CNS & Neurological Disorders - Drug Targets

Author(s): Yixuan Xie, Yue Yang and Tianming Yuan*

DOI: 10.2174/1871527321666220223092905

Brain Damage in the Preterm Infant: Clinical Aspects and Recent Progress in the Prevention and Treatment

Page: [27 - 40] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Although the prevalence of brain injury and related neurodevelopmental disabilities resulting from preterm birth are major public health concerns, there are no definite neuroprotective strategies to prevent or reduce brain injury. The pattern of brain injury seen in preterm infants has evolved into more subtle lesions that are still essential to diagnose regarding neurodevelopmental outcomes. There is no specific effective method for the treatment of premature infant brain injury, and the focus of clinical treatment is still on prevention. Prevention of this injury requires insight into the pathogenesis, but many gaps exist in our understanding of how neonatal treatment procedures and medications impact cerebral hemodynamics and preterm brain injury. Many studies provide evidence about the prevention of premature infant brain injury, which is related to some drugs (such as erythropoietin, melatonin, mesenchymal stem cells, etc.). However, there are still some controversies about the quality of research and the effectiveness of therapy. This review aims to recapitulate the results of preclinical studies and provide an update on the latest developments around etiological pathways, prevention, and treatment.

Keywords: White matter damage, intraventricular hemorrhage, preterm, infant, neuroprotective drugs, mesenchymal stem cell.

Graphical Abstract

[1]
Victora JD, Silveira MF, Tonial CT, et al. Prevalence, mortality and risk factors associated with very low birth weight preterm infants: An analysis of 33 years. J Pediatr (Rio J) 2020; 96(3): 327-32.
[http://dx.doi.org/10.1016/j.jped.2018.10.011] [PMID: 30550758]
[2]
Soria-Pastor S, Gimenez M, Narberhaus A, et al. Patterns of cerebral white matter damage and cognitive impairment in adolescents born very preterm. Int J Dev Neurosci 2008; 26(7): 647-54.
[http://dx.doi.org/10.1016/j.ijdevneu.2008.08.001] [PMID: 18765280]
[3]
Shariat M, Gharaee J, Dalili H, Mohammadzadeh Y, Ansari S, Farahani Z. Association between small for gestational age and low birth weight with attention deficit and impaired executive functions in 3–6 years old children. J Matern Fetal Neonatal Med 2019; 32(9): 1474-7.
[http://dx.doi.org/10.1080/14767058.2017.1408071]
[4]
Allin M, Walshe M, Fern A, et al. Cognitive maturation in preterm and term born adolescents. J Neurol Neurosurg Psychiatry 2008; 79(4): 381-6.
[http://dx.doi.org/10.1136/jnnp.2006.110858] [PMID: 17682017]
[5]
Platt MJ, Cans C, Johnson A, et al. Trends in cerebral palsy among infants of very low birthweight (<1500 g) or born prematurely (<32 weeks) in 16 European centres: A database study. Lancet 2007; 369(9555): 43-50.
[http://dx.doi.org/10.1016/S0140-6736(07)60030-0] [PMID: 17208641]
[6]
Beaino G, Khoshnood B, Kaminski M, et al. Predictors of cerebral palsy in very preterm infants: The EPIPAGE prospective population-based cohort study. Dev Med Child Neurol 2010; 52(6): e119-25.
[http://dx.doi.org/10.1111/j.1469-8749.2010.03612.x] [PMID: 20163431]
[7]
Wu YW, Colford JM Jr. Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA 2000; 284(11): 1417-24.
[http://dx.doi.org/10.1001/jama.284.11.1417] [PMID: 10989405]
[8]
Jain VG, Willis KA, Jobe A, Ambalavanan N. Chorioamnionitis and neonatal outcomes. Pediatr Res 2022; 91(2): 289-96.
[http://dx.doi.org/10.1038/s41390-021-01633-0] [PMID: 34211129]
[9]
Paneth N. Classifying brain damage in preterm infants. J Pediatr 1999; 134(5): 527-9.
[http://dx.doi.org/10.1016/S0022-3476(99)70231-3] [PMID: 10228280]
[10]
Volpe JJ. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009; 8(1): 110-24.
[http://dx.doi.org/10.1016/S1474-4422(08)70294-1] [PMID: 19081519]
[11]
Ou X, Glasier CM, Ramakrishnaiah RH, et al. Impaired white matter development in extremely low-birth-weight infants with previous brain hemorrhage. AJNR Am J Neuroradiol 2014; 35(10): 1983-9.
[http://dx.doi.org/10.3174/ajnr.A3988] [PMID: 24874534]
[12]
Wagenaar N, Chau V, Groenendaal F, et al. Clinical risk factors for punctate white matter lesions on early magnetic resonance imaging in preterm newborns. J Pediatr 2017; 182: 34-40.e1.
[http://dx.doi.org/10.1016/j.jpeds.2016.11.073] [PMID: 28063691]
[13]
Leviton A, Gilles F. Ventriculomegaly, delayed myelination, white matter hypoplasia, and “periventricular” leukomalacia: How are they related? Pediatr Neurol 1996; 15(2): 127-36.
[http://dx.doi.org/10.1016/0887-8994(96)00157-9] [PMID: 8888047]
[14]
Pierson CR, Folkerth RD, Billiards SS, et al. Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 2007; 114(6): 619-31.
[http://dx.doi.org/10.1007/s00401-007-0295-5] [PMID: 17912538]
[15]
Volpe JJ. The encephalopathy of prematurity-brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol 2009; 16(4): 167-78.
[http://dx.doi.org/10.1016/j.spen.2009.09.005] [PMID: 19945651]
[16]
Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 2001; 21(4): 1302-12.
[http://dx.doi.org/10.1523/JNEUROSCI.21-04-01302.2001] [PMID: 11160401]
[17]
Haynes RL, Billiards SS, Borenstein NS, Volpe JJ, Kinney HC. Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr Res 2008; 63(6): 656-61.
[http://dx.doi.org/10.1203/PDR.0b013e31816c825c] [PMID: 18520330]
[18]
Tzarouchi LC, Xydis V, Zikou AK, et al. Diffuse periventricular leukomalacia in preterm children: Assessment of grey matter changes by MRI. Pediatr Radiol 2011; 41(12): 1545-51.
[http://dx.doi.org/10.1007/s00247-011-2223-z] [PMID: 21901522]
[19]
Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ. White matter injury in the premature infant: A comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol 2003; 24(5): 805-9.
[PMID: 12748075]
[20]
Rezaie P, Dean A. Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 2002; 22(3): 106-32.
[http://dx.doi.org/10.1046/j.1440-1789.2002.00438.x]
[21]
Zaghloul N, Patel H, Ahmed MN. A model of periventricular leukomalacia (PVL) in neonate mice with histopathological and neurodevelopmental outcomes mimicking human PVL in neonates. PLoS One 2017; 12(4): e0175438.
