Recent Advances in the Selection of Cancer-Specific Aptamers for the Development of Biosensors

Page: [5850 - 5880] Pages: 31

  • * (Excluding Mailing and Handling)

Abstract

An early diagnosis has the potential to greatly decrease cancer mortality. For that purpose, specific cancer biomarkers have been molecularly targeted by aptamer sequences to enable an accurate and rapid detection. Aptamer-based biosensors for cancer diagnostics are a promising alternative to those using antibodies, due to their high affinity and specificity to the target molecules and advantageous production. Synthetic nucleic acid aptamers are generated by in vitro Systematic Evolution of Ligands by Exponential enrichment (SELEX) methodologies that have been improved over the years to enhance the efficacy and shorten the selection process. Aptamers have been successfully applied in electrochemical, optical, photoelectrochemical and piezoelectrical-based detection strategies. These aptasensors comprise a sensitive, accurate and inexpensive option for cancer detection being used as point-of-care devices. This review highlights the recent advances in cancer biomarkers, achievements and optimizations made in aptamer selection, as well as the different aptasensors developed for the detection of several cancer biomarkers.

Keywords: SELEX aptamer technique, biomarkers, neoplasms, diagnosis, molecular probe techniques, biosensing techniques.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
WHO. Guide to Cancer Early Diagnosis; World Health Organization, 2017.
[3]
Rerucha, C.M.; Caro, R.J.; Wheeler, V.L. Cervical cancer screening. Am. Fam. Physician, 2018, 97(7), 441-448.
[http://dx.doi.org/10.6004/jnccn.2010.0103] [PMID: 29671553]
[4]
Tipirneni, K.E.; Rosenthal, E.L.; Moore, L.S.; Haskins, A.D.; Udayakumar, N.; Jani, A.H.; Carroll, W.R.; Morlandt, A.B.; Bogyo, M.; Rao, J.; Warram, J.M. Fluorescence imaging for cancer screening and surveillance. Mol. Imaging Biol., 2017, 19(5), 645-655.
[http://dx.doi.org/10.1007/s11307-017-1050-5] [PMID: 28155079]
[5]
Pickhardt, P.J.; Hassan, C.; Halligan, S.; Marmo, R. Colorectal cancer: CT colonography and colonoscopy for detection-systematic review and meta-analysis. Radiology, 2011, 259(2), 393-405.
[http://dx.doi.org/10.1148/radiol.11101887] [PMID: 21415247]
[6]
van den Biggelaar, F.J.H.M.; Nelemans, P.J.; Flobbe, K. Performance of radiographers in mammogram interpretation: A systematic review. Breast, 2008, 17(1), 85-90.
[http://dx.doi.org/10.1016/j.breast.2007.07.035] [PMID: 17764941]
[7]
Linder, J.M.; Schiska, A.D. Progress in diagnosis of breast cancer: Advances in radiology technology. Asia Pac. J. Oncol. Nurs., 2015, 2(3), 186-191.
[http://dx.doi.org/10.4103/2347-5625.158017] [PMID: 27981113]
[8]
Şahin, S.; Caglayan, M.O.; Üstündağ, Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: Special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim. Acta, 2020, 187(10), 549.
[http://dx.doi.org/10.1007/s00604-020-04526-x] [PMID: 32888061]
[9]
Solhi, E.; Hasanzadeh, M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay. Biomed. Pharmacother., 2020, 132, 110849.
[http://dx.doi.org/10.1016/j.biopha.2020.110849] [PMID: 33068928]
[10]
Zhao, B.; Miao, P.; Hu, Z.; Zhang, X.; Geng, X.; Chen, Y.; Feng, L. Signal-on electrochemical aptasensors with different target-induced conformations for prostate specific antigen detection. Anal. Chim. Acta, 2021, 1152, 338282.
[http://dx.doi.org/10.1016/j.aca.2021.338282] [PMID: 33648646]
[11]
Ferreira, D.C.; Batistuti, M.R.; Bachour, B.; Mulato, M. Aptasensor based on screen-printed electrode for breast cancer detection in undiluted human serum. Bioelectrochemistry, 2021, 137, 107586.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107586] [PMID: 32966935]
[12]
Matulakul, P.; Vongpramate, D.; Kulchat, S.; Chompoosor, A.; Thanan, R.; Sithithaworn, P.; Sakonsinsiri, C.; Puangmali, T. Development of low-cost AuNP-based aptasensors with truncated aptamer for highly sensitive detection of 8-Oxo-dG in urine. ACS Omega, 2020, 5(28), 17423-17430.
[http://dx.doi.org/10.1021/acsomega.0c01834] [PMID: 32715227]
[13]
Zhou, S.; Gan, Y.; Kong, L.; Sun, J.; Liang, T.; Wang, X.; Wan, H.; Wang, P. A novel portable biosensor based on aptamer functionalized gold nanoparticles for adenosine detection. Anal. Chim. Acta, 2020, 1120, 43-49.
[http://dx.doi.org/10.1016/j.aca.2020.04.046] [PMID: 32475390]
[14]
Yan, X-L.; Jiang, M-M.; Hu, Y.; Wu, L.; Zhao, K.; Xue, X-X.; Zheng, X-J. A new chemiluminescence method for the determination of 8-hydroxyguanine based on l-histidine bound nickel nanoparticles. Chem. Commun. (Camb.), 2020, 56(48), 6535-6538.
[http://dx.doi.org/10.1039/D0CC01746A] [PMID: 32395729]
[15]
Borghei, Y.S.; Hosseini, M.; Ganjali, M.R.; Hosseinkhani, S. A novel dual-mode and label-free aptasensor based methodology for breast cancer tissue marker targeting. Sens. Actuators B Chem., 2020, 315, 128084.
[http://dx.doi.org/10.1016/j.snb.2020.128084]
[16]
Pasquardini, L.; Pancheri, L.; Potrich, C.; Ferri, A.; Piemonte, C.; Lunelli, L.; Napione, L.; Comunanza, V.; Alvaro, M.; Vanzetti, L.; Bussolino, F.; Pederzolli, C. SPAD aptasensor for the detection of circulating protein biomarkers. Biosens. Bioelectron., 2015, 68, 500-507.
[http://dx.doi.org/10.1016/j.bios.2015.01.042] [PMID: 25636022]
[17]
Shen, H.; Deng, W.; He, Y.; Li, X.; Song, J.; Liu, R.; Liu, H.; Yang, G.; Li, L. Ultrasensitive aptasensor for isolation and detection of circulating tumor cells based on CeO2@Ir nanorods and DNA walker. Biosens. Bioelectron., 2020, 168, 112516.
[http://dx.doi.org/10.1016/j.bios.2020.112516] [PMID: 32890929]
[18]
Malecka, K.; Mikuła, E.; Ferapontova, E.E. Design strategies for electrochemical aptasensors for cancer diagnostic devices. Sensors (Basel), 2021, 21(3), 1-41.
[http://dx.doi.org/10.3390/s21030736] [PMID: 33499136]
[19]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2017, 2017, 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199]
[20]
Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng., 2007, 24(4), 381-403.
[http://dx.doi.org/10.1016/j.bioeng.2007.06.001] [PMID: 17627883]
[21]
Zhong, Y.; Zhao, J.; Li, J.; Liao, X.; Chen, F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal. Biochem., 2020, 598, 113620.
[http://dx.doi.org/10.1016/j.ab.2020.113620] [PMID: 32087127]
[22]
Forouzanfar, S.; Alam, F.; Pala, N.; Wang, C. Review—A review of electrochemical aptasensors for label-free cancer diagnosis. J. Electrochem. Soc., 2020, 167(6), 67511.
[http://dx.doi.org/10.1149/1945-7111/ab7f20]
[23]
Nur Topkaya, S.; Cetin, A.E. Electrochemical aptasensors for biological and chemical analyte detection. Electroanalysis, 2021, 33(2), 277-291.
[http://dx.doi.org/10.1002/elan.202060388]
[24]
Füzéry, A.K.; Levin, J.; Chan, M.M.; Chan, D.W. Translation of proteomic biomarkers into FDA approved cancer diagnostics: Issues and challenges. Clin. Proteomics, 2013, 10(1), 13.
[http://dx.doi.org/10.1186/1559-0275-10-13] [PMID: 24088261]
[25]
Wu, L.; Wang, Y.; Xu, X.; Liu, Y.; Lin, B.; Zhang, M.; Zhang, J.; Wan, S.; Yang, C.; Tan, W. Aptamer-based detection of circulating targets for precision medicine. Chem. Rev., 2021, 2021, 0c01140.
[http://dx.doi.org/10.1021/acs.chemrev.0c01140]
[26]
Kaiser, J. ‘Liquid Biopsy’ for cancer promises early detection. Science (80-.), 2018, 359(6373), 259.
[http://dx.doi.org/10.1126/science.359.6373.259]
[27]
Lennon, A. M.; Buchanan, A. H.; Kinde, I.; Warren, A.; Honushefsky, A.; Cohain, A. T.; Ledbetter, D. H.; Sanfilippo, F.; Sheridan, K.; Rosica, D.; Adonizio, C. S.; Hwang, H. J.; Lahouel, K.; Cohen, J. D.; Douville, C.; Patel, A. A.; Hagmann, L. N.; Rolston, D. D.; Malani, N.; Zhou, S.; Bettegowda, C.; Diehl, D. L.; Urban, B.; Still, C. D.; Kann, L.; Woods, J. I.; Salvati, Z. M.; Vadakara, J.; Leeming, R.; Bhattacharya, P.; Walter, C.; Parker, A.; Lengauer, C.; Klein, A.; Tomasetti, C.; Fishman, E. K.; Hruban, R. H.; Kinzler, K. W.; Vogelstein, B.; Papadopoulos, N. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science (80-.), 2020, 369(6499), eabb9601.
[http://dx.doi.org/10.1126/science.abb9601]
[28]
Cohen, J.D.; Javed, A.A.; Thoburn, C.; Wong, F.; Tie, J.; Gibbs, P.; Schmidt, C.M.; Yip-Schneider, M.T.; Allen, P.J.; Schattner, M.; Brand, R.E.; Singhi, A.D.; Petersen, G.M.; Hong, S-M.; Kim, S.C.; Falconi, M.; Doglioni, C.; Weiss, M.J.; Ahuja, N.; He, J.; Makary, M.A.; Maitra, A.; Hanash, S.M.; Dal Molin, M.; Wang, Y.; Li, L.; Ptak, J.; Dobbyn, L.; Schaefer, J.; Silliman, N.; Popoli, M.; Goggins, M.G.; Hruban, R.H.; Wolfgang, C.L.; Klein, A.P.; Tomasetti, C.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Lennon, A.M. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc. Natl. Acad. Sci. USA, 2017, 114(38), 10202-10207.
[http://dx.doi.org/10.1073/pnas.1704961114] [PMID: 28874546]
[29]
Lasham, A.; Fitzgerald, S.J.; Knowlton, N.; Robb, T.; Tsai, P.; Black, M.A.; Williams, L.; Mehta, S.Y.; Harris, G.; Shelling, A.N.; Blenkiron, C.; Print, C.G. A predictor of early disease recurrence in patients with breast cancer using a cell-free RNA and protein liquid biopsy. Clin. Breast Cancer, 2020, 20(2), 108-116.
[http://dx.doi.org/10.1016/j.clbc.2019.07.003] [PMID: 31607655]
[30]
Duffy, M.J.; McDermott, E.W.; Crown, J. Blood-based biomarkers in breast cancer: From proteins to circulating tumor cells to circulating tumor DNA. Tumour Biol., 2018, 40(5), 1010428318776169.
[http://dx.doi.org/10.1177/1010428318776169] [PMID: 29775157]
[31]
Locker, G.Y.; Hamilton, S.; Harris, J.; Jessup, J.M.; Kemeny, N.; Macdonald, J.S.; Somerfield, M.R.; Hayes, D.F.; Bast, R.C. Jr. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol., 2006, 24(33), 5313-5327.
[http://dx.doi.org/10.1200/JCO.2006.08.2644] [PMID: 17060676]
[32]
Gion, M.; Mione, R.; Leon, A.E.; Lüftner, D.; Molina, R.; Possinger, K.; Robertson, J.F. CA27.29: A valuable marker for breast cancer management. A confirmatory multicentric study on 603 cases. Eur. J. Cancer, 2001, 37(3), 355-363.
