Recent Applications of Artificial Intelligence in Early Cancer Detection

Page: [4410 - 4435] Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

Cancer is a deadly disease that is often caused by the accumulation of various genetic mutations and pathological alterations. The death rate can only be reduced when it is detected in the early stages, because cancer treatment when the tumor has not metastasized in many regions of the body is more effective. However, early cancer detection is fraught with difficulties. Advances in artificial intelligence (AI) have developed a new scope for efficient and early detection of such a fatal disease. AI algorithms have a remarkable ability to perform well on a variety of tasks that are presented or fed to the system. Numerous studies have produced machine learning and deep learning-assisted cancer prediction models to detect cancer from previously accessible data with better accuracy, sensitivity, and specificity. It has been observed that the accuracy of prediction models in classifying fed data as benign, malignant, or normal is improved by implementing efficient image processing techniques and data segmentation augmentation methodologies, along with advanced algorithms. In this review, recent AI-based models for the diagnosis of the most prevalent cancers in the breast, lung, brain, and skin have been analysed. Available AI techniques, data preparation, modeling processes, and performance assessments have been included in the review.

Keywords: Artificial Intelligence, algorithms, cancer, deep learning, diagnosis, machine learning.

[1]
Hamada, G.; Rida, A. Orthopaedics and orthopaedic diseases in ancient and modern Egypt. Clin. Orthop. Relat. Res., 1972, 89(89), 253-268.
[PMID: 4566947]
[2]
Haas, L.F. Papyrus of Ebers and Smith. J. Neurol. Neurosurg. Psychiatry, 1999, 67(5), 578.
[http://dx.doi.org/10.1136/jnnp.67.5.578] [PMID: 10519860]
[3]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[4]
Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res., 2017, 7(5), 1016-1036.
[PMID: 28560055]
[5]
Santos, M.K.; Ferreira Júnior, J.R.; Wada, D.T.; Tenório, A.P.M.; Barbosa, M.H.N.; Marques, P.M.A. Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: Advances in imaging towards to precision medicine. Radiol. Bras., 2019, 52(6), 387-396.
[http://dx.doi.org/10.1590/0100-3984.2019.0049] [PMID: 32047333]
[6]
Bini, S.A. Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? J. Arthroplasty, 2018, 33(8), 2358-2361.
[http://dx.doi.org/10.1016/j.arth.2018.02.067] [PMID: 29656964]
[7]
Maxmen, J.S. The post-physician era: medicine in the twenty-first century; Wiley: Hoboken, 1976.
[8]
Naylor, C.D. On the prospects for a (Deep) learning health care system. JAMA, 2018, 320(11), 1099-1100.
[http://dx.doi.org/10.1001/jama.2018.11103] [PMID: 30178068]
[9]
Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med., 2019, 25(1), 44-56.
[http://dx.doi.org/10.1038/s41591-018-0300-7] [PMID: 30617339]
[10]
US Food and Drug Administration. Computer-assisted detection devices applied to radiology images and radiology device data—Premarket notification [510 (k)] submissions. 2012. Avaialble from: https://www.fda.gov/media/77635/download (Accessed on: June 25, 2021).
[11]
Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: a deep convolutional activation feature for generic visual recognition. ICML’14: Proceedings of the 31st International Conference on International Conference on Machine Learning, 2014 June 21 - 26 , Beijing, China 2014, pp. 647-655.
[12]
Haeberle, H.S.; Helm, J.M.; Navarro, S.M.; Karnuta, J.M.; Schaffer, J.L.; Callaghan, J.J.; Mont, M.A.; Kamath, A.F.; Krebs, V.E.; Ramkumar, P.N. Artificial intelligence and machine learning in lower extremity arthroplasty: A review. J. Arthroplasty, 2019, 34(10), 2201-2203.
[http://dx.doi.org/10.1016/j.arth.2019.05.055] [PMID: 31253449]
[13]
Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Prediction of human intestinal absorption of compounds using artificial intelligence techniques. Curr. Drug Discov. Technol., 2017, 14(4), 244-254.
[http://dx.doi.org/10.2174/1570163814666170404160911] [PMID: 28382857]
[14]
Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Prediction of drug-plasma protein binding using artificial intelligence based algorithms. Comb. Chem. High Throughput Screen., 2018, 21(1), 57-64.
