Netrin-1 in Post-stroke Neuroprotection: Beyond Axon Guidance Cue

Page: [1879 - 1887] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Stroke, especially ischemic stroke, is a leading disease associated with death and long-term disability with limited therapeutic options. Neuronal death caused by vascular impairment, programmed cell death and neuroinflammation has been proven to be associated with increased stroke severity and poor stroke recovery. In light of this, a development of neuroprotective drugs targeting injured neurons is urgently needed for stroke treatment. Netrin-1, known as a bifunctional molecule, was originally described to mediate the repulsion or attraction of axonal growth by interacting with its different receptors. Importantly, accumulating evidence has shown that netrin-1 can manifest its beneficial functions to brain tissue repair and neural regeneration in different neurological disease models.

Objective: In this review, we focus on the implications of netrin-1 and its possibly involved pathways on neuroprotection after ischemic stroke, through which a better understanding of the underlying mechanisms of netrin-1 may pave the way to novel treatments.

Methods: Peer-reviewed literature was recruited by searching databases of PubMed, Scopus, Embase, and Web of Science till the year 2021.

Conclusion: There has been certain evidence to support the neuroprotective function of netrin-1 by regulating angiogenesis, autophagy, apoptosis and neuroinflammation after stroke. Netrin-1 may be a promising drug candidate in reducing stroke severity and improving outcomes.

Keywords: Netrin-1, angiogenesis, apoptosis, autophagy, neuroinflammation, neuroprotection, cerebral ischemia.

Graphical Abstract

[1]
Collaborators, G.B.D.N. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 459-480.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[2]
Hankey, G. J. Stroke. Lancet, 2017, 389(10069), 641-654.
[http://dx.doi.org/10.1016/S0140-6736(16)30962-X] [PMID: 27637676]
[3]
Emberson, J.; Lees, K.R.; Lyden, P.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; Grotta, J.; Howard, G.; Kaste, M.; Koga, M.; von Kummer, R.; Lansberg, M.; Lindley, R.I.; Murray, G.; Olivot, J.M.; Parsons, M.; Tilley, B.; Toni, D.; Toyoda, K.; Wahlgren, N.; Wardlaw, J.; Whiteley, W.; del Zoppo, G.J.; Baigent, C.; Sandercock, P.; Hacke, W. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet, 2014, 384(9958), 1929-1935.
[http://dx.doi.org/10.1016/S0140-6736(14)60584-5] [PMID: 25106063]
[4]
Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; Sila, C.A.; Hassan, A.E.; Millan, M.; Levy, E.I.; Mitchell, P.; Chen, M.; English, J.D.; Shah, Q.A.; Silver, F.L.; Pereira, V.M.; Mehta, B.P.; Baxter, B.W.; Abraham, M.G.; Cardona, P.; Veznedaroglu, E.; Hellinger, F.R.; Feng, L.; Kirmani, J.F.; Lopes, D.K.; Jankowitz, B.T.; Frankel, M.R.; Costalat, V.; Vora, N.A.; Yoo, A.J.; Malik, A.M.; Furlan, A.J.; Rubiera, M.; Aghaebrahim, A.; Olivot, J-M.; Tekle, W.G.; Shields, R.; Graves, T.; Lewis, R.J.; Smith, W.S.; Liebeskind, D.S.; Saver, J.L.; Jovin, T.G. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med., 2018, 378(1), 11-21.
[http://dx.doi.org/10.1056/NEJMoa1706442] [PMID: 29129157]
[5]
Iadecola, C.; Buckwalter, M.S.; Anrather, J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J. Clin. Invest., 2020, 130(6), 2777-2788.
[http://dx.doi.org/10.1172/JCI135530] [PMID: 32391806]
[6]
Radak, D.; Katsiki, N.; Resanovic, I.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Mousad, S.A.; Isenovic, E.R. Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol., 2017, 15(2), 115-122.
[http://dx.doi.org/10.2174/1570161115666161104095522] [PMID: 27823556]
[7]
Boyer, N.P.; Gupton, S.L. Revisiting Netrin-1: One Who Guides (Axons). Front. Cell. Neurosci., 2018, 12, 221.
[http://dx.doi.org/10.3389/fncel.2018.00221] [PMID: 30108487]
[8]
Nagel, A.N.; Marshak, S.; Manitt, C.; Santos, R.A.; Piercy, M.A.; Mortero, S.D.; Shirkey-Son, N.J.; Cohen-Cory, S. Netrin-1 directs dendritic growth and connectivity of vertebrate central neurons in vivo . Neural Dev., 2015, 10, 14.
[http://dx.doi.org/10.1186/s13064-015-0041-y] [PMID: 26058786]
[9]
Glasgow, S.D.; Ruthazer, E.S.; Kennedy, T.E. Guiding synaptic plasticity: Novel roles for netrin-1 in synaptic plasticity and memory formation in the adult brain. J. Physiol., 2021, 599(2), 493-505.
[http://dx.doi.org/10.1113/JP278704] [PMID: 32017127]
[10]
Shabani, M.; Haghani, M.; Tazangi, P.E.; Bayat, M.; Shid Moosavi, S.M.; Ranjbar, H. Netrin-1 improves the amyloid-β-mediated suppression of memory and synaptic plasticity. Brain Res. Bull., 2017, 131, 107-116.