[http://dx.doi.org/10.1016/S0959-8049(00)00396-8] [PMID: 11239757]
[33]
Johnson, P.J. Role of alpha-fetoprotein in the diagnosis and management of hepatocellular carcinoma. J. Gastroenterol. Hepatol., 1999, 14(5s)(Suppl.), S32-S36.
[http://dx.doi.org/10.1046/j.1440-1746.1999.01873.x] [PMID: 10382636]
[34]
Lilja, H.; Ulmert, D.; Vickers, A.J. Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring. Nat. Rev. Cancer, 2008, 8(4), 268-278.
[http://dx.doi.org/10.1038/nrc2351] [PMID: 18337732]
[35]
Ferraro, S.; Braga, F.; Lanzoni, M.; Boracchi, P.; Biganzoli, E.M.; Panteghini, M. Serum human epididymis protein 4 vs. carbohydrate antigen 125 for ovarian cancer diagnosis: A systematic review. J. Clin. Pathol., 2013, 66(4), 273-281.
[http://dx.doi.org/10.1136/jclinpath-2012-201031] [PMID: 23426716]
[36]
Hu, P-J.; Chen, M-Y.; Wu, M-S.; Lin, Y-C.; Shih, P-H.; Lai, C-H.; Lin, H-J. Clinical evaluation of CA72-4 for screening gastric cancer in a healthy population: A multicenter retrospective study. Cancers (Basel), 2019, 11(5), 733.
[http://dx.doi.org/10.3390/cancers11050733] [PMID: 31137895]
[37]
Jo, J-C.; Ryu, M-H.; Koo, D-H.; Ryoo, B-Y.; Kim, H.J.; Kim, T.W.; Choi, K.D.; Lee, G.H.; Jung, H-Y.; Yook, J.H.; Oh, S.T.; Kim, B.S.; Kim, J-H.; Kang, Y-K. Serum CA 19-9 as a prognostic factor in patients with metastatic gastric cancer. Asia Pac. J. Clin. Oncol., 2013, 9(4), 324-330.
[http://dx.doi.org/10.1111/ajco.12019] [PMID: 23176400]
[38]
Bae, Y.J.; Schaab, M.; Kratzsch, J. Calcitonin as biomarker for the medullary thyroid carcinoma in recent results in cancer research. Recent Results Cancer Res., 2015, 204, 117-137.
[http://dx.doi.org/10.1007/978-3-319-22542-5_5] [PMID: 26494386]
[39]
Chen, J.; Zheng, N. Accelerating protein biomarker discovery and translation from proteomics research for clinical utility. Bioanalysis, 2020, 12(20), 1469-1481.
[http://dx.doi.org/10.4155/bio-2020-0198] [PMID: 33006485]
[40]
Williams, S.C.P. Circulating tumor cells. Proc. Natl. Acad. Sci. USA, 2013, 110(13), 4861.
[http://dx.doi.org/10.1073/pnas.1304186110] [PMID: 23533270]
[41]
Joosse, S.A.; Gorges, T.M.; Pantel, K. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol. Med., 2015, 7(1), 1-11.
[http://dx.doi.org/10.15252/emmm.201303698] [PMID: 25398926]
[42]
Doyle, L.M.; Wang, M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7), 727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[43]
Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science (80-.), 2020, 367(6478), eaau6977.
[http://dx.doi.org/10.1126/science.aau6977]
[44]
Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; Ayre, D.C.; Bach, J.M.; Bachurski, D.; Baharvand, H.; Balaj, L.; Baldacchino, S.; Bauer, N.N.; Baxter, A.A.; Bebawy, M.; Beckham, C.; Bedina Zavec, A.; Benmoussa, A.; Berardi, A.C.; Bergese, P.; Bielska, E.; Blenkiron, C.; Bobis-Wozowicz, S.; Boilard, E.; Boireau, W.; Bongiovanni, A.; Borràs, F.E.; Bosch, S.; Boulanger, C.M.; Breakefield, X.; Breglio, A.M.; Brennan, M.Á.; Brigstock, D.R.; Brisson, A.; Broekman, M.L.; Bromberg, J.F.; Bryl-Górecka, P.; Buch, S.; Buck, A.H.; Burger, D.; Busatto, S.; Buschmann, D.; Bussolati, B.; Buzás, E.I.; Byrd, J.B.; Camussi, G.; Carter, D.R.; Caruso, S.; Chamley, L.W.; Chang, Y.T.; Chen, C.; Chen, S.; Cheng, L.; Chin, A.R.; Clayton, A.; Clerici, S.P.; Cocks, A.; Cocucci, E.; Coffey, R.J.; Cordeiro-da-Silva, A.; Couch, Y.; Coumans, F.A.; Coyle, B.; Crescitelli, R.; Criado, M.F.; D’Souza-Schorey, C.; Das, S.; Datta Chaudhuri, A.; de Candia, P.; De Santana, E.F.; De Wever, O.; Del Portillo, H.A.; Demaret, T.; Deville, S.; Devitt, A.; Dhondt, B.; Di Vizio, D.; Dieterich, L.C.; Dolo, V.; Dominguez Rubio, A.P.; Dominici, M.; Dourado, M.R.; Driedonks, T.A.; Duarte, F.V.; Duncan, H.M.; Eichenberger, R.M.; Ekström, K.; El Andaloussi, S.; Elie-Caille, C.; Erdbrügger, U.; Falcón-Pérez, J.M.; Fatima, F.; Fish, J.E.; Flores-Bellver, M.; Försönits, A.; Frelet-Barrand, A.; Fricke, F.; Fuhrmann, G.; Gabrielsson, S.; Gámez-Valero, A.; Gardiner, C.; Gärtner, K.; Gaudin, R.; Gho, Y.S.; Giebel, B.; Gilbert, C.; Gimona, M.; Giusti, I.; Goberdhan, D.C.; Görgens, A.; Gorski, S.M.; Greening, D.W.; Gross, J.C.; Gualerzi, A.; Gupta, G.N.; Gustafson, D.; Handberg, A.; Haraszti, R.A.; Harrison, P.; Hegyesi, H.; Hendrix, A.; Hill, A.F.; Hochberg, F.H.; Hoffmann, K.F.; Holder, B.; Holthofer, H.; Hosseinkhani, B.; Hu, G.; Huang, Y.; Huber, V.; Hunt, S.; Ibrahim, A.G.; Ikezu, T.; Inal, J.M.; Isin, M.; Ivanova, A.; Jackson, H.K.; Jacobsen, S.; Jay, S.M.; Jayachandran, M.; Jenster, G.; Jiang, L.; Johnson, S.M.; Jones, J.C.; Jong, A.; Jovanovic-Talisman, T.; Jung, S.; Kalluri, R.; Kano, S.I.; Kaur, S.; Kawamura, Y.; Keller, E.T.; Khamari, D.; Khomyakova, E.; Khvorova, A.; Kierulf, P.; Kim, K.P.; Kislinger, T.; Klingeborn, M.; Klinke, D.J., II; Kornek, M.; Kosanović, M.M.; Kovács, Á.F.; Krämer-Albers, E.M.; Krasemann, S.; Krause, M.; Kurochkin, I.V.; Kusuma, G.D.; Kuypers, S.; Laitinen, S.; Langevin, S.M.; Languino, L.R.; Lannigan, J.; Lässer, C.; Laurent, L.C.; Lavieu, G.; Lázaro-Ibáñez, E.; Le Lay, S.; Lee, M.S.; Lee, Y.X.F.; Lemos, D.S.; Lenassi, M.; Leszczynska, A.; Li, I.T.; Liao, K.; Libregts, S.F.; Ligeti, E.; Lim, R.; Lim, S.K.; Linē, A.; Linnemannstöns, K.; Llorente, A.; Lombard, C.A.; Lorenowicz, M.J.; Lörincz, Á.M.; Lötvall, J.; Lovett, J.; Lowry, M.C.; Loyer, X.; Lu, Q.; Lukomska, B.; Lunavat, T.R.; Maas, S.L.; Malhi, H.; Marcilla, A.; Mariani, J.; Mariscal, J.; Martens-Uzunova, E.S.; Martin-Jaular, L.; Martinez, M.C.; Martins, V.R.; Mathieu, M.; Mathivanan, S.; Maugeri, M.; McGinnis, L.K.; McVey, M.J.; Meckes, D.G., Jr; Meehan, K.L.; Mertens, I.; Minciacchi, V.R.; Möller, A.; Møller Jørgensen, M.; Morales-Kastresana, A.; Morhayim, J.; Mullier, F.; Muraca, M.; Musante, L.; Mussack, V.; Muth, D.C.; Myburgh, K.H.; Najrana, T.; Nawaz, M.; Nazarenko, I.; Nejsum, P.; Neri, C.; Neri, T.; Nieuwland, R.; Nimrichter, L.; Nolan, J.P.; Nolte-’t Hoen, E.N.; Noren Hooten, N.; O’Driscoll, L.; O’Grady, T.; O’Loghlen, A.; Ochiya, T.; Olivier, M.; Ortiz, A.; Ortiz, L.A.; Osteikoetxea, X.; Østergaard, O.; Ostrowski, M.; Park, J.; Pegtel, D.M.; Peinado, H.; Perut, F.; Pfaffl, M.W.; Phinney, D.G.; Pieters, B.C.; Pink, R.C.; Pisetsky, D.S.; Pogge von Strandmann, E.; Polakovicova, I.; Poon, I.K.; Powell, B.H.; Prada, I.; Pulliam, L.; Quesenberry, P.; Radeghieri, A.; Raffai, R.L.; Raimondo, S.; Rak, J.; Ramirez, M.I.; Raposo, G.; Rayyan, M.S.; Regev-Rudzki, N.; Ricklefs, F.L.; Robbins, P.D.; Roberts, D.D.; Rodrigues, S.C.; Rohde, E.; Rome, S.; Rouschop, K.M.; Rughetti, A.; Russell, A.E.; Saá, P.; Sahoo, S.; Salas-Huenuleo, E.; Sánchez, C.; Saugstad, J.A.; Saul, M.J.; Schiffelers, R.M.; Schneider, R.; Schøyen, T.H.; Scott, A.; Shahaj, E.; Sharma, S.; Shatnyeva, O.; Shekari, F.; Shelke, G.V.; Shetty, A.K.; Shiba, K.; Siljander, P.R.; Silva, A.M.; Skowronek, A.; Snyder, O.L., II; Soares, R.P.; Sódar, B.W.; Soekmadji, C.; Sotillo, J.; Stahl, P.D.; Stoorvogel, W.; Stott, S.L.; Strasser, E.F.; Swift, S.; Tahara, H.; Tewari, M.; Timms, K.; Tiwari, S.; Tixeira, R.; Tkach, M.; Toh, W.S.; Tomasini, R.; Torrecilhas, A.C.; Tosar, J.P.; Toxavidis, V.; Urbanelli, L.; Vader, P.; van Balkom, B.W.; van der Grein, S.G.; Van Deun, J.; van Herwijnen, M.J.; Van Keuren-Jensen, K.; van Niel, G.; van Royen, M.E.; van Wijnen, A.J.; Vasconcelos, M.H.; Vechetti, I.J., Jr; Veit, T.D.; Vella, L.J.; Velot, É.; Verweij, F.J.; Vestad, B.; Viñas, J.L.; Visnovitz, T.; Vukman, K.V.; Wahlgren, J.; Watson, D.C.; Wauben, M.H.; Weaver, A.; Webber, J.P.; Weber, V.; Wehman, A.M.; Weiss, D.J.; Welsh, J.A.; Wendt, S.; Wheelock, A.M.; Wiener, Z.; Witte, L.; Wolfram, J.; Xagorari, A.; Xander, P.; Xu, J.; Yan, X.; Yáñez-Mó, M.; Yin, H.; Yuana, Y.; Zappulli, V.; Zarubova, J.; Žėkas, V.; Zhang, J.Y.; Zhao, Z.; Zheng, L.; Zheutlin, A.R.; Zickler, A.M.; Zimmermann, P.; Zivkovic, A.M.; Zocco, D.; Zuba-Surma, E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 2018, 7(1), 1535750.
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[45]
Han, Y.; Jia, L.; Zheng, Y.; Li, W. Salivary exosomes: Emerging roles in systemic disease. Int. J. Biol. Sci., 2018, 14(6), 633-643.
[http://dx.doi.org/10.7150/ijbs.25018] [PMID: 29904278]
[46]
Galley, J.D.; Besner, G.E. The therapeutic potential of breast milk-derived extracellular vesicles. Nutrients, 2020, 12(3), 745.