[http://dx.doi.org/10.2174/1386207321666171218121557] [PMID: 29256344]
[15]
Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Prediction of metabolism of drugs using artificial intelligence: How far have we reached? Curr. Drug Metab., 2016, 17(2), 129-141.
[http://dx.doi.org/10.2174/1389200216666151103121352] [PMID: 26526829]
[16]
Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Promises of machine learning approaches in prediction of absorption of compounds. Mini Rev. Med. Chem., 2018, 18(3), 196-207.
[http://dx.doi.org/10.2174/1389557517666170315150116] [PMID: 28302041]
[17]
Saxena, D.; Sharma, A.; Siddiqui, M.H.; Kumar, R. Blood brain barrier permeability prediction using machine learning techniques: An update. Curr. Pharm. Biotechnol., 2019, 20(14), 1163-1171.
[http://dx.doi.org/10.2174/1389201020666190821145346] [PMID: 31433750]
[18]
Kumar, R.; Sharma, A.; Varadwaj, P.; Ahmad, A.; Ashraf, G.M. Classification of oral bioavailability of drugs by machine learning approaches: A comparative study. J. Comp. Int. Sci., 2011, 2, 1-18.
[http://dx.doi.org/10.6062/jcis.2011.02.03.0045]
[19]
Kumar, R.; Khan, F.U.; Sharma, A.; Aziz, I.B.; Poddar, N.K. Recent applications of artificial intelligence in detection of gastrointestinal, hepatic and pancreatic diseases. Curr. Med. Chem., 2022, 29(1), 66-85.
[http://dx.doi.org/10.2174/0929867328666210405114938] [PMID: 33820515]
[20]
Imran, A.A.Z.; Terzopoulos, D. Semi-supervised Multi-task Learning with Chest X-Ray Images. In: Machine Learning in Medical Imaging; Suk, H.I.; Liu, M.; Yan, P.; Lian, C., Eds.; Lecture Notes in Computer Science Springer: Cham, 2019; p. 11861.
[http://dx.doi.org/10.1007/978-3-030-32692-0_18]
[21]
Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639), 115-118.
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[22]
Albarqouni, S.; Baur, C.; Achilles, F.; Belagiannis, V.; Demirci, S.; Navab, N. AggNet: Deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging, 2016, 35(5), 1313-1321.
[http://dx.doi.org/10.1109/TMI.2016.2528120] [PMID: 26891484]
[23]
Alipanahi, B.; Delong, A.; Weirauch, M.T.; Frey, B.J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol., 2015, 33(8), 831-838.
[http://dx.doi.org/10.1038/nbt.3300] [PMID: 26213851]
[24]
Yuan, Y.; Shi, Y.; Li, C.; Kim, J.; Cai, W.; Han, Z.; Feng, D.D. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations. BMC Bioinformatics, 2016, 17(Suppl. 17), 476.
[http://dx.doi.org/10.1186/s12859-016-1334-9] [PMID: 28155641]
[25]
Ramkumar, P.N.; Karnuta, J.M.; Navarro, S.M.; Haeberle, H.S.; Iorio, R.; Mont, M.A.; Patterson, B.M.; Krebs, V.E. Preoperative prediction of value metrics and a patient-specific payment model for primary total hip arthroplasty: Development and validation of a deep learning model. J. Arthroplasty, 2019, 34(10), 2228-2234.e1.
[http://dx.doi.org/10.1016/j.arth.2019.04.055] [PMID: 31122849]
[26]
Sharma, A.; Kumar, R.; Semwal, R.; Aier, I.; Tyagi, P.; Varadwaj, P. DeepOlf: Deep neural network based architecture for predicting odorants and their interacting Olfactory Receptors. Trans. Comput. Biol. Bioinform., 2020, 2020, 1.
[http://dx.doi.org/10.1109/TCBB.2020.3002154]
[27]
Sharma, A.; Kumar, R.; Ranjta, S.; Varadwaj, P.K. SMILES to smell: Decoding the structure-odor relationship of chemical compounds using the deep neural network approach. J. Chem. Inf. Model., 2021, 61(2), 676-688.