[http://dx.doi.org/10.1016/j.brainresbull.2017.03.015] [PMID: 28389207]
[11]
Wang, X.; Xu, J.; Gong, J.; Shen, H.; Wang, X. Expression of netrin-1 and its receptors, deleted in colorectal cancer and uncoordinated locomotion-5 homolog B, in rat brain following focal cerebral ischemia reperfusion injury. Neural Regen. Res., 2013, 8(1), 64-69.
[http://dx.doi.org/10.3969/j.issn.1673-5374.2013.01.008] [PMID: 25206373]
[12]
He, X.; Li, Y.; Lu, H.; Zhang, Z.; Wang, Y.; Yang, G-Y. Netrin-1 overexpression promotes white matter repairing and remodeling after focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab., 2013, 33(12), 1921-1927.
[http://dx.doi.org/10.1038/jcbfm.2013.150] [PMID: 23963365]
[13]
Lu, H.; Song, X.; Wang, F.; Wang, G.; Wu, Y.; Wang, Q.; Wang, Y.; Yang, G.Y.; Zhang, Z. Hyperexpressed Netrin-1 Promoted Neural Stem Cells Migration in Mice after Focal Cerebral Ischemia. Front. Cell. Neurosci., 2016, 10, 223.
[http://dx.doi.org/10.3389/fncel.2016.00223] [PMID: 27746720]
[14]
Lee, W.S.; Lee, W.H.; Bae, Y.C.; Suk, K. Axon guidance molecules guiding neuroinflammation. Exp. Neurobiol., 2019, 28(3), 311-319.
[http://dx.doi.org/10.5607/en.2019.28.3.311] [PMID: 31308791]
[15]
Finci, L.I.; Krüger, N.; Sun, X.; Zhang, J.; Chegkazi, M.; Wu, Y.; Schenk, G.; Mertens, H.D.T.; Svergun, D.I.; Zhang, Y.; Wang, J.H.; Meijers, R. The crystal structure of netrin-1 in complex with DCC reveals the bifunctionality of netrin-1 as a guidance cue. Neuron, 2014, 83(4), 839-849.
[http://dx.doi.org/10.1016/j.neuron.2014.07.010] [PMID: 25123307]
[16]
Xu, K.; Wu, Z.; Renier, N.; Antipenko, A.; Tzvetkova-Robev, D.; Xu, Y.; Minchenko, M.; Nardi-Dei, V.; Rajashankar, K.R.; Himanen, J.; Tessier-Lavigne, M.; Nikolov, D.B. Neural migration. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science, 2014, 344(6189), 1275-1279.
[http://dx.doi.org/10.1126/science.1255149] [PMID: 24876346]
[17]
Lai Wing Sun, K.; Correia, J.P.; Kennedy, T.E. Netrins: versatile extracellular cues with diverse functions. Development, 2011, 138(11), 2153-2169.
[http://dx.doi.org/10.1242/dev.044529] [PMID: 21558366]
[18]
Rozbesky, D.; Jones, E.Y. Cell guidance ligands, receptors and complexes - orchestrating signalling in time and space. Curr. Opin. Struct. Biol., 2020, 61, 79-85.
[http://dx.doi.org/10.1016/j.sbi.2019.11.007] [PMID: 31862615]
[19]
Finci, L.; Zhang, Y.; Meijers, R.; Wang, J.H. Signaling mechanism of the netrin-1 receptor DCC in axon guidance. Prog. Biophys. Mol. Biol., 2015, 118(3), 153-160.
[http://dx.doi.org/10.1016/j.pbiomolbio.2015.04.001] [PMID: 25881791]
[20]
Yamagishi, S.; Bando, Y.; Sato, K. Involvement of netrins and their receptors in neuronal migration in the cerebral cortex. Front. Cell Dev. Biol., 2021, 8, 590009.
[http://dx.doi.org/10.3389/fcell.2020.590009] [PMID: 33520982]
[21]
Grandin, M.; Meier, M.; Delcros, J.G.; Nikodemus, D.; Reuten, R.; Patel, T.R.; Goldschneider, D.; Orriss, G.; Krahn, N.; Boussouar, A.; Abes, R.; Dean, Y.; Neves, D.; Bernet, A.; Depil, S.; Schneiders, F.; Poole, K.; Dante, R.; Koch, M.; Mehlen, P.; Stetefeld, J. Structural decoding of the netrin-1/UNC5 interaction and its therapeutical implications in cancers. Cancer Cell, 2016, 29(2), 173-185.
[http://dx.doi.org/10.1016/j.ccell.2016.01.001] [PMID: 26859457]
[22]
Kefeli, U.; Ucuncu Kefeli, A.; Cabuk, D.; Isik, U.; Sonkaya, A.; Acikgoz, O.; Ozden, E.; Uygun, K. Netrin-1 in cancer: Potential biomarker and therapeutic target? Tumour Biol., 2017, 39(4), 1010428317698388.