[http://dx.doi.org/10.3390/nu12030745] [PMID: 32168961]
[47]
Vitorino, R.; Ferreira, R.; Guedes, S.; Amado, F.; Thongboonkerd, V. What can urinary exosomes tell us? Cell. Mol. Life Sci., 2021, 78(7), 3265-3283.
[http://dx.doi.org/10.1007/s00018-020-03739-w] [PMID: 33507324]
[48]
Shao, H.; Im, H.; Castro, C.M.; Breakefield, X.; Weissleder, R.; Lee, H. New technologies for analysis of extracellular vesicles. Chem. Rev., 2018, 118(4), 1917-1950.
[http://dx.doi.org/10.1021/acs.chemrev.7b00534] [PMID: 29384376]
[49]
Boriachek, K.; Islam, M.N.; Möller, A.; Salomon, C.; Nguyen, N.T.; Hossain, M.S.A.; Yamauchi, Y.; Shiddiky, M.J.A. Biological functions and current advances in isolation and detection strategies for exosome nanovesicles. Small, 2018, 14(6), 1702153.
[http://dx.doi.org/10.1002/smll.201702153] [PMID: 29282861]
[50]
Tian, F.; Liu, C.; Lin, L.; Chen, Q.; Sun, J. Microfluidic analysis of circulating tumor cells and tumor-derived extracellular vesicles. TrAC. Trends Analyt. Chem., 2019, 117, 128-145.
[http://dx.doi.org/10.1016/j.trac.2019.05.013]
[51]
Garzon, R.; Calin, G.A.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Med., 2009, 60(1), 167-179.
[http://dx.doi.org/10.1146/annurev.med.59.053006.104707] [PMID: 19630570]
[52]
Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[53]
Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[54]
He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet., 2004, 5(7), 522-531.
[http://dx.doi.org/10.1038/nrg1379] [PMID: 15211354]
[55]
Schwarzenbach, H.; Nishida, N.; Calin, G.A.; Pantel, K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol., 2014, 11(3), 145-156.
[http://dx.doi.org/10.1038/nrclinonc.2014.5] [PMID: 24492836]
[56]
Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin. Epigen., 2018, 10(1), 59.
[http://dx.doi.org/10.1186/s13148-018-0492-1] [PMID: 29713393]
[57]
Cui, M.; Wang, H.; Yao, X.; Zhang, D.; Xie, Y.; Cui, R.; Zhang, X. Circulating MicroRNAs in cancer: Potential and challenge. Front. Genet., 2019, 10, 626.
[http://dx.doi.org/10.3389/fgene.2019.00626] [PMID: 31379918]
[58]
Antolín, S.; Calvo, L.; Blanco-Calvo, M.; Santiago, M.P.; Lorenzo-Patiño, M.J.; Haz-Conde, M.; Santamarina, I.; Figueroa, A.; Antón-Aparicio, L.M.; Valladares-Ayerbes, M. Circulating miR-200c and miR-141 and outcomes in patients with breast cancer. BMC Cancer, 2015, 15(1), 297.
[http://dx.doi.org/10.1186/s12885-015-1238-5] [PMID: 25885099]
[59]
Zhang, J.; Song, Y.; Zhang, C.; Zhi, X.; Fu, H.; Ma, Y.; Chen, Y.; Pan, F.; Wang, K.; Ni, J.; Jin, W.; He, X.; Su, H.; Cui, D. Circulating MiR-16-5p and MiR-19b-3p as two novel potential biomarkers to indicate progression of gastric cancer. Theranostics, 2015, 5(7), 733-745.
[http://dx.doi.org/10.7150/thno.10305] [PMID: 25897338]
[60]
Zanutto, S.; Pizzamiglio, S.; Ghilotti, M.; Bertan, C.; Ravagnani, F.; Perrone, F.; Leo, E.; Pilotti, S.; Verderio, P.; Gariboldi, M.; Pierotti, M.A. Circulating miR-378 in plasma: A reliable, haemolysis-independent biomarker for colorectal cancer. Br. J. Cancer, 2014, 110(4), 1001-1007.
[http://dx.doi.org/10.1038/bjc.2013.819] [PMID: 24423916]
[61]
Mirzaei, H.R.; Sahebkar, A.; Mohammadi, M.; Yari, R.; Salehi, H.; Jafari, M.H.; Namdar, A.; Khabazian, E.; Jaafari, M.R.; Mirzaei, H. Circulating microRNAs in hepatocellular carcinoma: Potential diagnostic and prognostic biomarkers. Curr. Pharm. Des., 2016, 22(34), 5257-5269.
[http://dx.doi.org/10.2174/1381612822666160303110838] [PMID: 26935703]
[62]
Sun, Y.; Wang, M.; Lin, G.; Sun, S.; Li, X.; Qi, J.; Li, J. Serum microRNA-155 as a potential biomarker to track disease in breast cancer. PLoS One, 2012, 7(10), e47003.
[http://dx.doi.org/10.1371/journal.pone.0047003] [PMID: 23071695]
[63]
Kaduthanam, S.; Gade, S.; Meister, M.; Brase, J.C.; Johannes, M.; Dienemann, H.; Warth, A.; Schnabel, P.A.; Herth, F.J.F.; Sültmann, H.; Muley, T.; Kuner, R. Serum miR-142-3p is associated with early relapse in operable lung adenocarcinoma patients. Lung Cancer, 2013, 80(2), 223-227.
[http://dx.doi.org/10.1016/j.lungcan.2013.01.013] [PMID: 23410826]
[64]
Wu, X.; Somlo, G.; Yu, Y.; Palomares, M.R.; Li, A.X.; Zhou, W.; Chow, A.; Yen, Y.; Rossi, J.J.; Gao, H.; Wang, J.; Yuan, Y-C.; Frankel, P.; Li, S.; Ashing-Giwa, K.T.; Sun, G.; Wang, Y.; Smith, R.; Robinson, K.; Ren, X.; Wang, S.E. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J. Transl. Med., 2012, 10(1), 42.
[http://dx.doi.org/10.1186/1479-5876-10-42] [PMID: 22400902]
[65]
Bryant, R.J.; Pawlowski, T.; Catto, J.W.F.; Marsden, G.; Vessella, R.L.; Rhees, B.; Kuslich, C.; Visakorpi, T.; Hamdy, F.C. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer, 2012, 106(4), 768-774.
[http://dx.doi.org/10.1038/bjc.2011.595] [PMID: 22240788]
[66]
Zen, K.; Zhang, C.Y. Circulating microRNAs: A novel class of biomarkers to diagnose and monitor human cancers. Med. Res. Rev., 2012, 32(2), 326-348.
[http://dx.doi.org/10.1002/med.20215] [PMID: 22383180]
[67]
Kroh, E.M.; Parkin, R.K.; Mitchell, P.S.; Tewari, M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods, 2010, 50(4), 298-301.
[http://dx.doi.org/10.1016/j.ymeth.2010.01.032] [PMID: 20146939]
[68]
Williams, Z.; Ben-Dov, I.Z.; Elias, R.; Mihailovic, A.; Brown, M.; Rosenwaks, Z.; Tuschl, T. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc. Natl. Acad. Sci. USA, 2013, 110(11), 4255-4260.
[http://dx.doi.org/10.1073/pnas.1214046110] [PMID: 23440203]
[69]
Bing, T.; Zhang, N.; Shangguan, D. Cell-SELEX, an effective way to the discovery of biomarkers and unexpected molecular events. Adv. Biosyst., 2019, 3(12), e1900193.
[http://dx.doi.org/10.1002/adbi.201900193] [PMID: 32648677]
[70]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[71]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[72]
Urak, K.T.; Shore, S.; Rockey, W.M.; Chen, S.J.; McCaffrey, A.P.; Giangrande, P.H. In vitro RNA SELEX for the generation of chemically-optimized therapeutic RNA drugs. Methods, 2016, 103, 167-174.
[http://dx.doi.org/10.1016/j.ymeth.2016.03.003] [PMID: 26972786]
[73]
Djordjevic, M. SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways. Biomol. Eng., 2007, 24(2), 179-189.
[http://dx.doi.org/10.1016/j.bioeng.2007.03.001] [PMID: 17428731]
[74]
Darmostuk, M.; Rimpelová, S.; Gbelcová, H.; Ruml, T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol. Adv., 2014, 33(6 Pt 2), 1141-1161.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.008] [PMID: 25708387]
[75]
Gyllensten, U.B.; Erlich, H.A. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. USA, 1988, 85(20), 7652-7656.
[http://dx.doi.org/10.1073/pnas.85.20.7652] [PMID: 3174659]
[76]
Higuchi, R.G.; Ochman, H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res., 1989, 17(14), 5865.
[http://dx.doi.org/10.1093/nar/17.14.5865] [PMID: 2548171]
[77]
Hultman, T.; Ståhl, S.; Hornes, E.; Uhlén, M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res., 1989, 17(13), 4937-4946.
[http://dx.doi.org/10.1093/nar/17.13.4937] [PMID: 2668874]
[78]
Williams, K.P.; Bartel, D.P. PCR product with strands of unequal length. Nucleic Acids Res., 1995, 23(20), 4220-4221.
[http://dx.doi.org/10.1093/nar/23.20.4220] [PMID: 7479087]
[79]
Cao, X.; Li, S.; Chen, L.; Ding, H.; Xu, H.; Huang, Y.; Li, J.; Liu, N.; Cao, W.; Zhu, Y.; Shen, B.; Shao, N. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res., 2009, 37(14), 4621-4628.
[http://dx.doi.org/10.1093/nar/gkp489] [PMID: 19498077]
[80]
Jenison, R. D.; Gill, S. C.; Pardi, A.; Polisky, B. High-resolution molecular discrimination by RNA. Science (80-.), 1994, 263(5152), 1425-1429.
[http://dx.doi.org/10.1126/science.7510417]
[81]
Ellington, A.D.; Szostak, J.W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature, 1992, 355(6363), 850-852.
[http://dx.doi.org/10.1038/355850a0] [PMID: 1538766]
[82]
Dupont, D.M.; Larsen, N.; Jensen, J.K.; Andreasen, P.A.; Kjems, J. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools. Nucleic Acids Res., 2015, 43(21), e139.
[http://dx.doi.org/10.1093/nar/gkv700] [PMID: 26163061]
[83]
Lao, Y-H.; Phua, K.K.L.; Leong, K.W. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano, 2015, 9(3), 2235-2254.
[http://dx.doi.org/10.1021/nn507494p] [PMID: 25731717]
[84]
Ng, E.W.M.; Shima, D.T.; Calias, P.; Cunningham, E.T., Jr.; Guyer, D.R.; Adamis, A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov., 2006, 5(2), 123-132.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[85]
Ruckman, J.; Green, L.S.; Beeson, J.; Waugh, S.; Gillette, W.L.; Henninger, D.D.; Claesson-Welsh, L.; Janjić, N. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem., 1998, 273(32), 20556-20567.
[http://dx.doi.org/10.1074/jbc.273.32.20556] [PMID: 9685413]
[86]
Ye, M.; Hu, J.; Peng, M.; Liu, J.; Liu, J.; Liu, H.; Zhao, X.; Tan, W. Generating aptamers by cell-SELEX for applications in molecular medicine. Int. J. Mol. Sci., 2012, 13(3), 3341-3353.
[http://dx.doi.org/10.3390/ijms13033341] [PMID: 22489154]
[87]
Sefah, K.; Shangguan, D.; Xiong, X.; O’Donoghue, M.B.; Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc., 2010, 5(6), 1169-1185.
[http://dx.doi.org/10.1038/nprot.2010.66] [PMID: 20539292]
[88]
Camorani, S.; Granata, I.; Collina, F.; Leonetti, F.; Cantile, M.; Botti, G.; Fedele, M.; Guarracino, M.R.; Cerchia, L. Novel aptamers selected on living cells for specific recognition of triple-negative breast cancer. iScience, 2020, 23(4), 100979.
[http://dx.doi.org/10.1016/j.isci.2020.100979] [PMID: 32222697]
[89]
Yu, X.X.; Ge, K.L.; Liu, N.; Zhang, J.Y.; Xue, M.L.; Ge, Y.L. Selection and characterization of a novel DNA aptamer, Apt-07S specific to hepatocellular carcinoma cells. Drug Des. Devel. Ther., 2020, 14, 1535-1545.