[http://dx.doi.org/10.1371/journal.pone.0175438] [PMID: 28406931]
[22]
Zubiaurre-Elorza L, Soria-Pastor S, Junque C, et al. Gray matter volume decrements in preterm children with periventricular leukomalacia. Pediatr Res 2011; 69(6): 554-60.
[http://dx.doi.org/10.1203/PDR.0b013e3182182366] [PMID: 21386751]
[23]
Hinojosa-Rodríguez M, Harmony T, Carrillo-Prado C, et al. Clinical neuroimaging in the preterm infant: Diagnosis and prognosis. Neuroimage Clin 2017; 16: 355-68.
[http://dx.doi.org/10.1016/j.nicl.2017.08.015] [PMID: 28861337]
[24]
Graham EM, Holcroft CJ, Rai KK, Donohue PK, Allen MC. Neonatal cerebral white matter injury in preterm infants is associated with culture positive infections and only rarely with metabolic acidosis. Am J Obstet Gynecol 2004; 191(4): 1305-10.
[http://dx.doi.org/10.1016/j.ajog.2004.06.058] [PMID: 15507958]
[25]
Lean RE, Han RH, Smyser TA, et al. Altered neonatal white and gray matter microstructure is associated with neurodevelopmental impairments in very preterm infants with high-grade brain injury. Pediatr Res 2019; 86(3): 365-74.
[http://dx.doi.org/10.1038/s41390-019-0461-1] [PMID: 31212303]
[26]
Rimol LM, Botellero VL, Bjuland KJ, et al. Reduced white matter fractional anisotropy mediates cortical thickening in adults born preterm with very low birthweight. Neuroimage 2019; 188: 217-27.
[http://dx.doi.org/10.1016/j.neuroimage.2018.11.050] [PMID: 30502447]
[27]
Andiman SE, Haynes RL, Trachtenberg FL, et al. The cerebral cortex overlying periventricular leukomalacia: Analysis of pyramidal neurons. Brain Pathol 2010; 20(4): 803-14.
[http://dx.doi.org/10.1111/j.1750-3639.2010.00380.x] [PMID: 20331617]
[28]
Meng C, Bäuml JG, Daamen M, et al. Extensive and interrelated subcortical white and gray matter alterations in preterm-born adults. Brain Struct Funct 2016; 221(4): 2109-21.
[http://dx.doi.org/10.1007/s00429-015-1032-9] [PMID: 25820473]
[29]
Inder TE, Warfield SK, Wang H, Hüppi PS, Volpe JJ. Abnormal cerebral structure is present at term in premature infants. Pediatrics 2005; 115(2): 286-94.
[http://dx.doi.org/10.1542/peds.2004-0326] [PMID: 15687434]
[30]
Rees S, Harding R, Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci 2011; 29(6): 551-63.
[http://dx.doi.org/10.1016/j.ijdevneu.2011.04.004] [PMID: 21527338]
[31]
Ophelders DRMG, Gussenhoven R, Klein L, et al. Preterm brain injury, antenatal triggers, and therapeutics: Timing is key. Cells 2020; 9(8): 1871.
[http://dx.doi.org/10.3390/cells9081871] [PMID: 32785181]
[32]
Fu J, Xue X, Chen L, Fan G, Pan L, Mao J. Studies on the value of diffusion-weighted MR imaging in the early prediction of periventricular leukomalacia. J Neuroimaging 2009; 19(1): 13-8.
[http://dx.doi.org/10.1111/j.1552-6569.2008.00247.x] [PMID: 18393955]
[33]
Li B, Concepcion K, Meng X, Zhang L. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol 2017; 159: 50-68.
[http://dx.doi.org/10.1016/j.pneurobio.2017.10.006] [PMID: 29111451]
[34]
Liu W, Huang J, Doycheva D, Gamdzyk M, Tang J, Zhang JH. RvD1binding with FPR2 attenuates inflammation via Rac1/NOX2 pathway after neonatal hypoxic-ischemic injury in rats. Exp Neurol 2019; 320: 112982.
[http://dx.doi.org/10.1016/j.expneurol.2019.112982] [PMID: 31247196]
[35]
Li T, Li K, Zhang S, et al. Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice. Cell Death Dis 2020; 11(1): 77.
[http://dx.doi.org/10.1038/s41419-020-2280-z] [PMID: 32001673]
[36]
Arpino C, D’Argenzio L, Ticconi C, et al. Brain damage in preterm infants: Etiological pathways. Ann 1st Super Sanita 2005; 41(2): 229-37.
[PMID: 16244398]
[37]
Pregnolato S, Chakkarapani E, Isles AR, Luyt K. Glutamate transport and preterm brain injury. Front Physiol 2019; 10: 417.
[http://dx.doi.org/10.3389/fphys.2019.00417] [PMID: 31068830]
[38]
Omer M, Melo AM, Kelly L, et al. Emerging role of the NLRP3 inflammasome and interleukin-1β in neonates. Neonatology 2020; 117(5): 545-54.
[http://dx.doi.org/10.1159/000507584] [PMID: 33075792]
[39]
Galinsky R, Dhillon SK, Dean JM, et al. Tumor necrosis factor inhibition attenuates white matter gliosis after systemic inflammation in preterm fetal sheep. J Neuroinflammation 2020; 17(1): 92.
[http://dx.doi.org/10.1186/s12974-020-01769-6] [PMID: 32293473]
[40]
Williams M, Zhang Z, Nance E, et al. Maternal inflammation results in altered tryptophan metabolism in rabbit placenta and fetal brain. Dev Neurosci 2017; 39(5): 399-412.
[http://dx.doi.org/10.1159/000471509] [PMID: 28490020]
[41]
Dammann O, O’Shea TM. Cytokines and perinatal brain damage. Clin Perinatol 2008; 35(4): 643-63.
[http://dx.doi.org/10.1016/j.clp.2008.07.011] [PMID: 19026332]
[42]
Cainelli E, Arrigoni F, Vedovelli L. White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog Neurobiol 2020; 193: 101845.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101845] [PMID: 32505757]
[43]
Yap V, Perlman JM. Mechanisms of brain injury in newborn infants associated with the fetal inflammatory response syndrome. Semin Fetal Neonatal Med 2020; 25(4): 101110.
[http://dx.doi.org/10.1016/j.siny.2020.101110] [PMID: 32303463]
[44]
Keunen K, van Elburg RM, van Bel F, Benders MJ. Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr Res 2015; 77(1-2): 148-55.
[http://dx.doi.org/10.1038/pr.2014.171] [PMID: 25314585]
[45]
Disdier C, Awa F, Chen X, et al. Lipopolysaccharide-induced changes in the neurovascular unit in the preterm fetal sheep brain. J Neuroinflammation 2020; 17(1): 167.