[http://dx.doi.org/10.1177/1010428317698388] [PMID: 28443497]
[23]
Jain, S.; Welshhans, K. Netrin-1 induces local translation of down syndrome cell adhesion molecule in axonal growth cones. Dev. Neurobiol., 2016, 76(7), 799-816.
[http://dx.doi.org/10.1002/dneu.22360] [PMID: 26518186]
[24]
Russell, S.A.; Bashaw, G.J. Axon guidance pathways and the control of gene expression. Dev. Dyn., 2018, 247(4), 571-580.
[http://dx.doi.org/10.1002/dvdy.24609] [PMID: 29226467]
[25]
Schmidt, T.; Carmeliet, P. Blood-vessel formation: Bridges that guide and unite. Nature, 2010, 465(7299), 697-699.
[http://dx.doi.org/10.1038/465697a] [PMID: 20535192]
[26]
Axnick, J.; Lammert, E. Vascular lumen formation. Curr. Opin. Hematol., 2012, 19(3), 192-198.
[http://dx.doi.org/10.1097/MOH.0b013e3283523ebc] [PMID: 22488306]
[27]
Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell, 2011, 146(6), 873-887.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[28]
Liman, T.G.; Endres, M. New vessels after stroke: postischemic neovascularization and regeneration. Cerebrovasc. Dis., 2012, 33(5), 492-499.
[http://dx.doi.org/10.1159/000337155] [PMID: 22517438]
[29]
Hayashi, T.; Noshita, N.; Sugawara, T.; Chan, P.H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab., 2003, 23(2), 166-180.
[http://dx.doi.org/10.1097/01.WCB.0000041283.53351.CB] [PMID: 12571448]
[30]
Beck, H.; Acker, T.; Wiessner, C.; Allegrini, P.R.; Plate, K.H. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am. J. Pathol., 2000, 157(5), 1473-1483.
[http://dx.doi.org/10.1016/S0002-9440(10)64786-4] [PMID: 11073808]
[31]
Kojima, T.; Hirota, Y.; Ema, M.; Takahashi, S.; Miyoshi, I.; Okano, H.; Sawamoto, K. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells, 2010, 28(3), 545-554.
[http://dx.doi.org/10.1002/stem.306] [PMID: 20073084]
[32]
Yu, J.; Li, C.; Ding, Q.; Que, J.; Liu, K.; Wang, H.; Liao, S. Netrin-1 ameliorates blood-brain barrier impairment secondary to ischemic stroke via the activation of PI3K pathway. Front. Neurosci., 2017, 11, 700.
[http://dx.doi.org/10.3389/fnins.2017.00700] [PMID: 29311781]
[33]
Park, K.W.; Crouse, D.; Lee, M.; Karnik, S.K.; Sorensen, L.K.; Murphy, K.J.; Kuo, C.J.; Li, D.Y. The axonal attractant Netrin-1 is an angiogenic factor. Proc. Natl. Acad. Sci. USA, 2004, 101(46), 16210-16215.
[http://dx.doi.org/10.1073/pnas.0405984101] [PMID: 15520390]
[34]
Wilson, B.D.; Ii, M.; Park, K.W.; Suli, A.; Sorensen, L.K.; Larrieu-Lahargue, F.; Urness, L.D.; Suh, W.; Asai, J.; Kock, G.A.; Thorne, T.; Silver, M.; Thomas, K.R.; Chien, C.B.; Losordo, D.W.; Li, D.Y. Netrins promote developmental and therapeutic angiogenesis. Science, 2006, 313(5787), 640-644.
[http://dx.doi.org/10.1126/science.1124704] [PMID: 16809490]
[35]
Fan, Y.; Shen, F.; Chen, Y.; Hao, Q.; Liu, W.; Su, H.; Young, W.L.; Yang, G.Y. Overexpression of netrin-1 induces neovascularization in the adult mouse brain. J. Cereb. Blood Flow Metab., 2008, 28(9), 1543-1551.
[http://dx.doi.org/10.1038/jcbfm.2008.39] [PMID: 18461079]
[36]
Nguyen, A.; Cai, H. Netrin-1 induces angiogenesis via a DCC-dependent ERK1/2-eNOS feed-forward mechanism. Proc. Natl. Acad. Sci. USA, 2006, 103(17), 6530-6535.
[http://dx.doi.org/10.1073/pnas.0511011103] [PMID: 16611730]
[37]
Castets, M.; Coissieux, M.M.; Delloye-Bourgeois, C.; Bernard, L.; Delcros, J.G.; Bernet, A.; Laudet, V.; Mehlen, P. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis. Dev. Cell, 2009, 16(4), 614-620.
[http://dx.doi.org/10.1016/j.devcel.2009.02.006] [PMID: 19386270]
[38]
Navankasattusas, S.; Whitehead, K.J.; Suli, A.; Sorensen, L.K.; Lim, A.H.; Zhao, J.; Park, K.W.; Wythe, J.D.; Thomas, K.R.; Chien, C.B.; Li, D.Y. The netrin receptor UNC5B promotes angiogenesis in specific vascular beds. Development, 2008, 135(4), 659-667.
