Apoptotic and Antiproliferative Potential of GAPDH from Mallotus philippensis Seed on Human Lung Carcinoma: In Vitro and In Vivo Approach

Page: [340 - 349] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Aims: The anticancer potential of a purified seed protein from Mallotus philippensis is scientifically evaluated and reported here.

Background: Seeds of Mallotus philippensis are used to treat various diseases in the indigenous systems of medicine in India.

Objectives: The present study deals with the isolation, purification, identification, and screening of protein of interest that exhibit maximum activity against lung cancer cells from the seed crude protein of Mallotus philippensis.

Methods: Size-exclusion with HPLC was used to purify crude protein (15 mg) from M. philippensis seeds. Protein of interest was identified using the LC-MS/MS method and analyzed by in vitro (A549 cell lines) in vivo (B16-F10 cells from melanoma cancer-induced Wistar rats) to estimate anticancer activity.

Results: SDS-PAGE was applied to isolate and purify elution III (480 μg/ml). Elution III LCMS/ MS data were used to search the UniProt database and were eventually matched with glyceraldehyde 3-phosphate dehydrogenase (GAPDH). MTT assay of GAPDH-treated A549 cells exhibited an IC50 of 3.03 ± 0.39 μg (24 h) and 1.93 ± 0.19 μg (48 h). AO/EtBr staining showed early and late apoptotic characteristics such as cell membrane blebbing, chromatin condensation, and the formation of apoptotic bodies. Hoechst staining confirmed the death of cells by exhibiting bright blue fluorescent, condensed, and fragmented nuclei. GAPDH-treated rats by 10 and 20 mg/kg bw significantly increased body weight by 29.50 ± 3.06 and 31.33 ± 2.69, respectively, and decreased melanoma metastasis in the lungs by 66.79% and 86.57%, respectively. Further, GAPDH treatment significantly increased the levels of SOD, CAT, and GPx and reduced GST and GSH. Histopathological analysis confirmed nuclear alteration in the lung tissue of the treated groups only.

Conclusion: Apoptotic potential of GAPDH against lung carcinoma has been confirmed in the present investigation.

Keywords: Size-exclusion chromatography, A549 non-small lung cancer cells, B16-F10 melanoma cancer cells, wistar rats, enzymatic activity, histopathology.