[http://dx.doi.org/10.1021/acs.jcim.0c01288] [PMID: 33449694]
[28]
Aruna, S.; Rajagopalan, S.P.; Nandakishore, L.V. Knowledge based analysis of various statistical tools in detecting breast cancer. In: Proceedings of the First International Conference on Computer Science, Engineering and Applications (CCSEA 2011), Chennai, India, pp. 37-45. 2011 July 17,
[29]
Chaurasia, V.; Pal, S. Data mining techniques: to predict and resolve breast cancer survivability. IJCSMC, 2014, 3(1), 10-22.
[30]
Asri, H.; Mousannif, H.; Moatassime, H.A.; Noel, T. Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Comput. Sci., 2016, 83, 1064-1069.
[http://dx.doi.org/10.1016/j.procs.2016.04.224]
[31]
Akselrod-Ballin, A.; Chorev, M.; Shoshan, Y.; Spiro, A.; Hazan, A.; Melamed, R.; Barkan, E.; Herzel, E.; Naor, S.; Karavani, E.; Koren, G.; Goldschmidt, Y.; Shalev, V.; Rosen-Zvi, M.; Guindy, M. Predicting breast cancer by applying deep learning to linked health records and mammograms. Radiology, 2019, 292(2), 331-342.
[http://dx.doi.org/10.1148/radiol.2019182622] [PMID: 31210611]
[32]
Dhungel, N.; Carneiro, G.; Bradley, A.P. A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med. Image Anal., 2017, 37, 114-128.
[http://dx.doi.org/10.1016/j.media.2017.01.009] [PMID: 28171807]
[33]
Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J.S. INbreast: toward a full-field digital mammographic database. Acad. Radiol., 2012, 19(2), 236-248.
[http://dx.doi.org/10.1016/j.acra.2011.09.014] [PMID: 22078258]
[34]
Teuwen J.; van de Leemput, S.; Gubern-Mérida, A.; Rodriguez-Ruiz, A.;,Mann, R.; Bejnordi, B. Soft Tissue Lesion Detection in Mammography Using Deep Neural Networks for Object Detection. In: MIDL'18: Proceedings of the 1st Conference on Medical Imaging with Deep Learning, Amsterdam, The Netherlands. 2018; pp. 1–9.
[35]
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.C.; Fei-Fei, L. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis., 2015, 115, 211-252.
[http://dx.doi.org/10.1007/s11263-015-0816-y]
[36]
Wang, J.; Yang, X.; Cai, H.; Tan, W.; Jin, C.; Li, L. Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci. Rep., 2016, 6, 27327.
[http://dx.doi.org/10.1038/srep27327]
[37]
Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag., 2016, 35(5), 1285-1298.
[http://dx.doi.org/10.1109/TMI.2016.2528162] [PMID: 26886976]
[38]
Wu, N.; Phang, J.; Park, J.; Shen, Y.; Huang, Z.; Zorin, M.; Jastrzebski, S.; Fevry, T.; Katsnelson, J.; Kim, E.; Wolfson, S.; Parikh, U.; Gaddam, S.; Lin, L.L.Y.; Ho, K.; Weinstein, J.D.; Reig, B.; Gao, Y.; Toth, H.; Pysarenko, K.; Lewin, A.; Lee, J.; Airola, K.; Mema, E.; Chung, S.; Hwang, E.; Samreen, N.; Kim, S.G.; Heacock, L.; Moy, L.; Cho, K.; Geras, K.J. Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans. Med. Imaging, 2020, 39(4), 1184-1194.
[http://dx.doi.org/10.1109/TMI.2019.2945514] [PMID: 31603772]
[39]
Vaka, A.R.; Soni, B.; Reddy, S. Breast cancer detection by leveraging Machine Learning. ICT Express, 2020, 6(4), 320-324.
[http://dx.doi.org/10.1016/j.icte.2020.04.009]
[40]
Alanazi, S.A.; Kamruzzaman, M.M.; Islam Sarker, M.N.; Alruwaili, M.; Alhwaiti, Y.; Alshammari, N.; Siddiqi, M.H. Boosting breast cancer detection using convolutional neural network. J. Healthc. Eng., 2021, 2021, 5528622.
[http://dx.doi.org/10.1155/2021/5528622] [PMID: 33884157]
[41]
Khamparia, A.; Bharati, S.; Podder, P.; Gupta, D.; Khanna, A.; Phung, T.K.; Thanh, D.N.H. Diagnosis of breast cancer based on modern mammography using hybrid transfer learning. Multidimens. Syst. Signal Process., 2021, 2021, 1-19.