[http://dx.doi.org/10.1186/s12974-020-01852-y] [PMID: 32466771]
[46]
Affeldt BM, Obenaus A, Chan J, Pardo AC. Region specific oligodendrocyte transcription factor expression in a model of neonatal hypoxic injury. Int J Dev Neurosci 2017; 61(1): 1-11.
[http://dx.doi.org/10.1016/j.ijdevneu.2017.05.001] [PMID: 28546087]
[47]
Akundi RS, Rivkees SA. Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells. PLoS One 2009; 4(3): e4739.
[http://dx.doi.org/10.1371/journal.pone.0004739] [PMID: 19270736]
[48]
Mann SA, Versmold B, Marx R, et al. Corticosteroids reverse cytokine-induced block of survival and differentiation of oligodendrocyte progenitor cells from rats. J Neuroinflammation 2008; 5(1): 39.
[http://dx.doi.org/10.1186/1742-2094-5-39] [PMID: 18808689]
[49]
Pugni L, Pietrasanta C, Acaia B, et al. Chorioamnionitis and neonatal outcome in preterm infants: A clinical overview. J Matern Fetal Neonatal Med 2016; 29(9): 1525-9.
[http://dx.doi.org/10.3109/14767058.2015.1053862]
[50]
Buser JR, Maire J, Riddle A, et al. Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 2012; 71(1): 93-109.
[http://dx.doi.org/10.1002/ana.22627] [PMID: 22275256]
[51]
Segovia KN, McClure M, Moravec M, et al. Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 2008; 63(4): 520-30.
[http://dx.doi.org/10.1002/ana.21359] [PMID: 18393269]
[52]
Back SA. White matter injury in the preterm infant: Pathology and mechanisms. Acta Neuropathol 2017; 134(3): 331-49.
[http://dx.doi.org/10.1007/s00401-017-1718-6] [PMID: 28534077]
[53]
Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 2009; 3: 5.
[http://dx.doi.org/10.3389/neuro.05.005.2009] [PMID: 19521542]
[54]
Janowska J, Gargas J, Ziemka-Nalecz M, Zalewska T, Sypecka J. Oligodendrocyte response to pathophysiological conditions triggered by episode of perinatal hypoxia-ischemia: Role of IGF-1 secretion by glial cells. Mol Neurobiol 2020; 57(10): 4250-68.
[http://dx.doi.org/10.1007/s12035-020-02015-z] [PMID: 32691304]
[55]
Reid MV, Murray KA, Marsh ED, Golden JA, Simmons RA, Grinspan JB. Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4. J Neuropathol Exp Neurol 2012; 71(7): 640-53.
[http://dx.doi.org/10.1097/NEN.0b013e31825cfa81] [PMID: 22710965]
[56]
Eikenes L, Martinussen MP, Lund LK, et al. Being born small for gestational age reduces white matter integrity in adulthood: A prospective cohort study. Pediatr Res 2012; 72(6): 649-54.
[http://dx.doi.org/10.1038/pr.2012.129] [PMID: 23007032]
[57]
Fu CH, Zhang BH, Fang CZ, et al. Long non-coding RNA CRNDE deteriorates intrauterine infection-induced neonatal brain injury. Mol Cell Probes 2020; 52: 101565.
[http://dx.doi.org/10.1016/j.mcp.2020.101565] [PMID: 32234564]
[58]
Zhang X, Tang X, Liu K, Hamblin MH, Yin KJ. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci 2017; 37(7): 1797-806.
[http://dx.doi.org/10.1523/JNEUROSCI.3389-16.2017] [PMID: 28093478]
[59]
Yang Q, Wu MF, Zhu LH, Qiao LX, Zhao RB, Xia ZK. Long non-coding RNA Snhg3 protects against hypoxia/ischemia-induced neonatal brain injury. Exp Mol Pathol 2020; 112: 104343.
[http://dx.doi.org/10.1016/j.yexmp.2019.104343] [PMID: 31751562]
[60]
Kalani M, Shariat M, Khalesi N, Farahani Z, Ahmadi S. A comparison of early Ibuprofen and indomethacin administration to prevent intraventricular hemorrhage among preterm infants. Acta Med Iran 2016; 54(12): 788-92.
[PMID: 28120591]
[61]
Taskin E, Ozcan K, Canacankatan N, Satar M, Yapicioglu HY, Erdogan S. The effects of indomethacin on caspases, glutathione level and lipid peroxidation in the newborn rats with hypoxic-ischemic cerebral injury. Brain Res 2009; 1289: 118-23.
[http://dx.doi.org/10.1016/j.brainres.2009.07.010] [PMID: 19615346]
[62]
Fowlie PW, Davis PG, McGuire W. Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst Rev 2010; 2010(7): CD000174.
[http://dx.doi.org/10.1002/14651858.CD000174.pub2] [PMID: 20614421]
[63]
Garner RS, Miller C, Burchfield DJ. Prophylactic indomethacin infusion increases fractional cerebral oxygen extraction in ELBW neonates. J Perinatol 2012; 32(9): 695-8.
[http://dx.doi.org/10.1038/jp.2011.175]
[64]
Foglia EE, Roberts RS, Stoller JZ, Davis PG, Haslam R, Schmidt B. Trial of Indomethacin Prophylaxis in Preterms Investigators. Effect of prophylactic indomethacin in extremely low birth weight infants based on the predicted risk of severe intraventricular hemorrhage. Neonatology 2018; 113(2): 183-6.
[http://dx.doi.org/10.1159/000485172] [PMID: 29258076]
[65]
Alotaibi W, Alsaif NS, Ahmed IA, et al. Reduction of severe intraventricular hemorrhage, a tertiary single-center experience: Incidence trends, associated risk factors, and hospital policy. ChNS 2020; 36(12): 2971-9.
[http://dx.doi.org/10.1007/s00381-020-04621-7]
[66]
Ryan M, Lacaze-Masmonteil T, Mohammad K. Neuroprotection from acute brain injury in preterm infants. Paediatr Child Health 2019; 24(4): 276-90.
[http://dx.doi.org/10.1093/pch/pxz056] [PMID: 31239818]
[67]
Mirza H, Oh W, Laptook A, Vohr B, Tucker R, Stonestreet BS. Indomethacin prophylaxis to prevent intraventricular hemorrhage: Association between incidence and timing of drug administration. J Pediatr 2013; 163(3): 706-10.e1.
[http://dx.doi.org/10.1016/j.jpeds.2013.02.030] [PMID: 23522865]
[68]
Mirza H, Laptook AR, Oh W, et al. Generic Database Subcommittee of the NICHD Neonatal Research Network. Effects of indomethacin prophylaxis timing on intraventricular haemorrhage and patent ductus arteriosus in extremely low birth weight infants. Arch Dis Child Fetal Neonatal Ed 2016; 101(5): F418-22.