[http://dx.doi.org/10.2147/DDDT.S244149] [PMID: 32368012]
[90]
Li, W-M.; Zhou, L-L.; Zheng, M.; Fang, J. Selection of metastatic breast cancer cell-specific aptamers for the capture of CTCs with a metastatic phenotype by Cell-SELEX. Mol. Ther. Nucleic Acids, 2018, 12(77), 707-717.
[http://dx.doi.org/10.1016/j.omtn.2018.07.008] [PMID: 30098503]
[91]
Champanhac, C.; Teng, I-T.; Cansiz, S.; Zhang, L.; Wu, X.; Zhoa, Z.; Fu, T.; Tan, W. Development of a panel of DNA aptamers with high affinity for pancreatic ductal adenocarcinoma. Sci. Rep., 2015, 5(1), 16788.
[http://dx.doi.org/10.1038/srep16788] [PMID: 26603187]
[92]
Li, F.; Wang, Q.; Zhang, H.; Deng, T.; Feng, P.; Hu, B.; Jiang, Y.; Cao, L. Characterization of a DNA aptamer for ovarian cancer clinical tissue recognition and in vivo imaging. Cell. Physiol. Biochem., 2018, 51(6), 2564-2574.
[http://dx.doi.org/10.1159/000495925] [PMID: 30562733]
[93]
Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal. Chim. Acta, 2017, 987, 25-37.
[http://dx.doi.org/10.1016/j.aca.2017.07.071] [PMID: 28916037]
[94]
Wang, D-L.; Song, Y-L.; Zhu, Z.; Li, X-L.; Zou, Y.; Yang, H-T.; Wang, J-J.; Yao, P-S.; Pan, R-J.; Yang, C.J.; Kang, D-Z. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. Biochem. Biophys. Res. Commun., 2014, 453(4), 681-685.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.023] [PMID: 25242523]
[95]
Ababneh, N.; Alshaer, W.; Allozi, O.; Mahafzah, A.; El-Khateeb, M.; Hillaireau, H.; Noiray, M.; Fattal, E.; Ismail, S. In vitro selection of modified RNA aptamers against CD44 cancer stem cell marker. Nucleic Acid Ther., 2013, 23(6), 401-407.
[http://dx.doi.org/10.1089/nat.2013.0423] [PMID: 24171482]
[96]
Alshaer, W.; Ababneh, N.; Hatmal, M.; Izmirli, H.; Choukeife, M.; Shraim, A.; Sharar, N.; Abu-Shiekah, A.; Odeh, F.; Al Bawab, A.; Awidi, A.; Ismail, S. Selection and targeting of EpCAM protein by ssDNA aptamer. PLoS One, 2017, 12(12), e0189558.
[http://dx.doi.org/10.1371/journal.pone.0189558] [PMID: 29245156]
[97]
Wang, Q.L.; Cui, H.F.; Du, J.F.; Lv, Q.Y.; Song, X. In silico post-SELEX screening and experimental characterizations for acquisition of high affinity DNA aptamers against carcinoembryonic antigen. RSC Adv., 2019, 9(11), 6328-6334.
[http://dx.doi.org/10.1039/C8RA10163A]
[98]
Varshney, A.; Bala, J.; Santosh, B.; Bhaskar, A.; Kumar, S.; Yadava, P.K. Identification of an RNA aptamer binding hTERT-derived peptide and inhibiting telomerase activity in MCF7 cells. Mol. Cell. Biochem., 2017, 427(1-2), 157-167.
[http://dx.doi.org/10.1007/s11010-016-2907-7] [PMID: 28004350]
[99]
Souza, A.G.; Marangoni, K.; Fujimura, P.T.; Alves, P.T.; Silva, M.J.; Bastos, V.A.F.; Goulart, L.R.; Goulart, V.A. 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line. Exp. Cell Res., 2016, 341(2), 147-156.
[http://dx.doi.org/10.1016/j.yexcr.2016.01.015] [PMID: 26821206]
[100]
He, J.; Wang, J.; Zhang, N.; Shen, L.; Wang, L.; Xiao, X.; Wang, Y.; Bing, T.; Liu, X.; Li, S.; Shangguan, D. In vitro selection of DNA aptamers recognizing drug-resistant ovarian cancer by cell-SELEX. Talanta, 2019, 194, 437-445.
[http://dx.doi.org/10.1016/j.talanta.2018.10.028] [PMID: 30609555]
[101]
Liu, M.; Yang, T.; Chen, Z.; Wang, Z.; He, N. Differentiating breast cancer molecular subtypes using a DNA aptamer selected against MCF-7 cells. Biomater. Sci., 2018, 6(12), 3152-3159.
[http://dx.doi.org/10.1039/C8BM00787J] [PMID: 30349922]
[102]
Rong, Y.; Chen, H.; Zhou, X.F.; Yin, C.Q.; Wang, B.C.; Peng, C.W.; Liu, S.P.; Wang, F.B. Identification of an aptamer through whole cell-SELEX for targeting high metastatic liver cancers. Oncotarget, 2016, 7(7), 8282-8294.
[http://dx.doi.org/10.18632/oncotarget.6988] [PMID: 26882565]
[103]
Hung, L.Y.; Wang, C.H.; Che, Y.J.; Fu, C.Y.; Chang, H.Y.; Wang, K.; Lee, G.B. Screening of aptamers specific to colorectal cancer cells and stem cells by utilizing On-chip Cell-SELEX. Sci. Rep., 2015, 5(1), 10326.
[http://dx.doi.org/10.1038/srep10326] [PMID: 25999049]
[104]
Pleiko, K.; Saulite, L.; Parfejevs, V.; Miculis, K.; Vjaters, E.; Riekstina, U. Differential binding cell-SELEX method to identify cell-specific aptamers using high-throughput sequencing. Sci. Rep., 2019, 9(1), 8142.
[http://dx.doi.org/10.1038/s41598-019-44654-w] [PMID: 31148584]
[105]
Nelissen, F.H.T.; Peeters, W.J.M.; Roelofs, T.P.; Nagelkerke, A.; Span, P.N.; Heus, H.A. Improving breast cancer treatment specificity using aptamers obtained by 3D cell-SELEX. Pharmaceuticals (Basel), 2021, 14(4), 349.
[http://dx.doi.org/10.3390/ph14040349] [PMID: 33918832]
[106]
Ferreira, D.; Barbosa, J.; Sousa, D.A.; Silva, C.; Melo, L.D.R.; Avci-Adali, M.; Wendel, H.P.; Rodrigues, L.R. Selection of aptamers against triple negative breast cancer cells using high throughput sequencing. Sci. Rep., 2021, 11(1), 8614.
[http://dx.doi.org/10.1038/s41598-021-87998-y] [PMID: 33883615]
[107]
Bing, T.; Shen, L.; Wang, J.; Wang, L.; Liu, X.; Zhang, N.; Xiao, X.; Shangguan, D. Aptameric probe specifically binding protein heterodimer rather than monomers. Adv. Sci. (Weinh.), 2019, 6(11), 1900143.
[http://dx.doi.org/10.1002/advs.201900143] [PMID: 31179220]
[108]
Eaton, R.M.; Shallcross, J.A.; Mael, L.E.; Mears, K.S.; Minkoff, L.; Scoville, D.J.; Whelan, R.J. Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing. Anal. Bioanal. Chem., 2015, 407(23), 6965-6973.
[http://dx.doi.org/10.1007/s00216-015-8665-7] [PMID: 25863801]
[109]
Stuart, C.H.; Riley, K.R.; Boyacioglu, O.; Herpai, D.M.; Debinski, W.; Qasem, S.; Marini, F.C.; Colyer, C.L.; Gmeiner, W.H. Selection of a novel aptamer against vitronectin using capillary electrophoresis and next generation sequencing. Mol. Ther. Nucleic Acids, 2016, 5(11), e386-e386.
[http://dx.doi.org/10.1038/mtna.2016.91] [PMID: 27845768]
[110]
Wang, H.; Zhang, Y.; Yang, H.; Qin, M.; Ding, X.; Liu, R.; Jiang, Y. In vivo SELEX of an inhibitory NSCLC-Specific RNA aptamer from PEGylated RNA library. Mol. Ther. Nucleic Acids, 2018, 10, 187-198.
[http://dx.doi.org/10.1016/j.omtn.2017.12.003] [PMID: 29499932]
[111]
Chen, L.; He, W.; Jiang, H.; Wu, L.; Xiong, W.; Li, B.; Zhou, Z.; Qian, Y. In vivo SELEX of bone targeting aptamer in prostate cancer bone metastasis model. Int. J. Nanomedicine, 2018, 14, 149-159.
[http://dx.doi.org/10.2147/IJN.S188003] [PMID: 30613143]
[112]
Mendonsa, S.D.; Bowser, M.T. In vitro evolution of functional DNA using capillary electrophoresis. J. Am. Chem. Soc., 2004, 126(1), 20-21.
[http://dx.doi.org/10.1021/ja037832s] [PMID: 14709039]
[113]
Bayat, P.; Nosrati, R.; Alibolandi, M.; Rafatpanah, H.; Abnous, K.; Khedri, M.; Ramezani, M. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie, 2018, 154, 132-155.
[http://dx.doi.org/10.1016/j.biochi.2018.09.001] [PMID: 30193856]
[114]
Mosing, R.K.; Mendonsa, S.D.; Bowser, M.T. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem., 2005, 77(19), 6107-6112.
[http://dx.doi.org/10.1021/ac050836q] [PMID: 16194066]
[115]
Kong, H.Y.; Byun, J. Nucleic Acid aptamers: New methods for selection, stabilization, and application in biomedical science. Biomol. Ther. (Seoul), 2013, 21(6), 423-434.
[http://dx.doi.org/10.4062/biomolther.2013.085] [PMID: 24404332]
[116]
Dong, L.; Tan, Q.; Ye, W.; Liu, D.; Chen, H.; Hu, H.; Wen, D.; Liu, Y.; Cao, Y.; Kang, J.; Fan, J.; Guo, W.; Wu, W. Screening and identifying a novel ssdna aptamer against alpha-fetoprotein using CE-SELEX OPEN. Sci. Rep., 2015, 5, 15552.
[http://dx.doi.org/10.1038/srep15552]
[117]
Jing, M.; Bowser, M.T. Isolation of DNA aptamers using micro free flow electrophoresis. Lab Chip, 2011, 11(21), 3703-3709.
[http://dx.doi.org/10.1039/c1lc20461k] [PMID: 21947169]
[118]
Berezovski, M.; Drabovich, A.; Krylova, S.M.; Musheev, M.; Okhonin, V.; Petrov, A.; Krylov, S.N. Nonequilibrium capillary electrophoresis of equilibrium mixtures: A universal tool for development of aptamers. J. Am. Chem. Soc., 2005, 127(9), 3165-3171.
[http://dx.doi.org/10.1021/ja042394q] [PMID: 15740156]
[119]
Berezovski, M.V.; Musheev, M.U.; Drabovich, A.P.; Jitkova, J.V.; Krylov, S.N. Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nat. Protoc., 2006, 1(3), 1359-1369.
[http://dx.doi.org/10.1038/nprot.2006.200] [PMID: 17406423]
[120]
Ashley, J.; Ji, K.; Li, S.F.Y. Selection of bovine catalase aptamers using non-SELEX. Electrophoresis, 2012, 33(17), 2783-2789.
[http://dx.doi.org/10.1002/elps.201200032] [PMID: 22965726]
[121]
Hybarger, G.; Bynum, J.; Williams, R.F.; Valdes, J.J.; Chambers, J.P. A microfluidic SELEX prototype. Anal. Bioanal. Chem., 2006, 384(1), 191-198.
[http://dx.doi.org/10.1007/s00216-005-0089-3] [PMID: 16315013]
[122]
Cho, M.; Xiao, Y.; Nie, J.; Stewart, R.; Csordas, A.T.; Oh, S.S.; Thomson, J.A.; Soh, H.T. Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 15373-15378.
[http://dx.doi.org/10.1073/pnas.1009331107] [PMID: 20705898]
[123]
Dembowski, S.K.; Bowser, M.T. Microfluidic methods for aptamer selection and characterization. Analyst (Lond.), 2017, 143(1), 21-32.
[http://dx.doi.org/10.1039/C7AN01046J] [PMID: 29094731]
[124]
Kim, J.; Olsen, T.R.; Zhu, J.; Hilton, J.P.; Yang, K.A.; Pei, R.; Stojanovic, M.N.; Lin, Q. Integrated microfluidic isolation of aptamers using electrophoretic oligonucleotide manipulation. Sci. Rep., 2016, 6(1), 26139.
