Endoplasmic Reticulum Stress and Renin-Angiotensin System Crosstalk in Endothelial Dysfunction

Article ID: e010322201527 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Vascular endothelial dysfunction (VED) significantly results in catastrophic cardiovascular diseases with multiple aetiologies. Variations in vasoactive peptides, including angiotensin II and endothelin 1, and metabolic perturbations like hyperglycaemia, altered insulin signalling, and homocysteine levels result in pathogenic signalling cascades, which ultimately lead to VED. Endoplasmic reticulum (ER) stress reduces nitric oxide availability, causes aberrant angiogenesis, and enhances oxidative stress pathways, consequently promoting endothelial dysfunction. Moreover, the renin-angiotensin system (RAS) has widely been acknowledged to impact angiogenesis, endothelial repair and inflammation. Interestingly, experimental studies at the preclinical level indicate a possible pathological link between the two pathways in the development of VED. Furthermore, pharmacological modulation of ER stress ameliorates angiotensin-II mediated VED as well as RAS intervention either through inhibition of the pressor arm or enhancement of the depressor arm of RAS, mitigating ER stress-induced endothelial dysfunction and thus emphasizing a vital crosstalk.

Conclusion: Deciphering the pathway overlap between RAS and ER stress may open potential therapeutic avenues to combat endothelial dysfunction and associated diseases. Several studies suggest that alteration in a component of RAS may induce ER stress or induction of ER stress may modulate the RAS components. In this review, we intend to elaborate on the crosstalk of ER stress and RAS in the pathophysiology of VED.

Keywords: Vascular endothelial dysfunction, endoplasmic reticulum stress, renin-angiotensin system, crosstalk, endothe-lium, angiogenesis.

Graphical Abstract

[1]
Amini, M.; Zayeri, F.; Salehi, M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health, 2021, 21(1), 401.
[http://dx.doi.org/10.1186/s12889-021-10429-0] [PMID: 33632204]
[2]
Versari, D.; Daghini, E.; Virdis, A.; Ghiadoni, L.; Taddei, S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care, 2009, 32(Suppl. 2), S314-S321.
[http://dx.doi.org/10.2337/dc09-S330] [PMID: 19875572]
[3]
Unger, T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am. J. Cardiol., 2002, 89(2A)(Suppl. 1), 3A-9A.
[http://dx.doi.org/10.1016/S0002-9149(01)02321-9] [PMID: 11835903]
[4]
Jarajapu, Y.P.R.; Bhatwadekar, A.D.; Caballero, S.; Hazra, S.; Shenoy, V.; Medina, R.; Kent, D.; Stitt, A.W.; Thut, C.; Finney, E.M.; Raizada, M.K.; Grant, M.B. Activation of the ACE2/angiotensin-(1-7)/Mas receptor axis enhances the reparative function of dysfunctional diabetic endothelial progenitors. Diabetes, 2013, 62(4), 1258-1269.
[http://dx.doi.org/10.2337/db12-0808] [PMID: 23230080]
[5]
Fraga-Silva, R.A.; Costa-Fraga, F.P.; Murça, T.M.; Moraes, P.L.; Martins Lima, A.; Lautner, R.Q.; Castro, C.H.; Soares, C.M.A.; Borges, C.L.; Nadu, A.P.; Oliveira, M.L.; Shenoy, V.; Katovich, M.J.; Santos, R.A.S.; Raizada, M.K.; Ferreira, A.J. Angiotensin-converting enzyme 2 activation improves endothelial function. Hypertension, 2013, 61(6), 1233-1238.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00627]
[6]
Lovren, F.; Pan, Y.; Quan, A.; Teoh, H.; Wang, G.; Shukla, P.C.; Levitt, K.S.; Oudit, G.Y.; Al-Omran, M.; Stewart, D.J.; Slutsky, A.S.; Peterson, M.D.; Backx, P.H.; Penninger, J.M.; Verma, S. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am. J. Physiol. Heart Circ. Physiol., 2008, 295(4), H1377-H1384.
[http://dx.doi.org/10.1152/ajpheart.00331.2008] [PMID: 18660448]
[7]
Murugan, D.; Lau, Y.S.; Lau, C.W.; Mustafa, M.R.; Huang, Y. Angiotensin 1-7 protects against angiotensin II-induced endoplasmic reticulum stress and endothelial dysfunction via mas receptor. PLoS One, 2015, 10(12), e0145413.