[http://dx.doi.org/10.1136/archdischild-2015-309112] [PMID: 26733540]
[69]
Ment LR, Vohr BR, Makuch RW, et al. Prevention of intraventricular hemorrhage by indomethacin in male preterm infants. J Pediatr 2004; 145(6): 832-4.
[http://dx.doi.org/10.1016/j.jpeds.2004.07.035] [PMID: 15580211]
[70]
Bhat R, Zayek M, Maertens P, Eyal F. A single-dose indomethacin prophylaxis for reducing perinatal brain injury in extremely low birth weight infants: A non-inferiority analysis. J Perinatol 2019; 39(11): 1462-71.
[http://dx.doi.org/10.1038/s41372-019-0509-4]
[71]
Levene M. Minimising neonatal brain injury: how research in the past five years has changed my clinical practice. Arch Dis Child 2007; 92(3): 261-5.
[http://dx.doi.org/10.1136/adc.2005.086371] [PMID: 17337687]
[72]
Brown MK, Poeltler DM, Hassen KO, et al. Incidence of hypocapnia, hypercapnia, and acidosis and the associated risk of adverse events in preterm neonates. Respir Care 2018; 63(8): 943-9.
[http://dx.doi.org/10.4187/respcare.05801] [PMID: 29615483]
[73]
Erickson SJ, Grauaug A, Gurrin L, Swaminathan M. Hypocarbia in the ventilated preterm infant and its effect on intraventricular haemorrhage and bronchopulmonary dysplasia. J Paediatr Child Health 2002; 38(6): 560-2.
[http://dx.doi.org/10.1046/j.1440-1754.2002.00041.x] [PMID: 12410866]
[74]
Schopfer L, Habre W, Pichon I, Fodor GH. Effect of permissive mild hypercapnia on cerebral vasoreactivity in infants: A randomized controlled crossover trial. Anesth Analg 2021; 133(4): 976-83. Advance online publication
[http://dx.doi.org/10.1213/ANE.0000000000005325] [PMID: 33410612]
[75]
Leviton A, Allred EN, Joseph RM, O’Shea TM, Kuban KCK. ELGAN Study Investigators. Newborn blood gas derangements of children born extremely preterm and neurocognitive dysfunctions at age 10 years. Respir Physiol Neurobiol 2017; 242: 66-72.
[http://dx.doi.org/10.1016/j.resp.2017.04.002] [PMID: 28396202]
[76]
Thome UH, Dreyhaupt J, Genzel-Boroviczeny O, et al. PHELBI Study Group. Influence of PCO2 control on clinical and neurodevelopmental outcomes of extremely low birth weight infants. Neonatology 2018; 113(3): 221-30.
[http://dx.doi.org/10.1159/000485828] [PMID: 29298438]
[77]
Victor S, Appleton RE, Beirne M, Marson AG, Weindling AM. Effect of carbon dioxide on background cerebral electrical activity and fractional oxygen extraction in very low birth weight infants just after birth. Pediatr Res 2005; 58(3): 579-85.
[http://dx.doi.org/10.1203/01.pdr.0000169402.13435.09] [PMID: 16148077]
[78]
Stenzel M, Stüwe-Kunz L, Bührer C, Roll C. Spontaneous hypocarbia without mechanical ventilation in preterm infants with cystic periventricular leukomalacia. Acta Paediatr 2020; 109(11): 2292-8.
[http://dx.doi.org/10.1111/apa.15235]
[79]
Zozaya C, Avila-Alvarez A, García-Muñoz RF, et al. The impact of postnatal systemic steroids on the growth of preterm infants: A multicenter cohort study. Nutrients 2019; 11(11): 2729.
[http://dx.doi.org/10.3390/nu11112729] [PMID: 31717933]
[80]
Harris C, Bisquera A, Zivanovic S, et al. Postnatal dexamethasone exposure and lung function in adolescents born very prematurely. PLoS One 2020; 15(8): e0237080.
[http://dx.doi.org/10.1371/journal.pone.0237080] [PMID: 32764779]
[81]
Cuna A, Lewis T, Dai H, Nyp M, Truog WE. Timing of postnatal corticosteroid treatment for bronchopulmonary dysplasia and its effect on outcomes. Pediatr Pulmonol 2019; 54(2): 165-70.
[http://dx.doi.org/10.1002/ppul.24202] [PMID: 30537393]
[82]
Buchiboyina AK, Yip CSA, Kohan R, et al. Effect of cumulative dexamethasone dose in preterm infants on neurodevelopmental and growth outcomes: A Western Australia experience. Arch Dis Child Fetal Neonatal Ed 2021; 106(1): 69-75.
[http://dx.doi.org/10.1136/archdischild-2020-319147] [PMID: 32690582]
[83]
Yeh C, Yeh CM, Yu TH, Chang KH, Huang CC, Hsu KS. Neonatal dexamethasone treatment exacerbates hypoxia/ischemia-induced white matter injury. Mol Neurobiol 2017; 54(9): 7083-95.
[http://dx.doi.org/10.1007/s12035-016-0241-4] [PMID: 27796747]
[84]
Shinwell ES, Karplus M, Reich D, et al. Early postnatal dexamethasone treatment and increased incidence of cerebral palsy. Arch Dis Child Fetal Neonatal Ed 2000; 83(3): F177-81.
[http://dx.doi.org/10.1136/fn.83.3.F177] [PMID: 11040164]
[85]
Doyle LW, Ehrenkranz RA, Halliday HL. Early (< 8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev 2014; 5: CD001146.
[http://dx.doi.org/10.1002/14651858.CD001146.pub4] [PMID: 24825456]
[86]
Yeh TF, Lin YJ, Huang CC, et al. Early dexamethasone therapy in preterm infants: A follow-up study. Pediatrics 1998; 101(5): E7.
[http://dx.doi.org/10.1542/peds.101.5.e7] [PMID: 9565440]
[87]
Kraft KE, Verhage SE, den Heijer AE, Bos AF. Functional outcome at school age of preterm-born children treated with low-dose dexamethasone in infancy. Early Hum Dev 2019; 129: 16-22.
[http://dx.doi.org/10.1016/j.earlhumdev.2018.12.016] [PMID: 30597329]
[88]
Tiong NP, Peng CC, Hsin-Ju KM, et al. Impact of inhaled corticosteroids on the neurodevelopmental outcomes in chronically ventilated extremely low birth weight preterm infants. JFMA 2021; 120(1 Pt 1): 275-80.
[http://dx.doi.org/10.1016/j.jfma.2020.05.015]
[89]
Cheong JL, Burnett AC, Lee KJ, et al. Association between postnatal dexamethasone for treatment of bronchopulmonary dysplasia and brain volumes at adolescence in infants born very preterm. J Pediatr 2014; 164(4): 737-743.e1.