[http://dx.doi.org/10.1242/dev.013623] [PMID: 18223200]
[39]
Lu, X.; Le Noble, F.; Yuan, L.; Jiang, Q.; De Lafarge, B.; Sugiyama, D.; Bréant, C.; Claes, F.; De Smet, F.; Thomas, J.L.; Autiero, M.; Carmeliet, P.; Tessier-Lavigne, M.; Eichmann, A. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature, 2004, 432(7014), 179-186.
[http://dx.doi.org/10.1038/nature03080] [PMID: 15510105]
[40]
Larrivée, B.; Freitas, C.; Trombe, M.; Lv, X.; Delafarge, B.; Yuan, L.; Bouvrée, K.; Bréant, C.; Del Toro, R.; Bréchot, N.; Germain, S.; Bono, F.; Dol, F.; Claes, F.; Fischer, C.; Autiero, M.; Thomas, J.L.; Carmeliet, P.; Tessier-Lavigne, M.; Eichmann, A. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev., 2007, 21(19), 2433-2447.
[http://dx.doi.org/10.1101/gad.437807] [PMID: 17908930]
[41]
Ding, Q.; Liao, S.J.; Yu, J. Axon guidance factor netrin-1 and its receptors regulate angiogenesis after cerebral ischemia. Neurosci. Bull., 2014, 30(4), 683-691.
[http://dx.doi.org/10.1007/s12264-013-1441-9] [PMID: 24875332]
[42]
Yang, Y.; Zou, L.; Wang, Y.; Xu, K.S.; Zhang, J.X.; Zhang, J.H. Axon guidance cue Netrin-1 has dual function in angiogenesis. Cancer Biol. Ther., 2007, 6(5), 743-748.
[http://dx.doi.org/10.4161/cbt.6.5.3976] [PMID: 17387275]
[43]
Tsuchiya, A.; Hayashi, T.; Deguchi, K.; Sehara, Y.; Yamashita, T.; Zhang, H.; Lukic, V.; Nagai, M.; Kamiya, T.; Abe, K. Expression of netrin-1 and its receptors DCC and neogenin in rat brain after ischemia. Brain Res., 2007, 1159, 1-7.
[http://dx.doi.org/10.1016/j.brainres.2006.12.096] [PMID: 17574219]
[44]
Liu, N.; Huang, H.; Lin, F.; Chen, A.; Zhang, Y.; Chen, R.; Du, H. Effects of treadmill exercise on the expression of netrin-1 and its receptors in rat brain after cerebral ischemia. Neuroscience, 2011, 194, 349-358.
[http://dx.doi.org/10.1016/j.neuroscience.2011.07.037] [PMID: 21820492]
[45]
Sun, H.; Le, T.; Chang, T.T.; Habib, A.; Wu, S.; Shen, F.; Young, W.L.; Su, H.; Liu, J. AAV-mediated netrin-1 overexpression increases peri-infarct blood vessel density and improves motor function recovery after experimental stroke. Neurobiol. Dis., 2011, 44(1), 73-83.
[http://dx.doi.org/10.1016/j.nbd.2011.06.006] [PMID: 21726647]
[46]
Lu, H.; Wang, Y.; He, X.; Yuan, F.; Lin, X.; Xie, B.; Tang, G.; Huang, J.; Tang, Y.; Jin, K.; Chen, S.; Yang, G.Y. Netrin-1 hyperexpression in mouse brain promotes angiogenesis and long-term neurological recovery after transient focal ischemia. Stroke, 2012, 43(3), 838-843.
[http://dx.doi.org/10.1161/STROKEAHA.111.635235] [PMID: 22223243]
[47]
Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol., 2018, 19(6), 349-364.
[http://dx.doi.org/10.1038/s41580-018-0003-4] [PMID: 29618831]
[48]
Antonioli, M.; Di Rienzo, M.; Piacentini, M.; Fimia, G.M. Emerging mechanisms in initiating and terminating autophagy. Trends Biochem. Sci., 2017, 42(1), 28-41.
[http://dx.doi.org/10.1016/j.tibs.2016.09.008] [PMID: 27765496]
[49]
Tavernarakis, N. Regulation and roles of autophagy in the brain. Adv. Exp. Med. Biol., 2020, 1195, 33.
[http://dx.doi.org/10.1007/978-3-030-32633-3_5] [PMID: 32468455]
[50]
Mizushima, N.; Levine, B. Autophagy in Human Diseases. N. Engl. J. Med., 2020, 383(16), 1564-1576.
[http://dx.doi.org/10.1056/NEJMra2022774] [PMID: 33053285]
[51]
Levine, B.; Kroemer, G. Biological functions of autophagy genes: A disease perspective. Cell, 2019, 176(1-2), 11-42.
[http://dx.doi.org/10.1016/j.cell.2018.09.048] [PMID: 30633901]
[52]
Wen, Y.D.; Sheng, R.; Zhang, L.S.; Han, R.; Zhang, X.; Zhang, X.D.; Han, F.; Fukunaga, K.; Qin, Z.H. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 2008, 4(6), 762-769.