[http://dx.doi.org/10.1038/srep26139] [PMID: 27217242]
[125]
Lin, H.I.; Wu, C.C.; Yang, C.H.; Chang, K.W.; Lee, G.B.; Shiesh, S.C. Selection of aptamers specific for glycated hemoglobin and total hemoglobin using on-chip SELEX. Lab Chip, 2015, 15(2), 486-494.
[http://dx.doi.org/10.1039/C4LC01124D] [PMID: 25408102]
[126]
Bae, H.; Ren, S.; Kang, J.; Kim, M.; Jiang, Y.; Jin, M.M.; Min, I.M.; Kim, S. Sol-gel SELEX circumventing chemical conjugation of low molecular weight metabolites discovers aptamers selective to xanthine. Nucleic Acid Ther., 2013, 23(6), 443-449.
[http://dx.doi.org/10.1089/nat.2013.0437] [PMID: 24256293]
[127]
Nie, H.; Chen, Y.; Lü, C.; Liu, Z. Efficient selection of glycoprotein-binding DNA aptamers via boronate affinity monolithic capillary. Anal. Chem., 2013, 85(17), 8277-8283.
[http://dx.doi.org/10.1021/ac4015353] [PMID: 23895515]
[128]
Liu, X.; Li, H.; Jia, W.; Chen, Z.; Xu, D. Selection of aptamers based on a protein microarray integrated with a microfluidic chip. Lab Chip, 2016, 17(1), 178-185.
[http://dx.doi.org/10.1039/C6LC01208F] [PMID: 27924973]
[129]
Mi, J.; Liu, Y.; Rabbani, Z.N.; Yang, Z.; Urban, J.H.; Sullenger, B.A.; Clary, B.M. In vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol., 2010, 6(1), 22-24.
[http://dx.doi.org/10.1038/nchembio.277] [PMID: 19946274]
[130]
Mi, J.; Ray, P.; Liu, J.; Kuan, C.T.; Xu, J.; Hsu, D.; Sullenger, B.A.; White, R.R.; Clary, B.M. In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9. Mol. Ther. Nucleic Acids, 2016, 5, e315-e315.
[http://dx.doi.org/10.1038/mtna.2016.27] [PMID: 27115840]
[131]
Komarova, N.; Kuznetsov, A. Inside the black box: What makes SELEX better? Molecules, 2019, 24(19), 3598.
[http://dx.doi.org/10.3390/molecules24193598] [PMID: 31591283]
[132]
Quang, N. N.; Perret, G.; Ducongé, F. Applications of high-throughput sequencing for in vitro selection and characterization of aptamers. Pharmaceuticals, 2016, 9(4), 76.
[http://dx.doi.org/10.3390/ph9040076]
[133]
Gotrik, M.R.; Feagin, T.A.; Csordas, A.T.; Nakamoto, M.A.; Soh, H.T. Advancements in aptamer discovery technologies. Acc. Chem. Res., 2016, 49(9), 1903-1910.
[http://dx.doi.org/10.1021/acs.accounts.6b00283] [PMID: 27526193]
[134]
Mardis, E.R. The Impact of Next-Generation Sequencing Technology on Genetics. Trends in Genetics; Elsevier, 2008, pp. 133-141.
[http://dx.doi.org/10.1016/j.tig.2007.12.007]
[135]
Hoinka, J.; Berezhnoy, A.; Dao, P.; Sauna, Z.E.; Gilboa, E.; Przytycka, T.M. Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery. Nucleic Acids Res., 2015, 43(12), 5699-5707.
[http://dx.doi.org/10.1093/nar/gkv308] [PMID: 25870409]
[136]
Hoinka, J.; Berezhnoy, A.; Sauna, Z.E.; Gilboa, E.; Przytycka, T.M. AptaCluster - A method to cluster HT-SELEX aptamer pools and lessons from its application. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer Verlag, 2014; 8394, pp. 115-128.
[http://dx.doi.org/10.1007/978-3-319-05269-4_9]
[137]
Alam, K.K.; Chang, J.L.; Burke, D.H. FASTAptamer: A bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections. Mol. Ther. Nucleic Acids, 2015, 4(3), e230.
[http://dx.doi.org/10.1038/mtna.2015.4] [PMID: 25734917]
[138]
Zhao, Y.; Granas, D.; Stormo, G.D. Inferring binding energies from selected binding sites. PLOS Comput. Biol., 2009, 5(12), e1000590.
[http://dx.doi.org/10.1371/journal.pcbi.1000590] [PMID: 19997485]
[139]
Wang, G.; Liu, J.; Chen, K.; Xu, Y.; Liu, B.; Liao, J.; Zhu, L.; Hu, X.; Li, J.; Pu, Y.; Zhong, W.; Fu, T.; Liu, H.; Tan, W. Selection and characterization of DNA aptamer against glucagon receptor by cell-SELEX. Sci. Rep., 2017, 7(1), 7179.
[http://dx.doi.org/10.1038/s41598-017-05840-w] [PMID: 28775305]
[140]
Soldevilla, M.M.; Hervas, S.; Villanueva, H.; Lozano, T.; Rabal, O.; Oyarzabal, J.; Lasarte, J.J.; Bendandi, M.; Inoges, S.; López-Díaz de Cerio, A.; Pastor, F. Identification of LAG3 high affinity aptamers by HT-SELEX and Conserved Motif Accumulation (CMA). PLoS One, 2017, 12(9), e0185169.
[http://dx.doi.org/10.1371/journal.pone.0185169] [PMID: 28934318]
[141]
Laing, C.; Schlick, T. Computational approaches to RNA structure prediction, analysis, and design. Curr. Opin. Struct. Biol., 2011, 306-318.
[http://dx.doi.org/10.1016/j.sbi.2011.03.015]
[142]
Hoinka, J.; Zotenko, E.; Friedman, A.; Sauna, Z.E.; Przytycka, T.M. Identification of sequence-structure RNA binding motifs for SELEX-derived aptamers. Bioinformatics, 2012, 28(12), i215-i223.
[http://dx.doi.org/10.1093/bioinformatics/bts210] [PMID: 22689764]
[143]
Buglak, A. A.; Samokhvalov, A. V.; Zherdev, A. V.; Dzantiev, B. B. Methods and applications of in silico aptamer design and modeling. Int. J. Mol. Sci., 2020, 2020, 1-25.
[http://dx.doi.org/10.3390/ijms21228420]
[144]
Bell, D.R.; Weber, J.K.; Yin, W.; Huynh, T.; Duan, W.; Zhou, R. In silico design and validation of high-affinity RNA aptamers targeting epithelial cellular adhesion molecule dimers. Proc. Natl. Acad. Sci. USA, 2020, 117(15), 8486-8493.
[http://dx.doi.org/10.1073/pnas.1913242117] [PMID: 32234785]
[145]
Lobry, M.; Loyez, M.; Chah, K.; Hassan, E.M.; Goormaghtigh, E.; DeRosa, M.C.; Wattiez, R.; Caucheteur, C. HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings. Biomed. Opt. Express, 2020, 11(9), 4862-4871.
[http://dx.doi.org/10.1364/BOE.401200] [PMID: 33014586]
[146]
Pei, Y.; Ge, Y.; Zhang, X.; Li, Y.; Mikrochim, A. Cathodic photoelectrochemical aptasensor based on NiO/BiOI/Au NP composite sensitized with CdSe for determination of exosomes. Mikrochim Acta, 2021, 188(2), 1436-5073.
[147]
Zhu, L.; Yang, B.; Qian, K.; Qiao, L.; Liu, Y.; Liu, B. Sensitive electrochemical aptasensor for detecting EpCAM with silica nanoparticles and quantum dots for signal amplification. J. Electroanal. Chem. (Lausanne), 2020, 856, 113655.
[http://dx.doi.org/10.1016/j.jelechem.2019.113655]
[148]
Liao, Y.; Guo, S.; Hua, X.; Yuan, R.; Xu, W. Autocatalytic replicated Mg2+-ligation DNAzyme as robust biocatalyst for sensitive, label-free and enzyme-free electrochemical biosensing of protein. Sens. Actuators B Chem., 2020, 310, 127862.
[http://dx.doi.org/10.1016/j.snb.2020.127862]
[149]
Li, Y.; Hou, L.; Liu, Z.; Lu, W.; Zhao, M.; Xiao, H.; Hu, T.; Zheng, Z.; Jia, J.; Wu, H A sensitive electrochemical MUC1 sensing platform based on electroactive Cu-MOFs decorated by AuPt nanoparticles. J. Electrochem. Soc., 2020, 167
[150]
Wang, H.; Sun, J.; Lu, L.; Yang, X.; Xia, J.; Zhang, F.; Wang, Z. Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1. Anal. Chim. Acta, 2020, 1094, 18-25.
[http://dx.doi.org/10.1016/j.aca.2019.10.003] [PMID: 31761044]
[151]
Zhang, H.; Liang, F.; Wu, X.; Liu, Y.; Chen, A. Recognition and sensitive detection of CTCs using a controllable label-free electrochemical cytosensor. Mikrochim. Acta, 2020, 187(9), 487.
[http://dx.doi.org/10.1007/s00604-020-04452-y] [PMID: 32761498]
[152]
Li, Y.; Hu, M.; Huang, X.; Wang, M.; He, L.; Song, Y.; Jia, Q.; Zhou, N.; Zhang, Z.; Du, M. Multicomponent Zirconium-based metal-organic frameworks for impedimetric aptasensing of living cancer cells. Sens. Actuators B Chem., 2020, 306, 127608.
[http://dx.doi.org/10.1016/j.snb.2019.127608]
[153]
Akhtartavan, S.; Karimi, M.; Sattarahmady, N.; Heli, H. An electrochemical signal-on apta-cyto-sensor for quantitation of circulating human MDA-MB-231 breast cancer cells by transduction of electro-deposited non-spherical nanoparticles of gold. J. Pharm. Biomed. Anal., 2020, 178, 112948.
[http://dx.doi.org/10.1016/j.jpba.2019.112948] [PMID: 31704128]
[154]
Zhou, J.; Cheng, K.; Chen, X.; Yang, R.; Lu, M.; Ming, L.; Chen, Y.; Lin, Z.; Chen, D. Determination of soluble CD44 in serum by using a label-free aptamer based electrochemical impedance biosensor. Analyst (Lond.), 2020, 145(2), 460-465.
[http://dx.doi.org/10.1039/C9AN01764J] [PMID: 31781712]
[155]
Xu, L.; Chopdat, R.; Li, D.; Al-Jamal, K.T. Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes. Biosens. Bioelectron., 2020, 169, 112576.
[http://dx.doi.org/10.1016/j.bios.2020.112576] [PMID: 32919211]
[156]
Li, B.; Liu, C.; Pan, W.; Shen, J.; Guo, J.; Luo, T.; Feng, J.; Situ, B.; An, T.; Zhang, Y.; Zheng, L. Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy. Biosens. Bioelectron., 2020, 168, 112520.
[http://dx.doi.org/10.1016/j.bios.2020.112520] [PMID: 32866725]
[157]
Zhou, Y.; Xu, H.; Wang, H.; Ye, B-C. Detection of breast cancer-derived exosomes using the horseradish peroxidase-mimicking DNAzyme as an aptasensor. Analyst (Lond.), 2019, 145(1), 107-114.
[http://dx.doi.org/10.1039/C9AN01653H] [PMID: 31746830]
[158]
Peng, Y.; Yang, F.; Li, X.; Jiang, B.; Yuan, R.; Xiang, Y. DNA branch migration amplification cascades for enzyme-free and non-label aptamer sensing of mucin 1. Analyst (Lond.), 2020, 145(18), 6085-6090.
[http://dx.doi.org/10.1039/D0AN01324B] [PMID: 32839791]
[159]
Li, N.; Zong, S.; Zhang, Y.; Wang, Z.; Wang, Y.; Zhu, K.; Yang, K.; Wang, Z.; Chen, B.; Cui, Y. A SERS-colorimetric dual-mode aptasensor for the detection of cancer biomarker MUC1. Anal. Bioanal. Chem., 2020, 412(23), 5707-5718.