[http://dx.doi.org/10.1007/s11045-020-00756-7] [PMID: 33456204]
[42]
Frazer, H.M.; Qin, A.K.; Pan, H.; Brotchie, P. Evaluation of deep learning-based artificial intelligence techniques for breast cancer detection on mammograms: Results from a retrospective study using a Breast Screen Victoria dataset. J. Med. Imaging Radiat. Oncol., 2021, 65(5), 529-537.
[http://dx.doi.org/10.1111/1754-9485.13278] [PMID: 34212526]
[43]
Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep learning to improve breast cancer detection on screening mammography. Sci. Rep., 2019, 9(1), 12495.
[http://dx.doi.org/10.1038/s41598-019-48995-4] [PMID: 31467326]
[44]
Shen, Y.; Wu, N.; Phang, J.; Park, J.; Liu, K.; Tyagi, S.; Heacock, L.; Kim, S.G.; Moy, L.; Cho, K.; Geras, K.J. An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization. Med. Image Anal., 2021, 68, 101908.
[http://dx.doi.org/10.1016/j.media.2020.101908] [PMID: 33383334]
[45]
Liang, G.; Zheng, L. A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Comput. Methods Programs Biomed., 2020, 187, 104964.
[http://dx.doi.org/10.1016/j.cmpb.2019.06.023] [PMID: 31262537]
[46]
Patra, R. Prediction of lung cancer using machine learning classifier. In: Communications in Computer and Information Science; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-6648-6_11]
[47]
de Carvalho Filho, A.O.; Silva, A.C.; de Paiva, A.C.; Nunes, R.A.; Gattass, M. Lung-nodule classification based on computed tomography using taxonomic diversity indexes and an SVM. J. Sign. Process Syst., 2017, 87, 179-196.
[http://dx.doi.org/10.1007/s11265-016-1134-5]
[48]
Shanthi, S.; Rajkumar, N. Lung cancer prediction using stochastic diffusion search (SDS) based feature selection and machine learning methods. Neural Process. Lett., 2021, 53, 2617-2630.
[http://dx.doi.org/10.1007/s11063-020-10192-0]
[49]
Kohad, R.; Ahire, V. Application of machine learning techniques for the diagnosis of lung cancer with ANT colony optimization. Int. J. Comput. Appl., 2015, 113(18), 34-41.
[50]
Nadkarni, N.S.; Borkar, S. Detection of lung cancer in CT Images using image processing. In: Proceedings of the 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2019, pp. 863-866.
[http://dx.doi.org/10.1109/ICOEI.2019.8862577]
[51]
Vas, M.; Dessai, A. Lung cancer detection system using lung CT image processing. In: Proceedings of the International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 2017, pp. 1-5. 17-18 Aug.
[http://dx.doi.org/10.1109/ICCUBEA.2017.8463851]
[52]
Nasser, I.M.; Abu-Naser, S.S. Lung cancer detection using artificial neural network. Int. J. Eng. Inform. Sys., 2019, 3(3), 17-23.
[53]
Reddy, D.; Kumar, E.N.H.; Reddy, D.; Monika, P. Integrated machine learning model for prediction of lung cancer stages from textual data using ensemble method. In: Proceedings of the 1st International Conference on Advances in Information Technology (ICAIT), Chikmagalur, India, 2019, 25-27 July.
[http://dx.doi.org/10.1109/ICAIT47043.2019.8987295]
[54]
Shen, S.; Fan, Z.; Guo, Q. Design and application of tumor prediction model based on statistical method. Comput. Assist. Surg., 2017, 22(sup1), 232-239.
[http://dx.doi.org/10.1080/24699322.2017.1389401]
[55]
Schwyzer, M.; Ferraro, D.A.; Muehlematter, U.J.; Curioni-Fontecedro, A.; Huellner, M.W.; von Schulthess, G.K.; Kaufmann, P.A.; Burger, I.A.; Messerli, M. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks - Initial results. Lung Cancer, 2018, 126, 170-173.
[http://dx.doi.org/10.1016/j.lungcan.2018.11.001] [PMID: 30527183]
[56]
Asuntha, A.; Srinivasan, A. Deep learning for lung Cancer detection and classification. Multimedia Tools Appl., 2020, 79, 7731-7762.