Graphical Abstract

[1]
Tagne, R.S.; Telefo, B.P.; Nyemb, J.N.; Yemele, D.M.; Njina, S.N.; Goka, S.M.C.; Lienou, L.L.; Nwabo Kamdje, A.H.; Moundipa, P.F.; Farooq, A.D. Anticancer and antioxidant activities of methanol extracts and fractions of some Cameroonian medicinal plants. Asian Pac. J. Trop. Med., 2014.7S1(S1), S442-S447..
[http://dx.doi.org/10.1016/S1995-7645(14)60272-8] [PMID: 25312165]
[2]
Union for International Cancer Control; GLOBOCAN 2020: New global cancer data. 2020. Available from:. https://www.uicc.org/news/globocan-2020-new-global-cancer-data (Accessed on: June 01, 2021).
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Smigal, C.; Thun, M. J. Cancer statistics, 2006. CA Cancer J. Clin., 2006, 56(2), 106-130.
[http://dx.doi.org/10.3322/canjclin.56.2.106] [PMID: 16514137]
[5]
Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; Geisinger, K.; Hirsch, F.R.; Ishikawa, Y.; Kerr, K.M.; Noguchi, M.; Pelosi, G.; Powell, C.A.; Tsao, M.S.; Wistuba, I. The 2015 world health organization classification of lung tumors. J. Thorac. Oncol., 2015, 10(9), 1243-1260.
[http://dx.doi.org/10.1097/JTO.0000000000000630] [PMID: 26291008]
[6]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[7]
Shea, M.; Costa, D.B.; Rangachari, D. Management of advanced non-small cell lung cancers with known mutations or rearrangements: Latest evidence and treatment approaches. Ther. Adv. Respir. Dis., 2016, 10(2), 113-129.
[http://dx.doi.org/10.1177/1753465815617871] [PMID: 26620497]
[8]
Sgambato, A.; Casaluce, F.; Maione, P.; Gridelli, C. Targeted therapies in non-small cell lung cancer: A focus on ALK/ROS1 tyrosine kinase inhibitors. Expert Rev. Anticancer Ther., 2018, 18(1), 71-80.
[http://dx.doi.org/10.1080/14737140.2018.1412260] [PMID: 29187012]
[9]
Coseri, S. Natural products and their analogues as efficient anticancer drugs. Mini Rev. Med. Chem., 2009, 9(5), 560-571.
[http://dx.doi.org/10.2174/138955709788167592] [PMID: 19456286]
[10]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[11]
Newman, D.J. Natural products as leads to potential drugs: An old process or the new hope for drug discovery? J. Med. Chem., 2008, 51(9), 2589-2599.
[http://dx.doi.org/10.1021/jm0704090] [PMID: 18393402]
[12]
Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol., 2007, 9(12), 767-776.
[http://dx.doi.org/10.1007/s12094-007-0138-9] [PMID: 18158980]
[13]
Hsieh, C-C.; Hernández-Ledesma, B.; de Lumen, B.O. Cancer chemopreventive potential of seed proteins and peptides.Nuts and Seeds in Health and Disease Prevention. Preedy, V.R.; Watson, R.R; Patel, V.B., Ed.; Elsevier: New York, 2020, pp. 403-420.
[http://dx.doi.org/10.1016/B978-0-12-818553-7.00028-0]
[14]
Quiroga-Garza, G.; Lee, J.H.; El-Naggar, A.; Black, J.O.; Amrikachi, M.; Zhai, Q.J.; Ayala, A.G.; Ro, J.Y. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: More aggressive than previously reported. Hum. Pathol., 2015, 46(5), 725-731.
[http://dx.doi.org/10.1016/j.humpath.2015.01.012] [PMID: 25754017]
[15]
Hernández-Ledesma, B.; Hsieh, C-C.; de Lumen, B.O. Chemopreventive properties of Peptide Lunasin: A review. Protein Pept. Lett., 2013, 20(4), 424-432.
[http://dx.doi.org/10.2174/0929866511320040006] [PMID: 23016582]
[16]
Chuang, D-M.; Hough, C.; Senatorov, V.V. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol., 2005, 45(1), 269-290.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095902] [PMID: 15822178]
[17]
Nakajima, H.; Amano, W.; Fujita, A.; Fukuhara, A.; Azuma, Y-T.; Hata, F.; Inui, T.; Takeuchi, T. The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J. Biol. Chem., 2007, 282(36), 26562-26574.
[http://dx.doi.org/10.1074/jbc.M704199200] [PMID: 17613523]
[18]
Tarze, A.; Deniaud, A.; Le Bras, M.; Maillier, E.; Molle, D.; Larochette, N.; Zamzami, N.; Jan, G.; Kroemer, G.; Brenner, C. GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene, 2007, 26(18), 2606-2620.
[http://dx.doi.org/10.1038/sj.onc.1210074] [PMID: 17072346]
[19]
Nicholls, C.; Pinto, A.R.; Li, H.; Li, L.; Wang, L.; Simpson, R.; Liu, J-P. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces cancer cell senescence by interacting with telomerase RNA component. Proc. Natl. Acad. Sci. USA, 2012, 109(33), 13308-13313.
[http://dx.doi.org/10.1073/pnas.1206672109] [PMID: 22847419]
[20]
Soltany-Rezaee-Rad, M.; Mottaghi-Dastjerdi, N.; Setayesh, N.; Roshandel, G.; Ebrahimifard, F.; Sepehrizadeh, Z. Overexpression of FOXO3, MYD88, and GAPDH identified by suppression subtractive hybridization in esophageal cancer is associated with autophagy. Gastroenterol. Res. Pract., 2014, 2014, 185035.