[http://dx.doi.org/10.1371/journal.pone.0145413] [PMID: 26709511]
[8]
Luchetti, F.; Crinelli, R.; Cesarini, E.; Canonico, B.; Guidi, L.; Zerbinati, C.; Di Sario, G.; Zamai, L.; Magnani, M.; Papa, S.; Iuliano, L. Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol., 2017, 13, 581-587.
[http://dx.doi.org/10.1016/j.redox.2017.07.014] [PMID: 28783588]
[9]
Moncada, S. The vascular endothelium. endothelium and cardiovascular diseases; Elsevier: UK, 2018, pp. 5-10.
[http://dx.doi.org/10.1016/B978-0-12-812348-5.00001-5]
[10]
Pi, X.; Xie, L.; Patterson, C. Emerging roles of vascular endothelium in metabolic homeostasis. Circ. Res., 2018, 123(4), 477-494.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313237] [PMID: 30355249]
[11]
Cahill, P.A.; Redmond, E.M. Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis, 2016, 248, 97-109.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.03.007] [PMID: 26994427]
[12]
Khaddaj Mallat, R.; Mathew John, C.; Kendrick, D.J.; Braun, A.P. The vascular endothelium: A regulator of arterial tone and interface for the immune system. Crit. Rev. Clin. Lab. Sci., 2017, 54(7-8), 458-470.
[http://dx.doi.org/10.1080/10408363.2017.1394267] [PMID: 29084470]
[13]
Moreira, M.B.; Garcia-Cardeña, G.; Saffi, M.A.L.; Libby, P. Endothelium: A coordinator of acute and chronic inflammation. endothelium and cardiovascular diseases; Elsevier: UK, 2018, pp. 485-491.
[http://dx.doi.org/10.1016/B978-0-12-812348-5.00032-5]
[14]
Jamwal, S.; Sharma, S. Vascular endothelium dysfunction: A conservative target in metabolic disorders. Inflamm. Res., 2018, 67(5), 391-405.
[http://dx.doi.org/10.1007/s00011-018-1129-8] [PMID: 29372262]
[15]
Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A.K.; Mu, W.; Zhang, S.; Snyder, S.H.; Wang, R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science, 2008, 322(5901), 587-590.
[http://dx.doi.org/10.1126/science.1162667] [PMID: 18948540]
[16]
De Meyer, G.R.; Herman, A.G. Vascular endothelial dysfunction. Prog. Cardiovasc. Dis., 1997, 39(4), 325-342.
[http://dx.doi.org/10.1016/S0033-0620(97)80031-X] [PMID: 9050818]
[17]
Halcox, J.P.J.; Schenke, W.H.; Zalos, G.; Mincemoyer, R.; Prasad, A.; Waclawiw, M.A.; Nour, K.R.A.; Quyyumi, A.A. Prognostic value of coronary vascular endothelial dysfunction. Circulation, 2002, 106(6), 653-658.
[http://dx.doi.org/10.1161/01.CIR.0000025404.78001.D8] [PMID: 12163423]
[18]
Widlansky, M.E.; Gokce, N.; Keaney, J.F., Jr; Vita, J.A. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol., 2003, 42(7), 1149-1160.
[http://dx.doi.org/10.1016/S0735-1097(03)00994-X] [PMID: 14522472]
[19]
Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H.C. Endothelial dysfunction and vascular disease- A 30th anniversary update. Acta Physiol. (Oxf.), 2017, 219(1), 22-96.
[http://dx.doi.org/10.1111/apha.12646] [PMID: 26706498]
[20]
Scioli, M.G.; Storti, G.; D’Amico, F.; Rodríguez Guzmán, R.; Centofanti, F.; Doldo, E.; Céspedes Miranda, E.M.; Orlandi, A. Oxidative stress and new pathogenetic mechanisms in endothelial dysfunction: Potential diagnostic biomarkers and therapeutic targets. J. Clin. Med., 2020, 9(6), 1995.
[http://dx.doi.org/10.3390/jcm9061995] [PMID: 32630452]
[21]
Corban, M.T.; Lerman, L.O.; Lerman, A. Endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol., 2019, 39(7), 1272-1274.