[http://dx.doi.org/10.1007/s11042-019-08394-3]
[57]
Zhang, Q.; Kong, X. Design of automatic lung nodule detection system based on multi-scene deep learning framework. IEEE Access, 2020, 8, 90380-90389.
[http://dx.doi.org/10.1109/ACCESS.2020.2993872]
[58]
Toğaçar, M.; Burhan, E.; Cömert, Z. Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks. Biocybern. Biomed. Eng., 2020, 40(1), 23-39.
[http://dx.doi.org/10.1016/j.bbe.2019.11.004]
[59]
Wilson, A.C.; Roelofs, R.; Stern, M.; Srebro, N.; Recht, B. The marginal value of adaptive gradient methods in machine learning. arXiv, 2017, 2017, 1705.08292.
[60]
Ruder, S An overview of gradient descent optimization algorithms arXiv, 2016, 2016, 1609.04747.
[61]
Sertkaya, M.E.; Ergen, B.; Togacar, M. Diagnosis of eye retinal diseases based on convolutional neural networks using optical coherence images. In: Proceedings of the 23rd International Conference Electronics, Palanga, Lithuania, 2019 17-19 June.
[http://dx.doi.org/10.1109/ELECTRONICS.2019.8765579]
[62]
Serj, M.F.; Lavi, B.; Hoff, G.; Valls, D.P A deep convolutional neural network for lung cancer diagnostic arXiv, 2018, 1804.08170.
[63]
Masood, A.; Sheng, B.; Li, P.; Hou, X.; Wei, X.; Qin, J.; Feng, D. Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images. J. Biomed. Inform., 2018, 79, 117-128.
[http://dx.doi.org/10.1016/j.jbi.2018.01.005] [PMID: 29366586]
[64]
Chon, A.; Balachandar, N.; Lu, P. Deep convolutional neural networks for lung cancer detection; Standford University: Stanford, USA, 2017.
[65]
Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. arXiv, 2015, 2015, 1505.04597.
[http://dx.doi.org/10.1007/978-3-319-24574-4_28]
[66]
Bhandary, A.; Prabhu, G.A.; Rajinikanth, V.; Thanaraj, K.P.; Satapathy, S.C.; Robbins, D.E.; Shasky, C.; Zhang, Y.; Tavares, J.M.R.S.; Raja, N.S.M. Deep-learning framework to detect lung abnormality–A study with chest X-Ray and lung CT scan images. Pattern Recognit. Lett., 2020, 129, 271-278.
[http://dx.doi.org/10.1016/j.patrec.2019.11.013]
[67]
Zhihu, H.; Leng, J. Analysis of Hu’s moment invariants on image scaling and rotation. In: Proceedings of the 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 2010, 16-18 April.
[68]
Li, X.; Shen, L.; Xie, X.; Huang, S.; Xie, Z.; Hong, X.; Yu, J. Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection. Artif. Intell. Med., 2020, 103, 101744.
[http://dx.doi.org/10.1016/j.artmed.2019.101744] [PMID: 31732411]
[69]
Li, X.; Luo, S.; Hu, Q.; Li, J.; Wang, D. Rib suppression in chest radiographs for lung nodule enhancement. In: Proceedings of the International Conference on Information and Automation, Lijiang, China, 2015, 8-10 Aug.
[http://dx.doi.org/10.1109/ICInfA.2015.7279257]
[70]
Li, X.; Luo, S.; Hu, Q.; Li, J.; Wang, D.; Chiong, F. Automatic lung field segmentation in X-ray radiographs using statistical shape and appearance models. J. Med. Imaging Health Inform., 2016, 6(2), 338-348.
[http://dx.doi.org/10.1166/jmihi.2016.1714]
[71]
Shakeel, P.M.; Burhanuddin, M.A.; Desa, M.I. Automatic lung cancer detection from CT image using improved deep neural network and ensemble classifier. Neural Comput. Appl., 2020.
[http://dx.doi.org/10.1007/s00521-020-04842-6]
[72]
Zhang, X.; Wang, S. Efficient data hiding with histogram-preserving property. Telecomm. Syst., 2012, 49(2), 179-185.