[http://dx.doi.org/10.4161/auto.6412] [PMID: 18567942]
[53]
Liu, Y.; Xue, X.; Zhang, H.; Che, X.; Luo, J.; Wang, P.; Xu, J.; Xing, Z.; Yuan, L.; Liu, Y.; Fu, X.; Su, D.; Sun, S.; Zhang, H.; Wu, C.; Yang, J. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy, 2019, 15(3), 493-509.
[http://dx.doi.org/10.1080/15548627.2018.1531196] [PMID: 30304977]
[54]
Hou, K.; Xu, D.; Li, F.; Chen, S.; Li, Y. The progress of neuronal autophagy in cerebral ischemia stroke: Mechanisms, roles and research methods. J. Neurol. Sci., 2019, 400, 72-82.
[http://dx.doi.org/10.1016/j.jns.2019.03.015] [PMID: 30904689]
[55]
Button, R.W.; Luo, S.; Rubinsztein, D.C. Autophagic activity in neuronal cell death. Neurosci. Bull., 2015, 31(4), 382-394.
[http://dx.doi.org/10.1007/s12264-015-1528-y] [PMID: 26077705]
[56]
Yang, Z.; Zhao, T.Z.; Zou, Y.J.; Zhang, J.H.; Feng, H. Hypoxia Induces autophagic cell death through hypoxia-inducible factor 1α in microglia. PLoS One, 2014, 9(5), e96509.
[http://dx.doi.org/10.1371/journal.pone.0096509] [PMID: 24818601]
[57]
Xia, C.Y.; Zhang, S.; Chu, S.F.; Wang, Z.Z.; Song, X.Y.; Zuo, W.; Gao, Y.; Yang, P.F.; Chen, N.H. Autophagic flux regulates microglial phenotype according to the time of oxygen-glucose deprivation/reperfusion. Int. Immunopharmacol., 2016, 39, 140-148.
[http://dx.doi.org/10.1016/j.intimp.2016.06.030] [PMID: 27474951]
[58]
Qin, A.P.; Liu, C.F.; Qin, Y.Y.; Hong, L.Z.; Xu, M.; Yang, L.; Liu, J.; Qin, Z.H.; Zhang, H.L. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy, 2010, 6(6), 738-753.
[http://dx.doi.org/10.4161/auto.6.6.12573] [PMID: 20574158]
[59]
Quintana, D.D.; Garcia, J.A.; Sarkar, S.N.; Jun, S.; Engler-Chiurazzi, E.B.; Russell, A.E.; Cavendish, J.Z.; Simpkins, J.W. Hypoxia-reoxygenation of primary astrocytes results in a redistribution of mitochondrial size and mitophagy. Mitochondrion, 2019, 47, 244-255.
[http://dx.doi.org/10.1016/j.mito.2018.12.004] [PMID: 30594729]
[60]
Yang, Z.; Lin, P.; Chen, B.; Zhang, X.; Xiao, W.; Wu, S.; Huang, C.; Feng, D.; Zhang, W.; Zhang, J. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy, 2020, •••, 1-20.
[http://dx.doi.org/10.1080/15548627.2019.1665293] [PMID: 33280500]
[61]
Kim, K.A.; Kim, D.; Kim, J.H.; Shin, Y.J.; Kim, E.S.; Akram, M.; Kim, E.H.; Majid, A.; Baek, S.H.; Bae, O.N. Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd.3 brain endothelial cells and rat ischemic stroke models. Fluids Barriers CNS, 2020, 17(1), 21.
[http://dx.doi.org/10.1186/s12987-020-00182-8] [PMID: 32169114]
[62]
Zhang, Y.; Cao, Y.; Liu, C. Autophagy and Ischemic Stroke. Adv. Exp. Med. Biol., 2020, 1207, 111-134.
[http://dx.doi.org/10.1007/978-981-15-4272-5_7] [PMID: 32671742]
[63]
Ogura, K.; Goshima, Y. The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans . Development, 2006, 133(17), 3441-3450.
[http://dx.doi.org/10.1242/dev.02503] [PMID: 16887826]
[64]
Ogura, K.; Okada, T.; Mitani, S.; Gengyo-Ando, K.; Baillie, D.L.; Kohara, Y.; Goshima, Y. Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans . Development, 2010, 137(10), 1657-1667.
[http://dx.doi.org/10.1242/dev.050708] [PMID: 20392746]
[65]
Guenebeaud, C.; Goldschneider, D.; Castets, M.; Guix, C.; Chazot, G.; Delloye-Bourgeois, C.; Eisenberg-Lerner, A.; Shohat, G.; Zhang, M.; Laudet, V.; Kimchi, A.; Bernet, A.; Mehlen, P. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol. Cell, 2010, 40(6), 863-876.
[http://dx.doi.org/10.1016/j.molcel.2010.11.021] [PMID: 21172653]
[66]
Levin-Salomon, V.; Bialik, S.; Kimchi, A. DAP-kinase and autophagy. Apoptosis, 2014, 19(2), 346-356.
[http://dx.doi.org/10.1007/s10495-013-0918-3] [PMID: 24264886]
[67]
Chen, J.Y.; Huang, Z.; Xiao, P.Y.; Yu, J.; Liao, S.J. Local uncoordinated gene 5H2 contributes to nerve injury-induced mechanical allodynia associated to its role in autophagy. Clin. Exp. Pharmacol. Physiol., 2021, 48(3), 361-369.
