; Schuchbauer, M.A.; Rogac, M.; Tang, Q.; Dugan, L.L.; Pow-ell, S.B. Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PLoS One, 2013, 8(3), e57380.
[http://dx.doi.org/10.1371/journal.pone.0057380] [PMID: 23516405]
[143]
Naviaux, J.C.; Wang, L.; Li, K.; Bright, A.T.; Alaynick, W.A.; Williams, K.R.; Powell, S.B.; Naviaux, R.K. Antipurinergic therapy corrects the autism-like features in the Fragile X (Fmr1 knockout) mouse model. Mol. Autism, 2015, 6(1), 1.
[http://dx.doi.org/10.1186/2040-2392-6-1] [PMID: 25705365]
[144]
Horváth, G.; Otrokocsi, L.; Beko, K.; Baranyi, M.; Kittel, Á.; Fritz-Ruenes, P.A.; Sperlágh, B. P2X7 receptors drive poly(I:C) induced autism-like behavior in mice. J. Neurosci., 2019, 39(13), 2542-2561.
[http://dx.doi.org/10.1523/JNEUROSCI.1895-18.2019] [PMID: 30683682]
[145]
Wang, Q.; Kong, Y.; Wu, D.Y.; Liu, J.H.; Jie, W.; You, Q.L.; Huang, L.; Hu, J.; Chu, H.D.; Gao, F.; Hu, N.Y.; Luo, Z.C.; Li, X.W.; Li, S.J.; Wu, Z.F.; Li, Y.L.; Yang, J.M.; Gao, T.M. Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors in mice. Nat. Commun., 2021, 12(1), 3321.
[http://dx.doi.org/10.1038/s41467-021-23843-0] [PMID: 34059669]
[146]
Orsolini, L.; Pompili, S.; Valenta, S.T.; Salvi, V.; Volpe, U.C. C-reactive protein as a biomarker for major depressive disorder? Int. J. Mol. Sci., 2022, 23(3), 1616.
[http://dx.doi.org/10.3390/ijms23031616] [PMID: 35163538]
[147]
Felger, J.C.; Haroon, E.; Patel, T.A.; Goldsmith, D.R.; Wommack, E.C.; Woolwine, B.J.; Le, N.A.; Feinberg, R.; Tansey, M.G.; Miller, A.H. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol. Psychiatry, 2020, 25(6), 1301-1311.
[http://dx.doi.org/10.1038/s41380-018-0096-3] [PMID: 29895893]
[148]
Köhler, O.; Benros, M.E.; Nordentoft, M.; Farkouh, M.E.; Iyengar, R.L.; Mors, O.; Krogh, J. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: A systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 2014, 71(12), 1381-1391.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1611] [PMID: 25322082]
[149]
Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. JAMA Psychiatry, 2013, 70(1), 31-41.
[http://dx.doi.org/10.1001/2013.jamapsychiatry.4] [PMID: 22945416]
[150]
Kappelmann, N.; Lewis, G.; Dantzer, R.; Jones, P.B.; Khandaker, G.M. Antidepressant activity of anti-cytokine treatment: A systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol. Psychiatry, 2018, 23(2), 335-343.
[http://dx.doi.org/10.1038/mp.2016.167] [PMID: 27752078]
[151]
Nettis, M.A.; Lombardo, G.; Hastings, C.; Zajkowska, Z.; Mariani, N.; Nikkheslat, N.; Worrell, C.; Enache, D.; McLaughlin, A.; Kose, M.; Sforzini, L.; Bogdanova, A.; Cleare, A.; Young, A.H.; Pariante, C.M.; Mondelli, V. Augmentation therapy with minocycline in treatment-resistant depression patients with low-grade peripheral inflammation: Results from a double-blind randomised clinical trial. Neuropsychopharmacology, 2021, 46(5), 939-948.
[http://dx.doi.org/10.1038/s41386-020-00948-6] [PMID: 33504955]
[152]
Aricioglu, F.; Ozkartal, C.S.; Bastaskin, T.; Tüzün, E.; Kandemir, C.; Sirvanci, S.; Kucukali, C.I.; Utkan, T. Antidepressant-like effects induced by chronic blockade of the purinergic 2X7 receptor through inhibition of non-like receptor protein 1 inflammasome in chronic unpredictable mild stress model of depression in rats. Clin. Psychopharmacol. Neurosci., 2019, 17(2), 261-272.
[http://dx.doi.org/10.9758/cpn.2019.17.2.261] [PMID: 30905126]