[http://dx.doi.org/10.1016/j.jpeds.2013.10.083] [PMID: 24332820]
[90]
He Y, Zhang Y, Gao S, et al. Hydrocortisone to treat early bronchopulmonary dysplasia in very preterm infants: Study protocol for a randomized controlled trial. Trials 2020; 21(1): 762.
[http://dx.doi.org/10.1186/s13063-020-04698-0] [PMID: 32883333]
[91]
Cheong JLY, Doyle LW. Long-term effects of postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia: Balancing the risks and benefits. Semin Fetal Neonatal Med 2019; 24(3): 197-201.
[http://dx.doi.org/10.1016/j.siny.2019.03.002] [PMID: 30962159]
[92]
Onland W, Cools F, Kroon A, et al. STOP-BPD Study Group. Effect of hydrocortisone therapy initiated 7 to 14 days after birth on mortality or bronchopulmonary dysplasia among very preterm infants receiving mechanical ventilation: A randomized clinical trial. JAMA 2019; 321(4): 354-63.
[http://dx.doi.org/10.1001/jama.2018.21443] [PMID: 30694322]
[93]
Krishna S, Hutton A, Aronowitz E, Moore H, Vannucci SJ. The effects of adding prophylactic phenobarbital to therapeutic hypothermia in the term-equivalent hypoxic-ischemic rat. Pediatr Res 2018; 83(2): 506-13.
[http://dx.doi.org/10.1038/pr.2017.266] [PMID: 29053702]
[94]
M Toye J. Mirea L, Yang J, Sankaran K. Trends in narcotics and sedative use during mechanical ventilation of preterm infants in Canadian neonatal intensive care units. Chin J Contemp Pediatr 2018; 20(1): 5-11.
[http://dx.doi.org/10.7499/j.issn.1008-8830.2018.01.002]
[95]
Crowther CA, Crosby DD, Henderson-Smart DJ. Phenobarbital prior to preterm birth for preventing neonatal periventricular haemorrhage. Cochrane Database Syst Rev 2010; 2010(1): CD000164.
[http://dx.doi.org/10.1002/14651858.CD000164.pub2] [PMID: 20091502]
[96]
Shankaran S, Papile LA, Wright LL, et al. Neurodevelopmental outcome of premature infants after antenatal phenobarbital exposure. Am J Obstet Gynecol 2002; 187(1): 171-7.
[http://dx.doi.org/10.1067/mob.2002.122445] [PMID: 12114906]
[97]
Smit E, Odd D, Whitelaw A. Postnatal phenobarbital for the prevention of intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev 2013; (8): CD001691.
[http://dx.doi.org/10.1002/14651858.CD001691.pub3] [PMID: 23943189]
[98]
Chen HS, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 2006; 97(6): 1611-26.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03991.x] [PMID: 16805772]
[99]
Jantzie LL, Talos DM, Jackson MC, et al. Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits in human white and gray matter: Potential mechanism of increased vulnerability in the immature brain.Cerebral Cortex. 2015; 25: pp. 482-95.
[http://dx.doi.org/10.1093/cercor/bht246]
[100]
Kemp JA, McKernan RM. NMDA receptor pathways as drug targets. Nat Neurosci 2002; 5 (Suppl.): 1039-42.
[http://dx.doi.org/10.1038/nn936]
[101]
Sanz-Clemente A, Nicoll RA, Roche KW. Diversity in NMDA receptor composition: Many regulators, many consequences. Neuroscientist 2013; 19(1): 62-75.
[http://dx.doi.org/10.1177/1073858411435129] [PMID: 22343826]
[102]
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current therapies for neonatal hypoxic-ischaemic and infection-sensitised hypoxic-ischaemic brain damage. Front Synaptic Neurosci 2021; 13: 709301.
[http://dx.doi.org/10.3389/fnsyn.2021.709301] [PMID: 34504417]
[103]
Polat İ, Cilaker Mıcılı S, Çalışır M, et al. Neuroprotective effects of lacosamide and memantine on hyperoxic brain injury in rats. Neurochem Res 2020; 45(8): 1920-9.
[http://dx.doi.org/10.1007/s11064-020-03056-5] [PMID: 32444924]
[104]
Manning SM, Boll G, Fitzgerald E, Selip DB, Volpe JJ, Jensen FE. The clinically available NMDA receptor antagonist, memantine, exhibits relative safety in the developing rat brain. Int J Dev Neurosci 2011; 29(7): 767-73.
[http://dx.doi.org/10.1016/j.ijdevneu.2011.05.005] [PMID: 21624454]
[105]
Liu C, Lin N, Wu B, Qiu Y. Neuroprotective effect of memantine combined with topiramate in hypoxic-ischemic brain injury. Brain Res 2009; 1282: 173-82.
[http://dx.doi.org/10.1016/j.brainres.2009.05.071] [PMID: 19501064]
[106]
Manning SM, Talos DM, Zhou C, et al. NMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia. J Neurosci 2008; 28(26): 6670-8.
[http://dx.doi.org/10.1523/JNEUROSCI.1702-08.2008] [PMID: 18579741]
[107]
Filippi L, Fiorini P, Catarzi S, et al. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI): A feasibility study. J Matern Fetal Neonatal Med 2018; 31(8): 973-80.
[http://dx.doi.org/10.1080/14767058.2017.1304536]
[108]
Chen G, Chen Y, Xie Y, et al. Topiramate for hypoxic ischemic encephalopathy: A systematic review protocol. Medicine (Baltimore) 2020; 99(17): e18704.
[http://dx.doi.org/10.1097/MD.0000000000018704] [PMID: 32332593]
[109]
Sfaello I, Baud O, Arzimanoglou A, Gressens P. Topiramate prevents excitotoxic damage in the newborn rodent brain. Neurobiol Dis 2005; 20(3): 837-48.
[http://dx.doi.org/10.1016/j.nbd.2005.05.019] [PMID: 16009561]
[110]
Nuñez-Ramiro A, Benavente-Fernández I, Valverde E, et al. on behalf of the Hypotop Study Group. Topiramate plus cooling for hypoxic-ischemic encephalopathy: A randomized, controlled, multicenter, double-blinded trial. Neonatology 2019; 116(1): 76-84.
[http://dx.doi.org/10.1159/000499084] [PMID: 31091527]
[111]
Landucci E, Filippi L, Gerace E, Catarzi S, Guerrini R, Pellegrini-Giampietro DE. Neuroprotective effects of topiramate and memantine in combination with hypothermia in hypoxic-ischemic brain injury in vitro and in vivo. Neurosci Lett 2018; 668: 103-7.