[http://dx.doi.org/10.1007/s00216-020-02790-7] [PMID: 32632516]
[160]
Peng, Y.; Wu, S.; Sun, Z.; Zhu, S.; Yin, Y.; Li, G. Multiple signal amplification via coupling DNAzyme with strand displacement reaction for sensitive colorimetric analysis of MUC1. Sens. Actuators B Chem., 2020, 313, 128046.
[http://dx.doi.org/10.1016/j.snb.2020.128046]
[161]
Wang, D-E.; Gao, X.; You, S.; Chen, M.; Ren, L.; Sun, W.; Yang, H.; Xu, H. Aptamer-functionalized polydiacetylene liposomes act as a fluorescent sensor for sensitive detection of MUC1 and targeted imaging of cancer cells. Sens. Actuators B Chem., 2020, 309, 127778.
[http://dx.doi.org/10.1016/j.snb.2020.127778]
[162]
Fan, X.; Qin, Y.; Jiang, B.; Yuan, R.; Xiang, Y. Target-induced autonomous synthesis of G-Quadruplex sequences for label-free and amplified fluorescent aptasensing of Mucin 1. Sens. Actuators B Chem., 2020, 304, 127351.
[http://dx.doi.org/10.1016/j.snb.2019.127351]
[163]
Shi, H.; Jin, T.; Zhang, J.; Huang, X.; Tan, C.; Jiang, Y.; Tan, Y. A novel aptasensor strategy for protein detection based on G-Quadruplex and Exonuclease III-aided recycling amplification. Chin. Chem. Lett., 2020, 31(1), 155-158.
[http://dx.doi.org/10.1016/j.cclet.2019.06.020]
[164]
Mukama, O.; Wu, W.; Wu, J.; Lu, X.; Liu, Y.; Liu, Y.; Liu, J.; Zeng, L. A highly sensitive and specific lateral flow aptasensor for the detection of human osteopontin. Talanta, 2020, 210, 120624.
[http://dx.doi.org/10.1016/j.talanta.2019.120624] [PMID: 31987218]
[165]
Li, R.; An, Y.; Jin, T.; Zhang, F.; He, P. Detection of MUC1 protein on tumor cells and their derived exosomes for breast cancer surveillance with an electrochemiluminescence aptasensor. J. Electroanal. Chem. (Lausanne), 2021, 882, 115011.
[http://dx.doi.org/10.1016/j.jelechem.2021.115011]
[166]
Jarczewska, M.; Wieczorek, J.; Malinowska, E. Electrochemical studies on the binding of antibody-aptamer hybrid receptor layers to HER2 protein. J. Electrochem. Soc., 2020, 167, 67512.
[http://dx.doi.org/10.1149/1945-7111/ab80ac]
[167]
Shekari, Z.; Zare, H.R.; Falahati, A. Dual assaying of breast cancer biomarkers by using a sandwich-type electrochemical aptasensor based on a gold nanoparticles-3D graphene hydrogel nanocomposite and redox probes labeled aptamers. Sens. Actuators B Chem., 2021, 332, 129515.
[http://dx.doi.org/10.1016/j.snb.2021.129515]
[168]
Duan, F.; Guo, C.; Hu, M.; Song, Y.; Wang, M.; He, L.; Zhang, Z.; Pettinari, R.; Zhou, L. Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155. Sens. Actuators B Chem., 2020, 310, 127844.
[http://dx.doi.org/10.1016/j.snb.2020.127844]
[169]
Rauf, S.; Lahcen, A.A.; Aljedaibi, A.; Beduk, T.; Ilton de Oliveira Filho, J.; Salama, K.N. Gold nanostructured laser-scribed graphene: A new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens. Bioelectron., 2021, 180, 113116.
[http://dx.doi.org/10.1016/j.bios.2021.113116] [PMID: 33662847]
[170]
Bharti, A.; Rana, S.; Dahiya, D.; Agnihotri, N.; Prabhakar, N. An electrochemical aptasensor for analysis of MUC1 using gold platinum bimetallic nanoparticles deposited carboxylated graphene oxide. Anal. Chim. Acta, 2020, 1097, 186-195.
[http://dx.doi.org/10.1016/j.aca.2019.11.005] [PMID: 31910959]
[171]
Safavipour, M.; Kharaziha, M.; Amjadi, E.; Karimzadeh, F.; Allafchian, A. TiO2 nanotubes/reduced GO nanoparticles for sensitive detection of breast cancer cells and photothermal performance. Talanta, 2020, 208, 120369.
[http://dx.doi.org/10.1016/j.talanta.2019.120369] [PMID: 31816724]
[172]
Li, J.; Yang, F.; Jiang, B.; Zhou, W.; Xiang, Y.; Yuan, R. The synchronization of multiple signal amplifications for label-free and sensitive aptamer-based sensing of a protein biomarker. Analyst (Lond.), 2021, 145(24), 7858-7863.
[http://dx.doi.org/10.1039/D0AN01491E] [PMID: 33020770]
[173]
Meng, Y.; Wang, S.; Zhao, J.; Hun, X.A.-O. Photoelectrochemical aptasensor with low background noise. Mikro- chim Acta , 2020, 1436-5073.
[http://dx.doi.org/10.1007/s00604-020-04601-3]
[174]
Loyez, M.; Hassan, E.M.; Lobry, M.; Liu, F.; Caucheteur, C.; Wattiez, R.; DeRosa, M.C.; Willmore, W.G.; Albert, J. Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification. ACS Sens., 2020, 5(2), 454-463.
[http://dx.doi.org/10.1021/acssensors.9b02155] [PMID: 31967461]
[175]
Shayesteh, O.H.; Ghavami, R. A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226, 117644.
[http://dx.doi.org/10.1016/j.saa.2019.117644] [PMID: 31614271]
[176]
Chen, M.; Tang, Z.; Ma, C.; Yan, Y. A fluorometric aptamer based assay for prostate specific antigen based on enzyme-assisted target recycling. Sens. Actuators B Chem., 2020, 302, 127178.
[http://dx.doi.org/10.1016/j.snb.2019.127178]
[177]
Díaz-Fernández, A.; Miranda-Castro, R.; de-Los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Estrela, P. Impedimetric aptamer-based glycan PSA score for discrimination of prostate cancer from other prostate diseases. Biosens. Bioelectron., 2021, 175, 112872.
[http://dx.doi.org/10.1016/j.bios.2020.112872] [PMID: 33288424]
[178]
Wu, Q.; Chen, G.; Qiu, S.; Feng, S.; Lin, D. A target-triggered and self-calibration aptasensor based on SERS for precise detection of a prostate cancer biomarker in human blood. Nanoscale, 2021, 13(16), 7574-7582.
[http://dx.doi.org/10.1039/D1NR00480H] [PMID: 33928988]
[179]
Soleimani, S.; Arkan, E.; Jalalvand, A.R.; Goicoechea, H.C. Fabrication of a novel electrochemical aptasensor assisted by a novel computerized monitoring system for real- time determination of the prostate specific antigen: A computerized experimental method brought elegancy. Microchem. J., 2020, 157, 104898.
[http://dx.doi.org/10.1016/j.microc.2020.104898]
[180]
Zhao, Y.; Liu, H.; Shi, L.; Zheng, W.; Jing, X. Electroactive Cu2O nanoparticles and ag nanoparticles driven ratiometric electrochemical aptasensor for prostate specific antigen detection. Sens. Actuators B Chem., 2020, 315, 128155.
[http://dx.doi.org/10.1016/j.snb.2020.128155]
[181]
Hassani, S.; Salek Maghsoudi, A.; Rezaei Akmal, M.; Rahmani, S. R.; Sarihi, P.; Ganjali, M. R.; Norouzi, P.; Abdollahi, M. Sensitive aptamer-based biosensor for electrochemical quantification of PSA as a specific diagnostic marker of prostate cancer. J. Pharm. Pharm. Sci., 2020, 23, 243-258.
[http://dx.doi.org/10.18433/jpps31171]
[182]
Kim, N.; Kim, E.; Kim, H.; Thomas, M.R.; Najer, A.; Stevens, M.M. Tumor-targeting cholesterol-decorated DNA nanoflowers for intracellular ratiometric aptasensing. Adv. Mater., 2021, 33(11), e2007738.
[http://dx.doi.org/10.1002/adma.202007738] [PMID: 33554370]
[183]
Kim, M.; Kim, K.; Lee, J.H.A. Cost-effective and rapid aptasensor with chemiluminescence detection for the early diagnosis of prostate cancer. Microchem. J., 2020, 155, 104763.
[http://dx.doi.org/10.1016/j.microc.2020.104763]
[184]
Wang, H. M.; Huang, X. Q.; Wang, A. J.; Luo, X.; Liu, W. D.; Yuan, P. X.; Feng, J. J. Construction of efficient “on-off-on” fluorescence aptasensor for ultrasensitive detection of prostate specific antigen via Covalent energy transfer between g-C(3)N(4) Quantum Dots and Palladium Triangular Plates. Anal. Chim. Acta, 2020, 1104, 1873-4324.
[185]
Wang, W.; Wang, Q.; Xie, H.; Wu, D.; Gan, N. A universal assay strategy for sensitive and simultaneous quantitation of multiplex tumor markers based on the stirring rod-immobilized DNA-LaMnO3 perovskite-metal ions encoded probes. Talanta, 2021, 222, 121456.
[http://dx.doi.org/10.1016/j.talanta.2020.121456] [PMID: 33167200]
[186]
Yan, Y.; Ma, C.; Tang, Z.; Chen, M.; Zhao, H.; Anal Chim, A. A novel fluorescent assay based on DNAzyme-assisted detection of prostate specific antigen for signal amplification. Anal. Chim. Acta, 2020, 1104, 1873-4324.
[http://dx.doi.org/10.1016/j.aca.2020.01.014]
[187]
Yang, X.; Zhao, C.; Zhang, C.; Wen, K.; Zhu, Y. Bi-directionally amplified ratiometric electrochemical aptasensor for the ultrasensitive detection of alpha-fetoprotein. Sens. Actuators B Chem., 2020, 323, 128666.
[http://dx.doi.org/10.1016/j.snb.2020.128666]
[188]
Jiang, J.; Yu, Y.; Zhang, H.; Cai, C. Electrochemical aptasensor for exosomal proteins profiling based on DNA nanotetrahedron coupled with enzymatic signal amplification. Anal. Chim. Acta, 2020, 1130, 1-9.
[http://dx.doi.org/10.1016/j.aca.2020.07.012] [PMID: 32892927]
[189]
Tang, J.; Lei, Y.; He, X.; Liu, J.; Shi, H.; Wang, K. Recognition-driven remodeling of dual-split aptamer triggering in situ hybridization chain reaction for activatable and autonomous identification of cancer cells. Anal. Chem., 2020, 92(15), 10839-10846.
[http://dx.doi.org/10.1021/acs.analchem.0c02524] [PMID: 32618183]
[190]
Chen, J.; Tang, J.; Meng, H-M.; Liu, Z.; Wang, L.; Geng, X.; Wu, Y.; Qu, L.; Li, Z. Recognition triggered assembly of split aptamers to initiate a hybridization chain reaction for wash-free and amplified detection of exosomes. Chem. Commun. (Camb.), 2020, 56(63), 9024-9027.
[http://dx.doi.org/10.1039/D0CC02337J] [PMID: 32639506]
[191]
Li, L.; Jiang, H.; Meng, X.; Wen, X.; Guo, Q.; Li, Z.; Wang, J.; Ren, Y.; Wang, K. Highly sensitive detection of cancer cells via split aptamer mediated proximity-induced hybridization chain reaction. Talanta, 2021, 223(Pt 1), 121724.
[http://dx.doi.org/10.1016/j.talanta.2020.121724] [PMID: 33303170]
[192]
Kivrak, E.; Ince-Yardimci, A.; Ilhan, R.; Kirmizibayrak, P.B.; Yilmaz, S.; Kara, P. Aptamer-based electrochemical biosensing strategy toward human non-small cell lung cancer using polyacrylonitrile/polypyrrole nanofibers. Anal. Bioanal. Chem., 2020, 412(28), 7851-7860.
[http://dx.doi.org/10.1007/s00216-020-02916-x] [PMID: 32935151]
[193]
Chen, Y.; Ge, X-Y.; Cen, S-Y.; Wang, A-J.; Luo, X.; Feng, J-J. Ultrasensitive dual-signal ratiometric electrochemical aptasensor for neuron-specific enolase based on AU nanoparticles@pd nanoclusters-Poly(Bismarck Brown Y) and dendritic AuPt nanoassemblies. Sens. Actuators B Chem., 2020, 311, 127931.