[http://dx.doi.org/10.1007/s11235-010-9364-5]
[73]
Tsai, C.W.; Huang, B.C.; Chiang, M.C. A Novel Spiral Optimization for Clustering. In: Mobile, Ubiquitous, and Intelligent Computing. Lecture Notes in Electrical Engineering; Park, J.; Adeli, H.; Park, N.; Woungang, I., Eds.; Springer: Berlin, Heidelberg, 2014; Vol. 274, .
[http://dx.doi.org/10.1007/978-3-642-40675-1_92]
[74]
Moradi, P.; Jamzad, M. Detecting lung cancer lesions in CT images using 3D convolutional neural networks. In: Proceedings of the 4th International Conference on Pattern Recognition and Image Analysis (IPRIA), 2019 6-7 March, Tehran, Iran.
[http://dx.doi.org/10.1109/PRIA.2019.8785971]
[75]
Heuvelmans, M.A.; van Ooijen, P.M.A.; Ather, S.; Silva, C.F.; Han, D.; Heussel, C.P.; Hickes, W.; Kauczor, H.U.; Novotny, P.; Peschl, H.; Rook, M.; Rubtsov, R.; von Stackelberg, O.; Tsakok, M.T.; Arteta, C.; Declerck, J.; Kadir, T.; Pickup, L.; Gleeson, F.; Oudkerk, M. Lung cancer prediction by Deep Learning to identify benign lung nodules. Lung Cancer, 2021, 154, 1-4.
[http://dx.doi.org/10.1016/j.lungcan.2021.01.027] [PMID: 33556604]
[76]
Tekade, R.; Rajeswari, K. Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 2018 16-18 Aug.
[77]
Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; Kazerooni, E.A.; MacMahon, H.; Van Beeke, E.J.; Yankelevitz, D.; Biancardi, A.M.; Bland, P.H.; Brown, M.S.; Engelmann, R.M.; Laderach, G.E.; Max, D.; Pais, R.C.; Qing, D.P.; Roberts, R.Y.; Smith, A.R.; Starkey, A.; Batrah, P.; Caligiuri, P.; Farooqi, A.; Gladish, G.W.; Jude, C.M.; Munden, R.F.; Petkovska, I.; Quint, L.E.; Schwartz, L.H.; Sundaram, B.; Dodd, L.E.; Fenimore, C.; Gur, D.; Petrick, N.; Freymann, J.; Kirby, J.; Hughes, B.; Casteele, A.V.; Gupte, S.; Sallamm, M.; Heath, M.D.; Kuhn, M.H.; Dharaiya, E.; Burns, R.; Fryd, D.S.; Salganicoff, M.; Anand, V.; Shreter, U.; Vastagh, S.; Croft, B.Y. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys., 2011, 38(2), 915-931.
[http://dx.doi.org/10.1118/1.3528204] [PMID: 21452728]
[78]
Setio, A.A.A.; Traverso, A.; de Bel, T.; Berens, M.S.N.; Bogaard, C.V.D.; Cerello, P.; Chen, H.; Dou, Q.; Fantacci, M.E.; Geurts, B.; Gugten, R.V.; Heng, P.A.; Jansen, B.; de Kaste, M.M.J.; Kotov, V.; Lin, J.Y.; Manders, J.T.M.C.; Sóñora-Mengana, A.; García-Naranjo, J.C.; Papavasileiou, E.; Prokop, M.; Saletta, M.; Schaefer-Prokop, C.M.; Scholten, E.T.; Scholten, L.; Snoeren, M.M.; Torres, E.L.; Vandemeulebroucke, J.; Walasek, N.; Zuidhof, G.C.A.; Ginneken, B.V.; Jacobs, C. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med. Image Anal., 2017, 42, 1-13.
[http://dx.doi.org/10.1016/j.media.2017.06.015] [PMID: 28732268]
[79]
Liao, F.; Chen, X.; Hu, X.; Song, S. Estimation of the volume of the left ventricle from MRI images using deep neural networks. IEEE Trans. Cybern., 2019, 49(2), 495-504.
[http://dx.doi.org/10.1109/TCYB.2017.2778799] [PMID: 29990055]
[80]
Badran, E.F.; Mahmoud, E.G.; Hamdy, N. An algorithm for detecting brain tumors in MRI images. In: Proceedings of the International Conference on Computer Engineering & Systems, Cairo, Egypt, 2010 30 Nov.-2 Dec.