[http://dx.doi.org/10.1155/2014/185035] [PMID: 24527027]
[21]
Butera, G.; Mullappilly, N.; Masetto, F.; Palmieri, M.; Scupoli, M.T.; Pacchiana, R.; Donadelli, M. Regulation of autophagy by nuclear GAPDH and its aggregates in cancer and neurodegenerative disorders. Int. J. Mol. Sci., 2019, 20(9), 1-17.
[http://dx.doi.org/10.3390/ijms20092062] [PMID: 31027346]
[22]
Sakthidhasan, P. Sathish kumar, P.; Viswanathan, M.B.G. Cytotoxic potential of bioactive seed proteins from Mallotus philippensis against various cancer cell lines. Appl. Nanosci., 2021, 11(4), 1093-1105.
[http://dx.doi.org/10.1007/s13204-021-01974-6]
[23]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[24]
Pascariu, M.; Anghelache, A.N.; Constantinescu, D.; Jitaru, D.; Carasevici, E.; Luchian, T. The evaluation of biological effect of cytotoxic peptides on tumor cell lines Dig. J. Nanomater. Biostruct., 2012, 7(1), 79-84.
[25]
Spector, D.L.; Goldman, R.D.; Leinward, L.A. Cells: Subcellular localization of genes and their products; Cold Spring Harbor Laboratory Press: New York, 1998.
[26]
Kasibhatla, S.; Amarante-Mendes, G.P.; Finucane, D.; Brunner, T.; Bossy-Wetzel, E.; Green, D.R. Staining of suspension cells with Hoechst 33258 to detect apoptosis; Cold Spring Harbor Protocol: New York, 2006.
[http://dx.doi.org/10.1101/pdb.prot4492]
[27]
Overwijk, W. W.; Restifo, N. P. B16 as a mouse model for human melanoma., Curr. Protoc. Immunol., 2000, 39(1), 20.1..
[http://dx.doi.org/10.1002/0471142735.im2001s39]
[28]
Afrasiabi, Z.; Stovall, P.; Finley, K.; Choudhury, A.; Barnes, C.; Ahmad, A.; Sarkar, F.; Vyas, A.; Padhye, S. Targeting triple negative breast cancer cells by N3-substituted 9,10-phenanthrenequinone thiosemicarbazones and their metal complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 114, 114-119.
[http://dx.doi.org/10.1016/j.saa.2013.04.122] [PMID: 23770498]
[29]
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
[http://dx.doi.org/10.1002/med.10033] [PMID: 12710022]
[30]
Sirover, M.A. New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J. Cell. Biochem., 2005, 95(1), 45-52.
[http://dx.doi.org/10.1002/jcb.20399] [PMID: 15770658]
[31]
Sirover, M.A. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: Biochemical mechanisms and regulatory control. Biochim. Biophys. Acta, 2011, 1810(8), 741-751.
[http://dx.doi.org/10.1016/j.bbagen.2011.05.010] [PMID: 21640161]
[32]
Sirover, M.A. Subcellular dynamics of multifunctional protein regulation: Mechanisms of GAPDH intracellular translocation. J. Cell. Biochem., 2012, 113(7), 2193-2200.
[http://dx.doi.org/10.1002/jcb.24113] [PMID: 22388977]
[33]
Colell, A.; Ricci, J.E.; Tait, S.; Milasta, S.; Maurer, U.; Bouchier-Hayes, L.; Fitzgerald, P.; Guio-Carrion, A.; Waterhouse, N.J.; Li, C.W.; Mari, B.; Barbry, P.; Newmeyer, D.D.; Beere, H.M.; Green, D.R. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell, 2007, 129(5), 983-997.
[http://dx.doi.org/10.1016/j.cell.2007.03.045] [PMID: 17540177]
[34]
Colell, A.; Green, D.R.; Ricci, J.E. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ., 2009, 16(12), 1573-1581.
[http://dx.doi.org/10.1038/cdd.2009.137] [PMID: 19779498]
[35]
Hickman, J.A. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev., 1992, 11(2), 121-139.
[http://dx.doi.org/10.1007/BF00048059] [PMID: 1327566]
[36]
Kerr, J.F.R.; Winterford, C.M.; Harmon, B.V. Apoptosis. Its significance in cancer and cancer therapy Cancer, 1994, 73(8), 2013-2026.
[37]
Badjatia, N.; Satyam, A.; Singh, P.; Seth, A.; Sharma, A. Altered antioxidant status and lipid peroxidation in Indian patients with urothelial bladder carcinoma. Urol. Oncol. Semin. Orig. Investig., 2010, 28(4), 360-367.
[http://dx.doi.org/10.1016/j.urolonc.2008.12.010] [PMID: 19171490]
[38]
Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[39]
Giftson, J.S.; Jayanthi, S.; Nalini, N. Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1,2-dimethyl hydrazine induced rat colon carcinogenesis. Invest. New Drugs, 2010, 28(3), 251-259.
[http://dx.doi.org/10.1007/s10637-009-9241-9] [PMID: 19300909]
[40]
Umesalma, S.; Sudhandiran, G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-α, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin. Pharmacol. Toxicol., 2010, 107(2), 650-655.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00565.x] [PMID: 20406206]