[http://dx.doi.org/10.1161/ATVBAHA.119.312836] [PMID: 31242027]
[22]
Daiber, A.; Steven, S.; Weber, A.; Shuvaev, V.V.; Muzykantov, V.R.; Laher, I.; Li, H.; Lamas, S.; Münzel, T. Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol., 2017, 174(12), 1591-1619.
[http://dx.doi.org/10.1111/bph.13517] [PMID: 27187006]
[23]
Amraei, R.; Rahimi, N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells, 2020, 9(7), 1652.
[http://dx.doi.org/10.3390/cells9071652] [PMID: 32660065]
[24]
Pons, S.; Fodil, S.; Azoulay, E.; Zafrani, L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit. Care, 2020, 24(1), 353.
[http://dx.doi.org/10.1186/s13054-020-03062-7] [PMID: 32546188]
[25]
Osman, A.; Benameur, T.; Korashy, H.M.; Zeidan, A.; Agouni, A. Interplay between endoplasmic reticulum stress and large extracellular vesicles (Microparticles) in endothelial cell dysfunction. Biomedicines, 2020, 8(10), 409.
[http://dx.doi.org/10.3390/biomedicines8100409] [PMID: 33053883]
[26]
Levy, E.; Spahis, S.; Bigras, J-L.; Delvin, E.; Borys, J-M. The epigenetic machinery in vascular dysfunction and hypertension. Current Hyp. Rep., 2017, 19(6), 52.
[http://dx.doi.org/10.1007/s11906-017-0745-y]
[27]
Cimellaro, A.; Perticone, M.; Fiorentino, T.V.; Sciacqua, A.; Hribal, M.L. Role of endoplasmic reticulum stress in endothelial dysfunction. Nutr. Metab. Cardiovasc. Dis., 2016, 26(10), 863-871.
[http://dx.doi.org/10.1016/j.numecd.2016.05.008] [PMID: 27345757]
[28]
Battson, M.L.; Lee, D.M.; Gentile, C.L. Endoplasmic reticulum stress and the development of endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol., 2017, 312(3), H355-H367.
[http://dx.doi.org/10.1152/ajpheart.00437.2016] [PMID: 27923788]
[29]
Suganya, N.; Dornadula, S.; Chatterjee, S.; Mohanram, R.K. Quercetin improves endothelial function in diabetic rats through inhibition of endoplasmic reticulum stress-mediated oxidative stress. Eur. J. Pharmacol., 2018, 819, 80-88.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.034] [PMID: 29169872]
[30]
Kassan, M.; Galán, M.; Partyka, M.; Saifudeen, Z.; Henrion, D.; Trebak, M.; Matrougui, K. Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice. Arterioscler. Thromb. Vasc. Biol., 2012, 32(7), 1652-1661.
[http://dx.doi.org/10.1161/ATVBAHA.112.249318] [PMID: 22539597]
[31]
Dong, Y.; Fernandes, C.; Liu, Y.; Wu, Y.; Wu, H.; Brophy, M.L.; Deng, L.; Song, K.; Wen, A.; Wong, S.; Yan, D.; Towner, R.; Chen, H. Role of endoplasmic reticulum stress signalling in diabetic endothelial dysfunction and atherosclerosis. Diab. Vasc. Dis. Res., 2017, 14(1), 14-23.
[http://dx.doi.org/10.1177/1479164116666762] [PMID: 27941052]
[32]
Cunard, R. Endoplasmic reticulum stress, a driver or an innocent bystander in endothelial dysfunction associated with hypertension? Current Hyp. Rep, 2017, 19(8), 64.
[33]
Maamoun, H.; Benameur, T.; Pintus, G.; Munusamy, S.; Agouni, A. Crosstalk between oxidative stress and Endoplasmic Reticulum (ER) stress in endothelial dysfunction and aberrant angiogenesis associated with diabetes: A focus on the protective roles of Heme Oxygenase (HO)-1. Front. Physiol., 2019, 10, 70.
[http://dx.doi.org/10.3389/fphys.2019.00070] [PMID: 30804804]
[34]
Lenna, S.; Han, R.; Trojanowska, M. Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life, 2014, 66(8), 530-537.