[http://dx.doi.org/10.1111/1440-1681.13430] [PMID: 33124058]
[68]
Tang, T.; Gao, D.; Yang, X.; Hua, X.; Li, S.; Sun, H. Exogenous netrin-1 inhibits autophagy of ischemic brain tissues and hypoxic neurons via PI3K/mTOR pathway in ischemic stroke. J. Stroke Cerebrovasc. Dis., 2019, 28(5), 1338-1345.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2019.01.032] [PMID: 30797642]
[69]
Bai, L.; Mei, X.; Wang, Y.; Yuan, Y.; Bi, Y.; Li, G.; Wang, H.; Yan, P.; Lv, G. The role of netrin-1 in improving functional recovery through autophagy stimulation following spinal cord injury in rats. Front. Cell. Neurosci., 2017, 11, 350.
[http://dx.doi.org/10.3389/fncel.2017.00350] [PMID: 29209172]
[70]
Bouhidel, J.O.; Wang, P.; Siu, K.L.; Li, H.; Youn, J.Y.; Cai, H. Netrin-1 improves post-injury cardiac function in vivo via DCC/NO-dependent preservation of mitochondrial integrity, while attenuating autophagy. Biochim. Biophys. Acta, 2015, 1852(2), 277-289.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.005] [PMID: 24928309]
[71]
Hollville, E.; Romero, S.E.; Deshmukh, M. Apoptotic cell death regulation in neurons. FEBS J., 2019, 286(17), 3276-3298.
[http://dx.doi.org/10.1111/febs.14970] [PMID: 31230407]
[72]
Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol., 2018, 36, 489-517.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053010] [PMID: 29400998]
[73]
D’Arcy, M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[74]
Uzdensky, A.B. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis, 2019, 24(9-10), 687-702.
[http://dx.doi.org/10.1007/s10495-019-01556-6] [PMID: 31256300]
[75]
Puyal, J.; Ginet, V.; Clarke, P.G. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog. Neurobiol., 2013, 105, 24-48.
[http://dx.doi.org/10.1016/j.pneurobio.2013.03.002] [PMID: 23567504]
[76]
Gespach, C. Guidance for life, cell death, and colorectal neoplasia by netrin dependence receptors. Adv. Cancer Res., 2012, 114, 87-186.
[http://dx.doi.org/10.1016/B978-0-12-386503-8.00004-1] [PMID: 22588057]
[77]
Liu, J.; Yao, F.; Wu, R.; Morgan, M.; Thorburn, A.; Finley, R.L., Jr; Chen, Y.Q. Mediation of the DCC apoptotic signal by DIP13 alpha. J. Biol. Chem., 2002, 277(29), 26281-26285.
[http://dx.doi.org/10.1074/jbc.M204679200] [PMID: 12011067]
[78]
Yang, Z.; Li, H.; Luo, P.; Yan, D.; Yang, N.; Zhang, Y.; Huang, Y.; Liu, Y.; Zhang, L.; Yan, J.; Zhang, C. UNC5B promotes vascular endothelial cell senescence via the ROS-Mediated P53 pathway. Oxid. Med. Cell. Longev., 2021, 2021, 5546711.
[http://dx.doi.org/10.1155/2021/5546711] [PMID: 34239689]
[79]
Ahn, E.H.; Kang, S.S.; Qi, Q.; Liu, X.; Ye, K. Netrin1 deficiency activates MST1 via UNC5B receptor, promoting dopaminergic apoptosis in Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2020, 117(39), 24503-24513.
[http://dx.doi.org/10.1073/pnas.2004087117] [PMID: 32929029]
[80]
Maisse, C.; Rossin, A.; Cahuzac, N.; Paradisi, A.; Klein, C.; Haillot, M.L.; Hérincs, Z.; Mehlen, P.; Hueber, A.O. Lipid raft localization and palmitoylation: identification of two requirements for cell death induction by the tumor suppressors UNC5H. Exp. Cell Res., 2008, 314(14), 2544-2552.
[http://dx.doi.org/10.1016/j.yexcr.2008.06.001] [PMID: 18582460]
[81]
Ranganathan, P.; Jayakumar, C.; Navankasattusas, S.; Li, D.Y.; Kim, I.M.; Ramesh, G. UNC5B receptor deletion exacerbates tissue injury in response to AKI. J. Am. Soc. Nephrol., 2014, 25(2), 239-249.
[http://dx.doi.org/10.1681/ASN.2013040418] [PMID: 24115477]
[82]
Ylivinkka, I.; Keski-Oja, J.; Hyytiäinen, M. Netrin-1: A regulator of cancer cell motility? Eur. J. Cell Biol., 2016, 95(11), 513-520.
[http://dx.doi.org/10.1016/j.ejcb.2016.10.002] [PMID: 27793362]
[83]
Liao, S.J.; Gong, Q.; Chen, X.R.; Ye, L.X.; Ding, Q.; Zeng, J.S.; Yu, J. Netrin-1 rescues neuron loss by attenuating secondary apoptosis in ipsilateral thalamic nucleus following focal cerebral infarction in hypertensive rats. Neuroscience, 2013, 231, 225-232.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.059] [PMID: 23232257]
[84]
Wang, K.; Rong, L.; Wei, X.; Zhang, Q. Analysis of antiapoptosis effect of netrin-1 on ischemic stroke and its molecular mechanism under deleted in colon cancer/extracellular signal-regulated kinase signaling pathway. BioMed Res. Int., 2020, 2020, 8855949.