[http://dx.doi.org/10.1016/j.neulet.2018.01.023] [PMID: 29339173]
[112]
Mazur A, Maier JA, Rock E, Gueux E, Nowacki W, Rayssiguier Y. Magnesium and the inflammatory response: Potential physiopathological implications. Arch Biochem Biophys 2007; 458(1): 48-56.
[http://dx.doi.org/10.1016/j.abb.2006.03.031] [PMID: 16712775]
[113]
Imamoglu EY, Gursoy T, Karatekin G, Ovali F. Effects of antenatal magnesium sulfate treatment on cerebral blood flow velocities in preterm neonates. J Perinatol 2014; 34: 192-6.
[http://dx.doi.org/10.1038/jp.2013.182]
[114]
Doyle LW, Anderson PJ, Haslam R, Lee KJ, Crowther C. Australasian Collaborative Trial of Magnesium Sulphate (ACTOMgSO4) Study Group. School-age outcomes of very preterm infants after antenatal treatment with magnesium sulfate vs. placebo. JAMA 2014; 312(11): 1105-13.
[http://dx.doi.org/10.1001/jama.2014.11189] [PMID: 25226476]
[115]
Bhat MA, Charoo BA, Bhat JI, Ahmad SM, Ali SW, Mufti MU. Magnesium sulfate in severe perinatal asphyxia: A randomized, placebo-controlled trial. Pediatrics 2009; 123(5): e764-9.
[http://dx.doi.org/10.1542/peds.2007-3642] [PMID: 19349375]
[116]
Longo M, Jain V, Vedernikov YP, Facchinetti F, Saade GR, Garfield RE. Endothelium dependence and gestational regulation of inhibition of vascular tone by magnesium sulfate in rat aorta. Am J Obstet Gynecol 2001; 184(5): 971-8.
[http://dx.doi.org/10.1067/mob.2001.112587] [PMID: 11303207]
[117]
Ichiba H, Yokoi T, Tamai H, Ueda T, Kim T J, Yamano T. Neurodevelopmental outcome of infants with birth asphyxia treated with magnesium sulfate. Pediatrics international: official journal of the Japan Pediatric Society 2006; 48(1): 70-5.
[http://dx.doi.org/10.1111/j.1442-200X.2006.02167.x]
[118]
Wilhelm S, Ma D, Maze M, Franks NP. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 2002; 96(6): 1485-91.
[http://dx.doi.org/10.1097/00000542-200206000-00031] [PMID: 12170064]
[119]
Dingley J, Tooley J, Porter H, Thoresen M. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke 2006; 37(2): 501-6.
[http://dx.doi.org/10.1161/01.STR.0000198867.31134.ac] [PMID: 16373643]
[120]
Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology 2010; 112(3): 614-22.
[http://dx.doi.org/10.1097/ALN.0b013e3181cea398] [PMID: 20124979]
[121]
de Sousa SL, Dickinson R, Lieb WR, Franks NP. Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 2000; 92(4): 1055-66.
[http://dx.doi.org/10.1097/00000542-200004000-00024] [PMID: 10754626]
[122]
Liu F, Liu S, Patterson TA, et al. Effects of xenon-based anesthetic exposure on the expression levels of Polysialic Acid Neural Cell Adhesion Molecule (PSA-NCAM) on human neural stem cell-derived neurons. Mol Neurobiol 2020; 57(1): 217-25.
[http://dx.doi.org/10.1007/s12035-019-01771-x] [PMID: 31522383]
[123]
Petzelt C, Blom P, Schmehl W, Müller J, Kox WJ. Prevention of neurotoxicity in hypoxic cortical neurons by the noble gas xenon. Life Sci 2003; 72(17): 1909-18.
[http://dx.doi.org/10.1016/S0024-3205(02)02439-6] [PMID: 12597990]
[124]
Phillips T, Menassa DA, Grant S, Cohen N, Thoresen M. The effects of Xenon gas inhalation on neuropathology in a placental-induced brain injury model in neonates: A pilot study. Acta Paediatr 2021; 110(1): 119-22.
[http://dx.doi.org/10.1111/apa.15486]
[125]
Azzopardi D, Robertson NJ, Kapetanakis A, et al. Anticonvulsant effect of xenon on neonatal asphyxial seizures. Arch Dis Child Fetal Neonatal Ed 2013; 98(5): F437-9.
[http://dx.doi.org/10.1136/archdischild-2013-303786] [PMID: 23572341]
[126]
Zhang M, Cui Y, Zhu W, et al. Attenuation of the mutual elevation of iron accumulation and oxidative stress may contribute to the neuroprotective and anti-seizure effects of xenon in neonatal hypoxia-induced seizures. Free Radic Biol Med 2020; 161: 212-23.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.09.030] [PMID: 33075502]
[127]
Sabir H, Osredkar D, Maes E, Wood T, Thoresen M. Xenon combined with therapeutic hypothermia is not neuroprotective after severe hypoxia-ischemia in neonatal rats. PLoS One 2016; 11(6): e0156759.
[http://dx.doi.org/10.1371/journal.pone.0156759] [PMID: 27253085]
[128]
Rüegger CM, Davis PG, Cheong JL. Xenon as an adjuvant to therapeutic hypothermia in near-term and term newborns with hypoxic-ischaemic encephalopathy. Cochrane Database Syst Rev 2018; 8(8): CD012753.
[http://dx.doi.org/10.1002/14651858.CD012753.pub2] [PMID: 30123976]
[129]
Faulkner S, Bainbridge A, Kato T, et al. Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann Neurol 2011; 70(1): 133-50.
[http://dx.doi.org/10.1002/ana.22387] [PMID: 21674582]
[130]
Rodríguez-Fanjul J, Durán Fernández-Feijóo C, Lopez-Abad M, et al. Neuroprotection with hypothermia and allopurinol in an animal model of hypoxic-ischemic injury: Is it a gender question? PLoS One 2017; 12(9): e0184643.
[http://dx.doi.org/10.1371/journal.pone.0184643] [PMID: 28931035]
[131]
Kaandorp JJ, Derks JB, Oudijk MA, et al. Antenatal allopurinol reduces hippocampal brain damage after acute birth asphyxia in late gestation fetal sheep. Reprod Sci 2014; 21(2): 251-9.
[http://dx.doi.org/10.1177/1933719113493516] [PMID: 23793473]
[132]
Chaudhari T, McGuire W. Allopurinol for preventing mortality and morbidity in newborn infants with hypoxic-ischaemic encephalopathy. Cochrane Database Syst Rev 2012; (7): CD006817.
[http://dx.doi.org/10.1002/14651858.CD006817.pub3] [PMID: 22786499]
[133]
Maiwald CA, Annink KV, Rüdiger M, et al. Effect of allopurinol in addition to hypothermia treatment in neonates for hypoxic-ischemic brain injury on neurocognitive outcome (ALBINO): Study protocol of a blinded randomized placebo-controlled parallel group multicenter trial for superiority (phase III). BMC Pediatr 2019; 19(1): 210.