[http://dx.doi.org/10.1016/j.snb.2020.127931]
[194]
Jin, D.; Peng, X-X.; Qin, Y.; Wu, P.; Lu, H.; Wang, L.; Huang, J.; Li, Y.; Zhang, Y.; Zhang, G-J.; Yang, F. Multivalence-actuated DNA nanomachines enable bicolor exosomal phenotyping and PD-L1-guided therapy monitoring. Anal. Chem., 2020, 92(14), 9877-9886.
[http://dx.doi.org/10.1021/acs.analchem.0c01387] [PMID: 32551501]
[195]
Zhao, X.; Zhang, W.; Qiu, X.; Mei, Q.; Luo, Y.; Fu, W. Rapid and sensitive exosome detection with CRISPR/Cas12a. Anal. Bioanal. Chem., 2020, 412(3), 601-609.
[http://dx.doi.org/10.1007/s00216-019-02211-4] [PMID: 31897558]
[196]
Xu, X.; Ji, J.; Chen, P.; Wu, J.; Jin, Y.; Zhang, L.; Du, S. Salt-induced gold nanoparticles aggregation lights up fluorescence of DNA-silver nanoclusters to monitor dual cancer markers carcinoembryonic antigen and carbohydrate antigen 125. Anal. Chim. Acta, 2020, 1125, 41-49.
[http://dx.doi.org/10.1016/j.aca.2020.05.027] [PMID: 32674779]
[197]
Hu, D.; Liang, H.; Wang, X.; Luo, F.; Qiu, B.; Lin, Z.; Wang, J. Highly sensitive and selective photoelectrochemical aptasensor for cancer biomarker CA125 based on AuNPs/GaN schottky junction. Anal. Chem., 2020, 92(14), 10114-10120.
[http://dx.doi.org/10.1021/acs.analchem.0c02117] [PMID: 32580543]
[198]
Wang, M.; Pan, Y.; Wu, S.; Sun, Z.; Wang, L.; Yang, J.; Yin, Y.; Li, G. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks. Biosens. Bioelectron., 2020, 169, 112638.
[http://dx.doi.org/10.1016/j.bios.2020.112638] [PMID: 32987328]
[199]
Duan, F.; Hu, M.; Guo, C.; Song, Y.; Wang, M.; He, L.; Zhang, Z.; Pettinari, R.; Zhou, L. Chromium-based metal-organic framework embedded with cobalt phthalocyanine for the sensitively impedimetric cytosensing of colorectal cancer (CT26) Cells and Cell Imaging. Chem. Eng. J., 2020, 398, 125452.
[http://dx.doi.org/10.1016/j.cej.2020.125452]
[200]
Shen, L.; Jia, K.; Bing, T.; Zhang, Z.; Zhen, X.; Liu, X.; Zhang, N.; Shangguan, D. Detection of circulating tumor-related materials by aptamer capturing and endogenous enzyme-signal amplification. Anal. Chem., 2020, 92(7), 5370-5378.
[http://dx.doi.org/10.1021/acs.analchem.0c00051] [PMID: 32134248]
[201]
Farzin, L.; Sadjadi, S.; Shamsipur, M.; Sheibani, S. Electrochemical genosensor based on carbon nanotube/amine-ionic liquid functionalized reduced graphene oxide nanoplatform for detection of human papillomavirus (HPV16)-related head and neck cancer. J. Pharm. Biomed. Anal., 2020, 179, 112989.
[http://dx.doi.org/10.1016/j.jpba.2019.112989] [PMID: 31767223]
[202]
Xing, S.; Lu, Z.; Huang, Q.; Li, H.; Wang, Y.; Lai, Y.; He, Y.; Deng, M.; Liu, W. An ultrasensitive hybridization chain reaction-amplified CRISPR-Cas12a aptasensor for extracellular vesicle surface protein quantification. Theranostics, 2020, 10(22), 10262-10273.
[http://dx.doi.org/10.7150/thno.49047] [PMID: 32929347]
[203]
Huang, R.; He, L.; Li, S.; Liu, H.; Jin, L.; Chen, Z.; Zhao, Y.; Li, Z.; Deng, Y.; He, N. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification. Nanoscale, 2020, 12(4), 2445-2451.
[http://dx.doi.org/10.1039/C9NR08747H] [PMID: 31894795]
[204]
Huang, C-C.; Ray, P.; Chan, M.; Zhou, X.; Hall, D.A. An aptamer-based magnetic flow cytometer using matched filtering. Biosens. Bioelectron., 2020, 169, 112362.
[http://dx.doi.org/10.1016/j.bios.2020.112362] [PMID: 32911314]
[205]
Guo, C.; Li, Z.; Duan, F.; Zhang, Z.; Marchetti, F.; Du, M. Semiconducting CuxNi3-x(hexahydroxytriphenylene)2 framework for electrochemical aptasensing of C6 glioma cells and epidermal growth factor receptor. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(43), 9951-9960.
[http://dx.doi.org/10.1039/D0TB01910K] [PMID: 33034309]
[206]
Khoshroo, A.; Hosseinzadeh, L.; Adib, K.; Rahimi-Nasrabadi, M.; Ahmadi, F. Earlier diagnoses of acute leukemia by a sandwich type of electrochemical aptasensor based on copper sulfide-graphene composite. Anal. Chim. Acta, 2021, 1146, 1-10.
[http://dx.doi.org/10.1016/j.aca.2020.12.007] [PMID: 33461703]
[207]
Li, J.; Zhao, L.; Wang, W.; Liu, Y.; Yang, H.; Kong, J.; Si, F. polymer-functionalized carbon nanotubes prepared via ring-opening polymerization for electrochemical detection of carcinoembryonic antigen. Sens. Actuators B Chem., 2021, 328, 129031.
[http://dx.doi.org/10.1016/j.snb.2020.129031]
[208]
Kashefi-Kheyrabadi, L.; Kim, J.; Chakravarty, S.; Park, S.; Gwak, H.; Kim, S-I.; Mohammadniaei, M.; Lee, M-H.; Hyun, K-A.; Jung, H-I. Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes. Biosens. Bioelectron., 2020, 169, 112622.
[http://dx.doi.org/10.1016/j.bios.2020.112622] [PMID: 32977087]
[209]
Cao, Z.; Duan, F.; Huang, X.; Liu, Y.; Zhou, N.; Xia, L.; Zhang, Z.; Du, M. A multiple aptasensor for ultrasensitive detection of MiRNAs by using covalent-organic framework nanowire as platform and shell-encoded gold nanoparticles as signal labels. Anal. Chem. Acta., 2019, 1082, 176-185.
[http://dx.doi.org/10.1016/j.aca.2019.07.062]
[210]
Man, J.; Dong, J.; Wang, Y.; He, L.; Yu, S.; Yu, F.; Wang, J.; Tian, Y.; Liu, L.; Han, R.; Guo, H.; Wu, Y. A.-O.; Qu, L. Simultaneous detection of VEGF and CEA by time-resolved chemiluminescence enzyme-linked aptamer assay. Int. J. Nanomed., 2020, 15, 9975.
[http://dx.doi.org/10.2147/IJN.S286317]
[211]
Pei, X.; Wu, X.; Xiong, J.; Wang, G.; Tao, G.; Ma, Y.; Li, N. Competitive aptasensor for the ultrasensitive multiplexed detection of cancer biomarkers by fluorescent nanoparticle counting. Analyst (Lond.), 2020, 145(10), 3612-3619.
[http://dx.doi.org/10.1039/D0AN00239A] [PMID: 32285061]
[212]
Song, Y.; He, L.; Chen, K.; Wang, M.; Yang, L.; He, L.; Guo, C.; Jia, Q.; Zhang, Z. Quantification of EGFR and EGFR-overexpressed cancer cells based on Carbon Dots@bimetallic CuCo Prussian Blue Analogue. RSC Adv., 2020, 10(47), 28355-28364.
[http://dx.doi.org/10.1039/D0RA01439G]
[213]
Zahra, Q.U.A.; Khan, Q.A.; Luo, Z. Advances in optical aptasensors for early detection and diagnosis of various cancer types. Front. Oncol., 2021, 11, 632165.
[http://dx.doi.org/10.3389/fonc.2021.632165] [PMID: 33718215]
[214]
Forouzanfar, S.; Alam, F.; Pala, N.; Wang, C. Highly sensitive label-free electrochemical aptasensors based on photoresist derived carbon for cancer biomarker detection. Biosens. Bioelectron., 2020, 170, 112598.
[http://dx.doi.org/10.1016/j.bios.2020.112598] [PMID: 33035901]
[215]
Yen, Y-K.; Chao, C-H.; Yeh, Y-S.A. A Graphene-PEDOT:PSS modified paper-based aptasensor for electrochemical impedance spectroscopy detection of tumor marker. Sensors (Basel), 2020, 20(5), 1372.
[http://dx.doi.org/10.3390/s20051372] [PMID: 32131502]
[216]
Chi, L.; Xu, C.; Li, S.; Wang, X.; Tang, D.; Xue, F. Thionine-doped nanometer-sized silica conjugated with phenylboronic acid: An innovative recognition/signal element for voltammetric aptasensing of colorectal cancer-related carcinoembryonic antigen. Anal. Chim. Acta, 2020, 1136, 91-98.
[http://dx.doi.org/10.1016/j.aca.2020.08.029] [PMID: 33081954]
[217]
Zhang, R.; Liu, L.; Mao, D.; Luo, D.; Cao, F.; Chen, Q.; Chen, J. Construction of electrochemical aptasensor of carcinoembryonic antigen based on toehold-aided DNA recycling signal amplification. Bioelectrochemistry, 2020, 133, 1878-562X.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107492]
[218]
Cai, X.; Lv, F.; Lai, G. A.-O.; Fu, L.; Lin, C. T.; Yu, A.; Mikrochim, A. Dually enhanced homogenous synthesis of molybdophosphate by hybridization chain reaction and enzyme nanotags for the electrochemical bioassay of carcinoembryonic antigen. Mikrochim Acta, 2020, 187(6), 1436-5073.
[http://dx.doi.org/10.1007/s00604-020-04342-3]
[219]
Hong, F.; Wang, Q.; Wang, W.; Chen, X.; Cao, Y.; Dong, Y.; Gan, N.; Wu, D.; Hu, F. Background signal-free and highly sensitive electrochemical aptasensor for rapid detecting tumor markers with Pb-MOF functionalized dendritic DNA probes. J. Electroanal. Chem. (Lausanne), 2020, 861, 113956.
[http://dx.doi.org/10.1016/j.jelechem.2020.113956]
[220]
Yang, Y.; Hu, G-B.; Liang, W-B.; Yao, L-Y.; Huang, W.; Zhang, Y-J.; Zhang, J-L.; Wang, J-M.; Yuan, R.; Xiao, D-R. An AIEgen-based 2D ultrathin metal-organic layer as an electrochemiluminescence platform for ultrasensitive biosensing of carcinoembryonic antigen. Nanoscale, 2020, 12(10), 5932-5941.
[http://dx.doi.org/10.1039/C9NR10712F] [PMID: 32108836]
[221]
Huang, L.; Yu, Z.; Chen, J.; Tang, D. Pressure-based bioassay perceived by a flexible pressure sensor with synergistic enhancement of the photothermal effect. ACS Appl. Bio Mater., 2020, 3(12), 9156-9163.
[http://dx.doi.org/10.1021/acsabm.0c01447]
[222]
Xiang, W.; Zhang, Z.; Weng, W.; Wu, B.; Cheng, J.; Shi, L.; Sun, H.; Gao, L.; Shi, K. Highly sensitive detection of carcinoembryonic antigen using copper-free click chemistry on the surface of azide cofunctionalized graphene oxide. Anal. Chim. Acta, 2020, 1127, 156-162.
[http://dx.doi.org/10.1016/j.aca.2020.06.053] [PMID: 32800119]
[223]
Zheng, J.; Wang, J.; Song, D.; Xu, J.; Zhang, M. Electrochemical aptasensor of carcinoembryonic antigen based on concanavalin a-functionalized magnetic copper silicate carbon microtubes and gold-nanocluster-assisted signal amplification. ACS Appl. Nano Mater., 2020, 3(4), 3449-3458.