[http://dx.doi.org/10.1155/2020/8855949] [PMID: 33274229]
[85]
Chen, J.; Du, H.; Zhang, Y.; Chen, H.; Zheng, M.; Lin, P.; Lan, Q.; Yuan, Q.; Lai, Y.; Pan, X.; Chen, R.; Liu, N. Netrin-1 prevents rat primary cortical neurons from apoptosis via the DCC/ERK pathway. Front. Cell. Neurosci., 2017, 11, 387.
[http://dx.doi.org/10.3389/fncel.2017.00387] [PMID: 29321724]
[86]
Yin, J.W.; Li, J.; Ren, Y.M.; Li, Y.; Wang, R.X.; Wang, S.; Zuo, Y.X. Dexmedetomidine and netrin-1 combination therapy inhibits endoplasmic reticulum stress by regulating the ERK5/MEF2A pathway to attenuate cerebral ischemia injury. Front. Neurosci., 2021, 15, 641345.
[http://dx.doi.org/10.3389/fnins.2021.641345] [PMID: 33584197]
[87]
Zheng, M.; Chen, R.; Chen, H.; Zhang, Y.; Chen, J.; Lin, P.; Lan, Q.; Yuan, Q.; Lai, Y.; Jiang, X.; Pan, X.; Liu, N. Netrin-1 promotes synaptic formation and axonal regeneration via JNK1/c-Jun pathway after the middle cerebral artery occlusion. Front. Cell. Neurosci., 2018, 12, 13.
[http://dx.doi.org/10.3389/fncel.2018.00013] [PMID: 29487502]
[88]
Yang, X.; Li, S.; Li, B.; Wang, X.; Sun, C.; Qin, H.; Sun, H. Netrin-1 overexpression improves neurobehavioral outcomes and reduces infarct size via inhibition of the notch1 pathway following experimental stroke. J. Neurosci. Res., 2017, 95(9), 1850-1857.
[http://dx.doi.org/10.1002/jnr.24018] [PMID: 28084632]
[89]
Jin, R.; Liu, L.; Zhang, S.; Nanda, A.; Li, G. Role of inflammation and its mediators in acute ischemic stroke. J. Cardiovasc. Transl. Res., 2013, 6(5), 834-851.
[http://dx.doi.org/10.1007/s12265-013-9508-6] [PMID: 24006091]
[90]
Nakamura, K.; Shichita, T. Cellular and molecular mechanisms of sterile inflammation in ischaemic stroke. J. Biochem., 2019, 165(6), 459-464.
[http://dx.doi.org/10.1093/jb/mvz017] [PMID: 30796426]
[91]
Kumar, V. Toll-like receptors in the pathogenesis of neuroinflammation. J. Neuroimmunol., 2019, 332, 16-30.
[http://dx.doi.org/10.1016/j.jneuroim.2019.03.012] [PMID: 30928868]
[92]
Anrather, J.; Iadecola, C. Inflammation and Stroke: An Overview. Neurotherapeutics, 2016, 13(4), 661-670.
[http://dx.doi.org/10.1007/s13311-016-0483-x] [PMID: 27730544]
[93]
Shi, K.; Tian, D.C.; Li, Z.G.; Ducruet, A.F.; Lawton, M.T.; Shi, F.D. Global brain inflammation in stroke. Lancet Neurol., 2019, 18(11), 1058-1066.
[http://dx.doi.org/10.1016/S1474-4422(19)30078-X] [PMID: 31296369]
[94]
Hou, K.; Li, G.; Yu, J.; Xu, K.; Wu, W. Receptors, channel proteins, and enzymes involved in microglia-mediated neuroinflammation and treatments by targeting microglia in ischemic stroke. Neuroscience, 2021, 460, 167-180.
[http://dx.doi.org/10.1016/j.neuroscience.2021.02.018] [PMID: 33609636]
[95]
Veltkamp, R.; Gill, D. Clinical Trials of Immunomodulation in Ischemic Stroke. Neurotherapeutics, 2016, 13(4), 791-800.
[http://dx.doi.org/10.1007/s13311-016-0458-y] [PMID: 27412685]
[96]
Pagram, H.; Bivard, A.; Lincz, L.F.; Levi, C. Immunity and stroke, the hurdles of stroke research translation. Int. J. Stroke, 2017, 12(2), 123-131.
[http://dx.doi.org/10.1177/1747493016676622] [PMID: 27784822]
[97]
Garcia-Bonilla, L.; Benakis, C.; Moore, J.; Iadecola, C.; Anrather, J. Immune mechanisms in cerebral ischemic tolerance. Front. Neurosci., 2014, 8, 44.