[http://dx.doi.org/10.1002/iub.1292] [PMID: 25130181]
[35]
Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol., 2018, 100, 1-19.
[http://dx.doi.org/10.1016/j.vph.2017.05.005] [PMID: 28579545]
[36]
Galán, M.; Kassan, M.; Kadowitz, P.J.; Trebak, M.; Belmadani, S.; Matrougui, K. Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochim. Biophys. Acta, 2014, 1843(6), 1063-1075.
[http://dx.doi.org/10.1016/j.bbamcr.2014.02.009] [PMID: 24576409]
[37]
Lau, Y.S.; Mustafa, M.R.; Choy, K.W.; Chan, S.M.H.; Potocnik, S.; Herbert, T.P.; Woodman, O.L. 3′,4′--dihydroxyflavonol ameliorates endoplasmic reticulum stress-induced apoptosis and endothelial dysfunction in mice. Sci. Rep., 2018, 8(1), 1818.
[http://dx.doi.org/10.1038/s41598-018-19584-8] [PMID: 29379034]
[38]
Basha, B.; Samuel, S.M.; Triggle, C.R.; Ding, H. Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Exp. Diabetes Res., 2012, 2012, 481840.
[http://dx.doi.org/10.1155/2012/481840] [PMID: 22474423]
[39]
Sheikh-Ali, M.; Sultan, S.; Alamir, A.R.; Haas, M.J.; Mooradian, A.D. Hyperglycemia-induced endoplasmic reticulum stress in endothelial cells. Nutrition, 2010, 26(11-12), 1146-1150.
[http://dx.doi.org/10.1016/j.nut.2009.08.019] [PMID: 20080028]
[40]
Legeay, S.; Fautrat, P.; Norman, J.B.; Antonova, G.; Kennard, S.; Bruder-Nascimento, T.; Patel, V.S.; Faure, S.; Belin de Chantemèle, E.J. Selective deficiency in endothelial PTP1B protects from diabetes and endoplasmic reticulum stress-associated endothelial dysfunction via preventing endothelial cell apoptosis. Biomed. Pharmacother., 2020, 127, 110200.
[http://dx.doi.org/10.1016/j.biopha.2020.110200] [PMID: 32417688]
[41]
Battson, M.L.; Lee, D.M.; Jarrell, D.K.; Hou, S.; Ecton, K.E.; Phan, A.B.; Gentile, C.L. Tauroursodeoxycholic acid reduces arterial stiffness and improves endothelial dysfunction in type 2 diabetic mice. J. Vasc. Res., 2017, 54(5), 280-287.
[http://dx.doi.org/10.1159/000479967] [PMID: 28930750]
[42]
Chen, C.; Kassan, A.; Castañeda, D.; Gabani, M.; Choi, S-K.; Kassan, M. Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway. Hypertens. Res., 2019, 42(7), 960-969.
[http://dx.doi.org/10.1038/s41440-019-0212-z] [PMID: 30664704]
[43]
Lüscher, TF Endothelial dysfunction: the role and impact of the renin-angiotensin system. Heart (British Cardiac Society), 2000, 84(Suppl. 1), i20-i50.
[http://dx.doi.org/10.1136/heart.84.suppl_1.i20]
[44]
Flavahan, S.; Chang, F.; Flavahan, N.A. Local renin-angiotensin system mediates endothelial dilator dysfunction in aging arteries. Am. J. Physiol. Heart Circ. Physiol., 2016, 311(3), H849-H854.
[http://dx.doi.org/10.1152/ajpheart.00422.2016] [PMID: 27422988]
[45]
Arendse, L.B.; Danser, A.H.J.; Poglitsch, M.; Touyz, R.M.; Burnett, J.C., Jr; Llorens-Cortes, C.; Ehlers, M.R.; Sturrock, E.D. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacol. Rev., 2019, 71(4), 539-570.
[http://dx.doi.org/10.1124/pr.118.017129] [PMID: 31537750]
[46]
Nair, AR; Agbor, LN; Mukohda, M.; Liu, X.; Hu, C.; Wu, J.; Sigmund, CD Interference with endothelial ppar (peroxisome proliferator-activated receptor)-γ causes accelerated cerebral vascular dysfunction in response to endogenous renin-angiotensin system activation. Hypertension, 2018, 72(5), 1227-1235.