[http://dx.doi.org/10.1021/acsanm.0c00194]
[224]
Villalonga, A.; Vegas, B.; Paniagua, G.; Eguílaz, M.; Mayol, B.; Parrado, C.; Rivas, G.; Díez, P.; Villalonga, R. Amperometric aptasensor for carcinoembryonic antigen based on a reduced graphene Oxide/Gold nanoparticles modified electrode. J. Electroanal. Chem. (Lausanne), 2020, 877, 114511.
[http://dx.doi.org/10.1016/j.jelechem.2020.114511]
[225]
Chen, Y.; Li, B.; Lyu, P.; Kwok, H.F.; Ge, L.; Wu, Q. Boronate ester bond-based potentiometric aptasensor for screening carcinoembryonic antigen-glycoprotein using nanometer-sized CaCO3 with ion-selective electrode. Anal. Bioanal. Chem., 2021, 413(4), 1073-1080.
[http://dx.doi.org/10.1007/s00216-020-03067-9] [PMID: 33230701]
[226]
Zou, Y. A.-O.; Zhou, Y.; Chen, Y.; Zhang, X.; Ran, C. Love wave based portable sensing system for on-line detection of carcinoembryonic antigen in exhaled breath condensate. 2020, 1572-8781.
[http://dx.doi.org/10.1007/s10544-020-00533-0]
[227]
Li, J.; Liu, L.; Ai, Y.; Liu, Y.; Sun, H.; Liang, Q. Self-polymerized dopamine-decorated Au NPs and coordinated with Fe-MOF as a dual binding sites and dual signal-amplifying electrochemical aptasensor for the detection of CEA. ACS Appl. Mater. Interfaces, 2020, 12(5), 5500-5510.
[http://dx.doi.org/10.1021/acsami.9b19161] [PMID: 31939286]
[228]
Li, J.; Xu, L.; Shen, Y.; Guo, L.; Yin, H.; Fang, X.; Yang, Z.; Xu, Q.; Li, H. Superparamagnetic nanostructures for split-type and competitive-mode photoelectrochemical aptasensing. Anal. Chem., 2020, 92(12), 8607-8613.
[http://dx.doi.org/10.1021/acs.analchem.0c01831] [PMID: 32393021]
[229]
Fang, D.; Zhao, D.; Zhang, S.; Huang, Y.; Dai, H.; Lin, Y. Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing. Sens. Actuators B Chem., 2020, 305, 127544.
[http://dx.doi.org/10.1016/j.snb.2019.127544]
[230]
An, Y.; Jin, T.; Zhu, Y.; Zhang, F.; He, P. An ultrasensitive electrochemical aptasensor for the determination of tumor exosomes based on click chemistry. Biosens. Bioelectron., 2019, 142, 111503.
[http://dx.doi.org/10.1016/j.bios.2019.111503] [PMID: 31376716]
[231]
Zhang, H.; Qiao, B.; Guo, Q.; Jiang, J.; Cai, C.; Shen, J. A facile and label-free electrochemical aptasensor for tumour-derived extracellular vesicle detection based on the target-induced proximity hybridization of split aptamers. Analyst (Lond.), 2020, 145(10), 3557-3563.
[http://dx.doi.org/10.1039/D0AN00066C] [PMID: 32309839]
[232]
Wang, L.; Zeng, L.; Wang, Y.; Chen, T.; Chen, W.; Chen, G.; Li, C.; Chen, J. Electrochemical aptasensor based on multidirectional hybridization chain reaction for detection of tumorous exosomes. Sens. Actuators B Chem., 2021, 332, 129471.
[http://dx.doi.org/10.1016/j.snb.2021.129471]
[233]
Fu, Y.; Zou, K.; Liu, M.; Zhang, X.; Du, C.; Chen, J. Highly selective and sensitive photoelectrochemical sensing platform for VEGF165 assay based on the switching of photocurrent polarity of CdS QDs by porous Cu2O-CuO flower. Anal. Chem., 2020, 92(1), 1189-1196.
[http://dx.doi.org/10.1021/acs.analchem.9b04319] [PMID: 31769654]
[234]
Ji, J.; Xu, X.; Chen, P.; Wu, J.; Jin, Y.; Zhang, L.; Du, S.A.-O. Base amount-dependent fluorescence enhancement for the assay of vascular endothelial growth factor 165 in human serum using hairpin DNA-silver nanoclusters and oxidized carbon nanoparticles. Mikrochim Acta, 2020, 187(11), 1436-5073.
[http://dx.doi.org/10.1007/s00604-020-04592-1]
[235]
Yuan, Y.; Yu, H.; Yin, Y. A highly sensitive aptasensor for vascular endothelial growth factor based on fluorescence resonance energy transfer from upconversion nanoparticles to MoS2 nanosheets. Anal. Methods, 2020, 12(36), 4466-4472.
[http://dx.doi.org/10.1039/D0AY01067G] [PMID: 32856650]
[236]
Dong, J.; He, L.; Wang, Y.; Yu, F.; Yu, S.; Liu, L.; Wang, J.; Tian, Y.; Qu, L.; Han, R.; Wang, Z.; Wu, Y. A highly sensitive colorimetric aptasensor for the detection of the vascular endothelial growth factor in human serum. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226, 117622.
[http://dx.doi.org/10.1016/j.saa.2019.117622] [PMID: 31606672]
[237]
Su, X.; Han, Y.; Liu, Z.; Fan, L.; Guo, Y. One-Pot synthesized AuNPs/MoS2/RGO Nanocomposite as sensitive electrochemical aptasensing platform for nucleolin detection. J. Electroanal. Chem. (Lausanne), 2020, 859, 113868.
[http://dx.doi.org/10.1016/j.jelechem.2020.113868]
[238]
Shi, C-F.; Li, Z-Q.; Wang, C.; Li, J.; Xia, X-H. Ultrasensitive plasmon enhanced Raman scattering detection of nucleolin using nanochannels of 3D hybrid plasmonic metamaterial. Biosens. Bioelectron., 2021, 178, 113040.
[http://dx.doi.org/10.1016/j.bios.2021.113040] [PMID: 33548655]
[239]
Wang, Y.; Sun, S.; Luo, J.; Xiong, Y.; Ming, T.; Liu, J.; Ma, Y.; Yan, S.; Yang, Y.; Yang, Z.; Reboud, J.; Yin, H.; Cooper, J.M.; Cai, X. Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. Microsyst. Nanoeng., 2020, 6(1), 32.
[http://dx.doi.org/10.1038/s41378-020-0146-2] [PMID: 34567646]
[240]
Cheng, N.; Liu, Y.; Mukama, O.; Han, X.; Huang, H.; Li, S.; Zhou, P.; Lu, X.; Li, Z.A. Signal-enhanced and sensitive lateral flow aptasensor for the rapid detection of PDGF-BB. RSC Adv., 2020, 10(32), 18601-18607.
[http://dx.doi.org/10.1039/D0RA02662J]
[241]
Mesgari, F.; Beigi, S.M.; Fakhri, N.; Hosseini, M.; Aghazadeh, M.; Ganjali, M.R. Paper-based chemiluminescence and colorimetric detection of Cytochrome c by Cobalt Hydroxide decorated mesoporous Carbon. Microchem. J., 2020, 157, 104991.
[http://dx.doi.org/10.1016/j.microc.2020.104991]
[242]
Lv, Y.; Zhou, Y.; Dong, H.; Liu, L.; Mao, G.; Zhang, Y.; Xu, M. Amplified electrochemical aptasensor for Sialic Acid based on Carbon-Cloth-Supported Gold nanodendrites and functionalized Gold nanoparticles. ChemElectroChem, 2020, 7(4), 922-927.
[http://dx.doi.org/10.1002/celc.201902049]
[243]
Hu, H.; Ding, Y.; Gao, Z.; Li, H. S1 Nuclease digestion-based rational truncation of PD-L1 aptamer and establishment of a signal dual amplification Aptasensor. Sens. Actuators B Chem., 2021, 331, 129442.
[http://dx.doi.org/10.1016/j.snb.2021.129442]
[244]
Liu, Y.; Tian, H.; Chen, X.; Liu, W.; Xia, K.; Huang, J.; de la Chapelle, M.L.; Huang, G.; Zhang, Y.; Fu, W. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes. Mikrochim. Acta, 2020, 187(3), 160.
[http://dx.doi.org/10.1007/s00604-020-4126-x] [PMID: 32040773]
[245]
Sapkota, K.; Dhakal, S. FRET-based aptasensor for the selective and sensitive detection of lysozyme. Sensors (Basel), 2020, 20(3), E914.
[http://dx.doi.org/10.3390/s20030914] [PMID: 32050422]
[246]
Shekari, Z.; Zare, H.A.-O.; Falahati, A.; Mikrochim, A. Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Mikrochim Acta, 2019, 186(8), 1436-5073.
[247]
Radi, A. E.; Abd-Ellatief, M. R. Electrochemical aptasensors: Current status and future perspectives. Diagnostics, 2021, 11(1), 104.
[http://dx.doi.org/10.3390/diagnostics11010104]
[248]
Safarpour, H.; Dehghani, S.; Nosrati, R.; Zebardast, N.; Alibolandi, M.; Mokhtarzadeh, A.; Ramezani, M. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens. Bioelectron., 2020, 148, 111833.
[http://dx.doi.org/10.1016/j.bios.2019.111833] [PMID: 31733465]
[249]
Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Revisiting electrochemical biosensing in the 21st Century Society for inflammatory cytokines involved in autoimmune, neurodegenerative, cardiac, viral and cancer diseases. Sensors (Basel), 2020, 21(1), 189.
[http://dx.doi.org/10.3390/s21010189] [PMID: 33396710]
[250]
Cui, F.; Zhou, Z.; Zhou, H.S. Review-Measurement and analysis of cancer biomarkers based on electrochemical biosensors. J. Electrochem. Soc., 2020, 167(3), 37525.
[http://dx.doi.org/10.1149/2.0252003JES]
[251]
Hristov, D.R.; Rodriguez-Quijada, C.; Gomez-Marquez, J.; Hamad-Schifferli, K. Designing paper-based immunoassays for biomedical applications. Sensors (Basel), 2019, 19(3), E554.
[http://dx.doi.org/10.3390/s19030554] [PMID: 30699964]
[252]
Sun, Y.; Jin, H.; Jiang, X.; Gui, R. Assembly of black Phosphorus Nanosheets and MOF to form functional hybrid thin-film for precise protein capture, dual-signal and intrinsic self-calibration sensing of specific cancer-derived exosomes. Anal. Chem., 2020, 92(3), 2866-2875.
[http://dx.doi.org/10.1021/acs.analchem.9b05583] [PMID: 31903745]
[253]
Kou, X.; Zhang, X.; Shao, X.; Jiang, C.; Ning, L. Recent advances in optical aptasensor technology for amplification strategies in cancer diagnostics. Anal. Bioanal. Chem., 2020, 412(25), 6691-6705.
[http://dx.doi.org/10.1007/s00216-020-02774-7] [PMID: 32642836]
[254]
Gao, J-W.; Chen, M-M.; Wen, W.; Zhang, X.; Wang, S.; Huang, W-H. Au-Luminol-decorated porous carbon nanospheres for the electrochemiluminescence biosensing of MUC1. Nanoscale, 2019, 11(36), 16860-16867.
[http://dx.doi.org/10.1039/C9NR02190F] [PMID: 31482914]
[255]
Zhao, S.; Ma, W.; Xu, L.; Wu, X.; Kuang, H.; Wang, L.; Xu, C. Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented-AU pyramid superstructure. Biosens. Bioelectron., 2015, 68, 593-597.
[http://dx.doi.org/10.1016/j.bios.2015.01.056] [PMID: 25643599]
[256]
Pei, X.; Zhang, J.; Liu, J. Clinical applications of nucleic acid aptamers in cancer. Mol. Clin. Oncol., 2014, 2(3), 341-348.
[http://dx.doi.org/10.3892/mco.2014.255] [PMID: 24772298]
[257]
Li, Z.; Mohamed, M.A.; Vinu Mohan, A.M.; Zhu, Z.; Sharma, V.; Mishra, G.K.; Mishra, R.K. Application of electrochemical aptasensors toward clinical diagnostics, food, and environmental monitoring: Review. Sensors (Basel), 2019, 19(24), 5435.
[http://dx.doi.org/10.3390/s19245435] [PMID: 31835479]
[258]
Hori, S. I.; Herrera, A.; Rossi, J. J.; Zhou, J. Current advances in aptamers for cancer diagnosis and therapy. Cancers, 2018, 10(1), 9.
[http://dx.doi.org/10.3390/cancers10010009]