[http://dx.doi.org/10.1186/s12887-019-1566-8] [PMID: 31248390]
[134]
Shen Y, Yu HM, Yuan TM, Gu WZ, Wu YD. Erythropoietin attenuates white matter damage, proinflammatory cytokine and chemokine induction in developing rat brain after intra-uterine infection. Neuropathol 2009; 41(6): 528-35.
[http://dx.doi.org/10.1111/j.1440-1789.2009.01005.x]
[135]
Wu YW, Bauer LA, Ballard RA, et al. Erythropoietin for neuroprotection in neonatal encephalopathy: Safety and pharmacokinetics. Pediatrics 2012; 130(4): 683-91.
[http://dx.doi.org/10.1542/peds.2012-0498] [PMID: 23008465]
[136]
Wang R, Li J, Duan Y, Tao Z, Zhao H, Luo Y. Effects of erythropoietin on gliogenesis during cerebral ischemic/reperfusion recovery in adult mice. Aging Dis 2017; 8(4): 410-9.
[http://dx.doi.org/10.14336/AD.2016.1209] [PMID: 28840056]
[137]
Yates N, Gunn AJ, Bennet L, Dhillon SK, Davidson JO. Preventing brain injury in the preterm infant-current controversies and potential therapies. Int J Mol Sci 2021; 22(4): 1671.
[http://dx.doi.org/10.3390/ijms22041671] [PMID: 33562339]
[138]
Yan F, Zhang M, Meng Y, et al. Erythropoietin improves hypoxic-ischemic encephalopathy in neonatal rats after short-term anoxia by enhancing angiogenesis. Brain Res 2016; 1651: 104-13.
[http://dx.doi.org/10.1016/j.brainres.2016.09.024] [PMID: 27659964]
[139]
Kertesz N, Wu J, Chen TH, Sucov HM, Wu H. The role of erythropoietin in regulating angiogenesis. Dev Biol 2004; 276(1): 101-10.
[http://dx.doi.org/10.1016/j.ydbio.2004.08.025] [PMID: 15531367]
[140]
Hierro-Bujalance C, Infante-Garcia C, Sanchez-Sotano D, et al. Erythropoietin improves atrophy, bleeding and cognition in the newborn intraventricular hemorrhage. Front Cell Dev Biol 2020; 8: 571258.
[http://dx.doi.org/10.3389/fcell.2020.571258] [PMID: 33043002]
[141]
Liu H, Zhang M, Han X. Therapeutic effect of erythropoietin on brain injury in premature mice with intrauterine infection. Saudi J Biol Sci 2020; 27(8): 2129-33.
[http://dx.doi.org/10.1016/j.sjbs.2020.05.040] [PMID: 32714039]
[142]
Yin L, Wang S, Zhang N, et al. Elevation of stromal cell-derived factor 1 and C-X-C chemokine receptor type 4 in white matter damage treatment with recombinant human erythropoietin and human umbilical cord mesenchymal stem cells in a rat model of preterm birth. Int J Dev Neurosci 2020; 80(3): 247-56.
[http://dx.doi.org/10.1002/jdn.10021] [PMID: 32108377]
[143]
Juul SE, Comstock BA, Heagerty PJ, et al. High-dose erythropoietin for asphyxia and encephalopathy (HEAL): A randomized controlled trial - background, aims, and study protocol. Neonatology 2018; 113(4): 331-8.
[http://dx.doi.org/10.1159/000486820] [PMID: 29514165]
[144]
Brown MS, Eichorst D, Lala-Black B, Gonzalez R. Higher cumulative doses of erythropoietin and developmental outcomes in preterm infants. Pediatrics 2009; 124(4): e681-7.
[http://dx.doi.org/10.1542/peds.2008-2701] [PMID: 19786428]
[145]
Liang L, Yu J, Xiao L, Wang G. Sustained low-dose prophylactic early erythropoietin for improvement of neurological outcomes in preterm infants: A systematic review and meta-analysis. J Affect Disord 2021; 282: 1187-92.
[http://dx.doi.org/10.1016/j.jad.2021.01.018] [PMID: 33601694]
[146]
Ezenwa B, Ezeaka C, Fajolu I, et al. Impact of erythropoietin in the management of hypoxic ischaemic encephalopathy in resource-constrained settings: Protocol for a randomized control trial. BMC Neurol 2020; 20(1): 171.
[http://dx.doi.org/10.1186/s12883-020-01751-y] [PMID: 32366288]
[147]
Iwai M, Stetler RA, Xing J, et al. Enhanced oligodendrogenesis and recovery of neurological function by erythropoietin after neonatal hypoxic/ischemic brain injury. Stroke 2010; 41(5): 1032-7.
[http://dx.doi.org/10.1161/STROKEAHA.109.570325] [PMID: 20360553]
[148]
Zhu C, Kang W, Xu F, et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 2009; 124(2): e218-26.
[http://dx.doi.org/10.1542/peds.2008-3553] [PMID: 19651565]
[149]
Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2013; 2013(1): CD003311.
[http://dx.doi.org/10.1002/14651858.CD003311.pub3] [PMID: 23440789]
[150]
Koo E, Sheldon RA, Lee BS, Vexler ZS, Ferriero DM. Effects of therapeutic hypothermia on white matter injury from murine neonatal hypoxia-ischemia. Pediatr Res 2017; 82(3): 518-26.
[http://dx.doi.org/10.1038/pr.2017.75] [PMID: 28561815]
[151]
Shankaran S, Laptook AR, Ehrenkranz RA, et al. National Institute of Child Health and Human Development Neonatal Research Network. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005; 353(15): 1574-84.
[http://dx.doi.org/10.1056/NEJMcps050929] [PMID: 16221780]
[152]
Rao R, Trivedi S, Vesoulis Z, Liao SM, Smyser CD, Mathur AM. Safety and short-term outcomes of therapeutic hypothermia in preterm neonates 34-35 weeks gestational age with hypoxic-ischemic encephalopathy. J Pediatr 2017; 183: 37-42.
[http://dx.doi.org/10.1016/j.jpeds.2016.11.019] [PMID: 27979578]
[153]
Potter M, Rosenkrantz T, Fitch RH. Behavioral and neuroanatomical outcomes in a rat model of preterm hypoxic-ischemic brain Injury: Effects of caffeine and hypothermia. Int J Dev Neurosci 2018; 70(1): 46-55.
[http://dx.doi.org/10.1016/j.ijdevneu.2018.02.001] [PMID: 29476789]
[154]
Elliott KE, Schulga P. Cooling for longer or to lower temperatures has no effect on morbidity and mortality of neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Educ Pract Ed 2018; 103(4): 224.
