[6]
(a)Adhami, K.; Asadollahzadeh, H.; Ghazizadeh, M. Preconcentration
and determination of nickel (II) and copper (II) ions, in vegetable oils by [TBP] [PO4] IL-based dispersive liquid-liquid microextraction
technique, and flame atomic absorption spectrophotometry. J. Food Composit. Anal, 2020, 103457.
(b)Imran, K.; Harinath, Y.; Naik, B.R.; Kumar, N.S.; Seshaiah, K. A new hybrid sorbent 2,2′-pyridil functionalized SBA-15 (Pyl-SBA-15) synthesis and its applications in solid phase extraction of Cu(II) from water samples. J. Environ. Chem. Eng., 2019, 7(3), 103170.
(c)Dedelaite, L.; Kizilkaya, S.; Incebay, H.; Ciftci, H.; Ersoz, M.; Yazicigil, Z.; Oztekin, Y.; Ramanaviciene, A.; Ramanavicius, A. Electro-chemical determination of Cu(II) ions using glassy carbon electrode modified by some nanomaterials and 3-nitroaniline. Colloids Surfaces A., 2015, 483, 279-284.
(d)Baghban, N.; Yilmaz, E.; Soylak, M. Nanodiamond/MoS2 nanorod composite as a novel sorbent for fast and effective vortex-assisted micro solid phase extraction of lead(II) and copper(II) for their flame atomic absorption spectrometric detection. J. Mol. Liq., 2017, 234, 260-267.
(e)Guin, P.S.; Das, S.; Mandal, P.C. Electrochemical reduction of
quinones in different media: A review. Inter. J. Electrochem., 2011, 2011, Article id: 816202.
(f)Oztekin, Y.; Yazicigil, Z.; Ramanaviciene, A. Square wave voltammetry based on determination of copper (II) ions by polyluteolin- and polykaempferol-modified electrodes. Talanta, 2011, 85, 1020-1027.
[10]
Filipkowska, U. Adsorption and desorption efficiency of Black 8
and Black 5 onto Chitin and Chitosan. In: Progress on Chemistry
and Application of Chitin and Its Derivatives, Monograph; Jaworska,
MM, Ed.;, 2007, 12, pp. 57-63.
[11]
Tran, H. V.; Tran, M. T.; Phi, T. V. Glassy carbon electrode modified
with luteolin extracted from myoporum bontiodes: A new approach
for development of the electrochemical Cu2+ sensor. Multifunct.
Mat., 2021, 4(3), Article id: 035004.
[13]
(a)Tran, H.V.; Piro, B.; Reisberg, S.; Tran, L.D.; Duc, H.T.; Pham, M.C. Label free and reagentless electrochemical detection of mi-croRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens. Bioelectron., 2013, 49, 164-169.
(b)Keteklahijani, Y.Z.; Sharif, F.; Roberts, E.P.L.; Sundararaj, U. Enhanced sensitivity of dopamine biosensors: an electrochemical ap-proach based on nanocomposite electrodes comprising polyaniline, nitrogen-doped graphene, and DNA functionalized carbon nanotubes. J. Electrochem. Soc., 2019, 166, B1415.
[14]
Çiftçi, H.; Tamer, U.; Metin, A.U.; Alver, E.; Kizir, N. Electrochemical copper (II) sensor based on chitosan covered gold nanoparticles. J. Appl. Electrochem., 2014, 44, 563-571.