[47]
Becher, U.M.; Endtmann, C.; Tiyerili, V.; Nickenig, G.; Werner, N. Endothelial damage and regeneration: the role of the renin-angiotensin-aldosterone system. Curr. Hypertens. Rep., 2011, 13(1), 86-92.
[http://dx.doi.org/10.1007/s11906-010-0171-x] [PMID: 21108024]
[48]
Batenburg, W.W.; Jansen, P.M.; van den Bogaerdt, A.J.; Danser, J. A.H. Angiotensin II-aldosterone interaction in human coronary microarteries involves GPR30, EGFR, and endothelial NO synthase. Cardiovasc. Res., 2012, 94(1), 136-143.
[http://dx.doi.org/10.1093/cvr/cvs016] [PMID: 22260839]
[49]
Cheng, J.; Garcia, V.; Ding, Y.; Wu, C-C.; Thakar, K.; Falck, J.R.; Ramu, E.; Schwartzman, M.L. Induction of angiotensin-converting enzyme and activation of the renin-angiotensin system contribute to 20-hydroxyeicosatetraenoic acid-mediated endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol., 2012, 32(8), 1917-1924.
[http://dx.doi.org/10.1161/ATVBAHA.112.248344] [PMID: 22723444]
[50]
Briet, M.; Barhoumi, T.; Mian, M.O.R.; Coelho, S.C.; Ouerd, S.; Rautureau, Y.; Coffman, T.M.; Paradis, P.; Schiffrin, E.L. Aldosterone-induced vascular remodeling and endothelial dysfunction require functional angiotensin type 1a receptors. Hypertension, 2016, 67(5), 897-905.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.07074] [PMID: 27045029]
[51]
Liu, Z. The renin-angiotensin system and insulin resistance. Curr. Diab. Rep., 2007, 7(1), 34-42.
[http://dx.doi.org/10.1007/s11892-007-0007-5] [PMID: 17254516]
[52]
Mukai, Y.; Shimokawa, H.; Higashi, M.; Morikawa, K.; Matoba, T.; Hiroki, J.; Kunihiro, I.; Talukder, H.M.A.; Takeshita, A. Inhibition of renin-angiotensin system ameliorates endothelial dysfunction associated with aging in rats. Arterioscler. Thromb. Vasc. Biol., 2002, 22(9), 1445-1450.
[http://dx.doi.org/10.1161/01.ATV.0000029121.63691.CE] [PMID: 12231564]
[53]
Cooper, M.E. The role of the renin-angiotensin-aldosterone system in diabetes and its vascular complications. Am. J. Hypertens., 2004, 17(11 Pt 2), 16S-20S.
[http://dx.doi.org/10.1016/j.amjhyper.2004.08.004] [PMID: 15539106]
[54]
Yung, LM; Wong, WT; Tian, XY; Leung, FP; Yung, LH; Chen, ZY; Yao, X; Lau, CW; Huang, Y Inhibition of renin-angiotensin system reverses endothelial dysfunction and oxidative stress in estrogen deficient rats. PloS one, 2011, 6(3), e17437-e.
[http://dx.doi.org/10.1371/journal.pone.0017437]
[55]
Shi, X.; Guan, Y.; Jiang, S.; Li, T.; Sun, B.; Cheng, H. Renin-angiotensin system inhibitor attenuates oxidative stress induced human coronary artery endothelial cell dysfunction via the PI3K/AKT/mTOR pathway. Arch. Med. Sci., 2019, 15(1), 152-164.
[http://dx.doi.org/10.5114/aoms.2018.74026] [PMID: 30697266]
[56]
Goto, K.; Fujii, K.; Onaka, U.; Abe, I.; Fujishima, M. Renin-angiotensin system blockade improves endothelial dysfunction in hypertension. Hypertension, 2000, 36(4), 575-580.
[http://dx.doi.org/10.1161/01.HYP.36.4.575] [PMID: 11040238]
[57]
Seki, T.; Goto, K.; Kansui, Y.; Ohtsubo, T.; Matsumura, K.; Kitazono, T.; Angiotensin, I.I. Angiotensin II receptor-neprilysin inhibitor sacubitril/valsartan improves endothelial dysfunction in spontaneously hypertensive rats. J. Am. Heart Assoc., 2017, 6(10), e006617.