[http://dx.doi.org/10.3389/fnins.2014.00044] [PMID: 24624056]
[98]
Jiang, Q.; Stone, C.R.; Elkin, K.; Geng, X.; Ding, Y. Immunosuppression and neuroinflammation in stroke pathobiology. Exp. Neurobiol., 2021, 30(2), 101-112.
[http://dx.doi.org/10.5607/en20033] [PMID: 33972464]
[99]
Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: friend and foe for ischemic stroke. J. Neuroinflammation, 2019, 16(1), 142.
[http://dx.doi.org/10.1186/s12974-019-1516-2] [PMID: 31291966]
[100]
Ly, N.P.; Komatsuzaki, K.; Fraser, I.P.; Tseng, A.A.; Prodhan, P.; Moore, K.J.; Kinane, T.B. Netrin-1 inhibits leukocyte migration in vitro and in vivo . Proc. Natl. Acad. Sci. USA, 2005, 102(41), 14729-14734.
[http://dx.doi.org/10.1073/pnas.0506233102] [PMID: 16203981]
[101]
Rosenberger, P.; Schwab, J.M.; Mirakaj, V.; Masekowsky, E.; Mager, A.; Morote-Garcia, J.C.; Unertl, K.; Eltzschig, H.K. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat. Immunol., 2009, 10(2), 195-202.
[http://dx.doi.org/10.1038/ni.1683] [PMID: 19122655]
[102]
Podjaski, C.; Alvarez, J.I.; Bourbonniere, L.; Larouche, S.; Terouz, S.; Bin, J.M.; Lécuyer, M-A.; Saint-Laurent, O.; Larochelle, C.; Darlington, P.J.; Arbour, N.; Antel, J.P.; Kennedy, T.E.; Prat, A. Netrin 1 regulates blood-brain barrier function and neuroinflammation. Brain, 2015, 138(Pt 6), 1598-1612.
[http://dx.doi.org/10.1093/brain/awv092] [PMID: 25903786]
[103]
Ranganathan, P.V.; Jayakumar, C.; Ramesh, G. Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization. Am. J. Physiol. Renal Physiol., 2013, 304(7), F948-F957.
[http://dx.doi.org/10.1152/ajprenal.00580.2012] [PMID: 23408164]
[104]
Wu, K.Y.; Zippin, J.H.; Huron, D.R.; Kamenetsky, M.; Hengst, U.; Buck, J.; Levin, L.R.; Jaffrey, S.R. Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones. Nat. Neurosci., 2006, 9(10), 1257-1264.
[http://dx.doi.org/10.1038/nn1767] [PMID: 16964251]
[105]
Zhang, J.; Cai, H. Netrin-1 prevents ischemia/reperfusion-induced myocardial infarction via a DCC/ERK1/2/eNOS s1177/NO/DCC feed-forward mechanism. J. Mol. Cell. Cardiol., 2010, 48(6), 1060-1070.
[http://dx.doi.org/10.1016/j.yjmcc.2009.11.020] [PMID: 20004665]
[106]
Xie, Z.; Huang, L.; Enkhjargal, B.; Reis, C.; Wan, W.; Tang, J.; Cheng, Y.; Zhang, J.H. Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPARγ/NFκB signaling pathway after subarachnoid hemorrhage in rats. Brain Behav. Immun., 2018, 69, 190-202.
[http://dx.doi.org/10.1016/j.bbi.2017.11.012] [PMID: 29162556]
[107]
Guo, D.; Zhu, Z.; Zhong, C.; Peng, H.; Wang, A.; Xu, T.; Peng, Y.; Xu, T.; Chen, C.S.; Li, Q.; Ju, Z.; Geng, D.; Chen, J.; Zhang, Y.; He, J. Increased serum netrin-1 is associated with improved prognosis of ischemic stroke. Stroke, 2019, 50(4), 845-852.
[http://dx.doi.org/10.1161/STROKEAHA.118.024631] [PMID: 30852966]
[108]
Coleman, L.G., Jr; Zou, J.; Crews, F.T. Microglial depletion and repopulation in brain slice culture normalizes sensitized proinflammatory signaling. J. Neuroinflammation, 2020, 17(1), 27.
[http://dx.doi.org/10.1186/s12974-019-1678-y] [PMID: 31954398]
[109]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[110]
Barreto, G.E.; Sun, X.; Xu, L.; Giffard, R.G. Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One, 2011, 6(11), e27881.
[http://dx.doi.org/10.1371/journal.pone.0027881] [PMID: 22132159]
[111]
Wang, H.; Liao, S.; Li, H.; Chen, Y.; Yu, J. Long non-coding RNA TUG1 sponges mir-145a-5p to regulate microglial polarization after oxygen-glucose deprivation. Front. Mol. Neurosci., 2019, 12, 215.
[http://dx.doi.org/10.3389/fnmol.2019.00215] [PMID: 31551710]
[112]
He, X.; Liu, Y.; Lin, X.; Yuan, F.; Long, D.; Zhang, Z.; Wang, Y.; Xuan, A.; Yang, G-Y. Netrin-1 attenuates brain injury after middle cerebral artery occlusion via downregulation of astrocyte activation in mice. J. Neuroinflammation, 2018, 15(1), 268.
[http://dx.doi.org/10.1186/s12974-018-1291-5] [PMID: 30227858]