[http://dx.doi.org/10.1136/archdischild-2018-315106] [PMID: 29748227]
[155]
Garofoli F, Longo S, Pisoni C, et al. Oral melatonin as a new tool for neuroprotection in preterm newborns: Study protocol for a randomized controlled trial. Trials 2021; 22(1): 82.
[http://dx.doi.org/10.1186/s13063-021-05034-w] [PMID: 33482894]
[156]
Lekic T, Manaenko A, Rolland W, et al. Neuroprotection by melatonin after germinal matrix hemorrhage in neonatal rats. Acta Neurochir Suppl (Wien) 2011; 111 (Suppl. 111): 201-6.
[http://dx.doi.org/10.1007/978-3-7091-0693-8_34] [PMID: 21725756]
[157]
Husson I, Mesplès B, Bac P, Vamecq J, Evrard P, Gressens P. Melatoninergic neuroprotection of the murine periventricular white matter against neonatal excitotoxic challenge. Ann Neurol 2002; 51(1): 82-92.
[http://dx.doi.org/10.1002/ana.10072] [PMID: 11782987]
[158]
Moretti R, Zanin A, Pansiot J, et al. Melatonin reduces excitotoxic blood-brain barrier breakdown in neonatal rats. Neuroscience 2015; 311: 382-97.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.044] [PMID: 26542996]
[159]
Jerez-Calero A, Salvatierra-Cuenca MT, Benitez-Feliponi Á, et al. Hypothermia plus melatonin in asphyctic newborns: A randomized-controlled pilot study. Pediatr Crit Care Med 2020; 21(7): 647-55.
[http://dx.doi.org/10.1097/PCC.0000000000002346]
[160]
Robertson NJ, Faulkner S, Fleiss B, et al. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain 2013; 136(Pt 1): 90-105.
[http://dx.doi.org/10.1093/brain/aws285] [PMID: 23183236]
[161]
Han W, Sun Y, Wang X, Zhu C, Blomgren K. Delayed, long-term administration of the caspase inhibitor Q-VD-OPh reduced brain injury induced by neonatal hypoxia-ischemia. Dev Neurosci 2014; 36(1): 64-72.
[http://dx.doi.org/10.1159/000357939] [PMID: 24525800]
[162]
Renolleau S, Fau S, Goyenvalle C, et al. Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: A role for gender. J Neurochem 2007; 100(4): 1062-71.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04269.x] [PMID: 17166174]
[163]
Kitase Y, Sato Y, Arai S, et al. Establishment of a novel fetal growth restriction model and development of a stem-cell therapy using umbilical cord-derived mesenchymal stromal cells. Front Cell Neurosci 2020; 14: 212.
[http://dx.doi.org/10.3389/fncel.2020.00212] [PMID: 32848614]
[164]
Park WS, Ahn SY, Sung SI, Ahn JY, Chang YS. Mesenchymal stem cells: The magic cure for intraventricular hemorrhage? Cell Transplant 2017; 26(3): 439-48.
[http://dx.doi.org/10.3727/096368916X694193] [PMID: 27938484]
[165]
Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852.
[http://dx.doi.org/10.3390/ijms18091852] [PMID: 28841158]
[166]
Ahn SY, Chang YS, Sung DK, et al. Optimal route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats. PLoS One 2015; 10(7): e0132919.
[http://dx.doi.org/10.1371/journal.pone.0132919] [PMID: 26208299]
[167]
Bae SH, Lee HS, Kang MS, Strupp BJ, Chopp M, Moon J. The levels of pro-inflammatory factors are significantly decreased in cerebral palsy patients following an allogeneic umbilical cord blood cell transplant. Int J Stem Cells 2012; 5(1): 31-8.
[http://dx.doi.org/10.15283/ijsc.2012.5.1.31] [PMID: 24298353]
[168]
Zhu LH, Bai X, Zhang N, Wang SY, Li W, Jiang L. Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage. Brain Res 2014; 1563: 13-21.
[http://dx.doi.org/10.1016/j.brainres.2014.03.030] [PMID: 24680746]
[169]
He M, Shi X, Yang M, Yang T, Li T, Chen J. Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Exp Neurol 2019; 311: 15-32.
[http://dx.doi.org/10.1016/j.expneurol.2018.09.006] [PMID: 30213506]
[170]
Vaes JEG, van Kammen CM, Trayford C, et al. Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity. Glia 2021; 69(3): 655-80.
[http://dx.doi.org/10.1002/glia.23919] [PMID: 33045105]
[171]
McDonald CA, Djuliannisaa Z, Petraki M, et al. Intranasal delivery of mesenchymal stromal cells protects against neonatal hypoxic⁻ischemic brain injury. Int J Mol Sci 2019; 20(10): 2449.
[http://dx.doi.org/10.3390/ijms20102449] [PMID: 31108944]
[172]
Ko HR, Ahn SY, Chang YS, et al. Human UCB-MSCs treatment upon intraventricular hemorrhage contributes to attenuate hippocampal neuron loss and circuit damage through BDNF-CREB signaling. Stem Cell Res Ther 2018; 9(1): 326.
[http://dx.doi.org/10.1186/s13287-018-1052-5] [PMID: 30463591]
[173]
Xu J, Feng Z, Wang X, et al. hUC-MSCs exert a neuroprotective effect via anti-apoptotic mechanisms in a neonatal HIE rat model. Cell Transplant 2019; 28(12): 1552-9.
[http://dx.doi.org/10.1177/0963689719874769] [PMID: 31512502]
[174]
Tang G, Liu Y, Zhang Z, et al. Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells 2014; 32(12): 3150-62.
[http://dx.doi.org/10.1002/stem.1808] [PMID: 25100404]
[175]
Cheng Z, Wang L, Qu M, et al. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice. J Neuroinflammation 2018; 15(1): 135.
[http://dx.doi.org/10.1186/s12974-018-1153-1] [PMID: 29724240]
[176]
Ahn SY, Chang YS, Sung SI, Park WS. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: Phase I dose-escalation clinical trial. Stem Cells Transl Med 2018; 7(12): 847-56.
[http://dx.doi.org/10.1002/sctm.17-0219] [PMID: 30133179]
[177]
Xie B, Gu P, Wang W, et al. Therapeutic effects of human umbilical cord mesenchymal stem cells transplantation on hypoxic ischemic encephalopathy. Am J Transl Res 2016; 8(7): 3241-50.
[PMID: 27508046]
[178]
Park WS, Sung SI, Ahn SY, et al. Optimal timing of mesenchymal stem cell therapy for neonatal intraventricular hemorrhage. Cell Transplant 2016; 25(6): 1131-44.
[http://dx.doi.org/10.3727/096368915X689640] [PMID: 26440762]