[http://dx.doi.org/10.1161/JAHA.117.006617] [PMID: 29042424]
[58]
Watanabe, S.; Tagawa, T.; Yamakawa, K.; Shimabukuro, M.; Ueda, S. Inhibition of the renin-angiotensin system prevents free fatty acid-induced acute endothelial dysfunction in humans. Arterioscler. Thromb. Vasc. Biol., 2005, 25(11), 2376-2380.
[http://dx.doi.org/10.1161/01.ATV.0000187465.55507.85] [PMID: 16179595]
[59]
Radenkovic, M. Stojanović, M.; Nešić, I.M.; Prostran, M. Angiotensin receptor blockers & endothelial dysfunction: Possible correlation & therapeutic implications. Indian J. Med. Res., 2016, 144(2), 154-168.
[http://dx.doi.org/10.4103/0971-5916.195022] [PMID: 27934794]
[60]
Willemsen, J.M.; Westerink, J.W.; Dallinga-Thie, G.M.; van Zonneveld, A-J.; Gaillard, C.A.; Rabelink, T.J.; de Koning, E.J.P.; Angiotensin, I.I. Angiotensin II type 1 receptor blockade improves hyperglycemia-induced endothelial dysfunction and reduces proinflammatory cytokine release from leukocytes. J. Cardiovasc. Pharmacol., 2007, 49(1), 6-12.
[http://dx.doi.org/10.1097/FJC.0b013e31802b31a7] [PMID: 17261957]
[61]
Li, G.; Zhang, H.; Zhao, L.; Zhang, Y.; Yan, D.; Liu, Y. Angiotensin-converting enzyme 2 activation ameliorates pulmonary endothelial dysfunction in rats with pulmonary arterial hypertension through mediating phosphorylation of endothelial nitric oxide synthase. J. Am. Soc. Hypertens., 2017, 11(12), 842-852.
[http://dx.doi.org/10.1016/j.jash.2017.10.009] [PMID: 29146157]
[62]
Ibrahim, H.S.; Froemming, G.R.A.; Omar, E.; Singh, H.J. ACE2 activation by xanthenone prevents leptin-induced increases in blood pressure and proteinuria during pregnancy in Sprague-Dawley rats. Reprod. Toxicol., 2014, 49, 155-161.
[http://dx.doi.org/10.1016/j.reprotox.2014.08.006] [PMID: 25205467]
[63]
Xu, X.; Liu, S. Aodengqimuge; Wang, H.; Hu, M.; Xing, C.; Song, L. Arsenite induces vascular endothelial cell dysfunction by activating IRE1α/XBP1s/HIF1α-dependent ANGII signaling. Toxicol. Sci., 2017, 160(2), 315-328.
[http://dx.doi.org/10.1093/toxsci/kfx184] [PMID: 28973481]
[64]
Xu, X.; Qimuge, A.; Wang, H.; Xing, C.; Gu, Y.; Liu, S.; Xu, H.; Hu, M.; Song, L. IRE1α/XBP1s branch of UPR links HIF1α activation to mediate ANGII-dependent endothelial dysfunction under particulate matter (PM) 2.5 exposure. Sci. Rep., 2017, 7(1), 13507.
[http://dx.doi.org/10.1038/s41598-017-13156-y] [PMID: 29044123]
[65]
Duan, Q.; Song, P.; Ding, Y.; Zou, M.H. Activation of AMP-activated protein kinase by metformin ablates angiotensin II-induced endoplasmic reticulum stress and hypertension in mice in vivo. Br. J. Pharmacol., 2017, 174(13), 2140-2151.
[http://dx.doi.org/10.1111/bph.13833] [PMID: 28436023]
[66]
Mak, S.K.; Yu, C.M.; Sun, W.T.; He, G.W.; Liu, X.C.; Yang, Q. Tetramethylpyrazine suppresses angiotensin II-induced soluble epoxide hydrolase expression in coronary endothelium via anti-ER stress mechanism. Toxicol. Appl. Pharmacol., 2017, 336, 84-93.
[http://dx.doi.org/10.1016/j.taap.2017.10.016] [PMID: 29066182]