[http://dx.doi.org/10.1109/ICCES.2010.5674887]
[81]
Shanmuga Priya, S.; Saran Raj, S.; Surendiran, B.; Arulmurugaselvi, N. Brain Tumour Detection in MRI Using Deep Learning. In: Evolution in Computational Intelligence; Springer: Singapore, 2021; pp. 395-403.
[http://dx.doi.org/10.1007/978-981-15-5788-0_38]
[82]
Joshi, R.; Shan, S. Pixel-level feature space modeling and brain tumor detection using machine learning. In: Proceedings of the 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 2020, 14-17 Dec.
[http://dx.doi.org/10.1109/ICMLA51294.2020.00134]
[83]
Gurbină, M.; Lascu, M.; Lascu, D. Tumor detection and classification of MRI brain image using different wavelet transforms and support vector machines. In: Proceedings of the 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 2019, 1-3 July.
[http://dx.doi.org/10.1109/TSP.2019.8769040]
[84]
Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition, 2003 6-6 Aug, Edinburgh, UK.
[http://dx.doi.org/10.1109/ICDAR.2003.1227801]
[85]
Varuna Shree, N.; Kumar, T.N.R. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Inform., 2018, 5(1), 23-30.
[http://dx.doi.org/10.1007/s40708-017-0075-5] [PMID: 29313301]
[86]
Al-Ayyoub, M.; Ghaith, H.; Omar, D.; Ahmad, A. Machine learning approach for brain tumor detection. 2012.
[http://dx.doi.org/10.1145/2222444.2222467]
[87]
Amin, J.; Sharif, M.; Raza, M.; Saba, T.; Anjum, M.A. Brain tumor detection using statistical and machine learning method. Comput. Methods Programs Biomed., 2019, 177, 69-79.
[http://dx.doi.org/10.1016/j.cmpb.2019.05.015] [PMID: 31319962]
[88]
Cabria, I.; Iker, G. MRI segmentation fusion for brain tumor detection. Inf. Fusion, 2017, 36, 1-9.
[http://dx.doi.org/10.1016/j.inffus.2016.10.003]
[89]
Liu, L.; Fieguth, P.; Guo, Y.; Wang, X.; Pietikäinen, M. Local binary features for texture classification: Taxonomy and experimental study. Pattern Recognit., 2017, 62, 135-160.
[http://dx.doi.org/10.1016/j.patcog.2016.08.032]
[90]
Nooshin, N.; Kubat, M. Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput. Electr. Eng., 2015, 45, 286-301.
[http://dx.doi.org/10.1016/j.compeleceng.2015.02.007]
[91]
Nasir, M.; Attique Khan, M.; Sharif, M.; Lali, I.U.; Saba, T.; Iqbal, T. An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc. Res. Tech., 2018, 81(6), 528-543.
[http://dx.doi.org/10.1002/jemt.23009] [PMID: 29464868]
[92]
Díaz-Pernas, F.J.; Martínez-Zarzuela, M.; Antón-Rodríguez, M.; González-Ortega, D. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare (Basel), 2021, 9(2), 153.
[http://dx.doi.org/10.3390/healthcare9020153] [PMID: 33540873]
[93]
Hemanth, G.; Janardhan, M.; Sujihelen, L. Design and implementing brain tumor detection using machine learning approach. 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2019, 23-25 April, .
[http://dx.doi.org/10.1109/ICOEI.2019.8862553]
[94]
Rehman, A.; Khan, M.A.; Saba, T.; Mehmood, Z.; Tariq, U.; Ayesha, N. Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture. Microsc. Res. Tech., 2021, 84(1), 133-149.
[http://dx.doi.org/10.1002/jemt.23597] [PMID: 32959422]
[95]
Khan, M.A.; Ashraf, I.; Alhaisoni, M.; Damaševičius, R.; Scherer, R.; Rehman, A.; Bukhari, S.A.C. Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists. Diagnostics (Basel), 2020, 10(8), 565.
[http://dx.doi.org/10.3390/diagnostics10080565] [PMID: 32781795]
[96]
Sadad, T.; Rehman, A.; Munir, A.; Saba, T.; Tariq, U.; Ayesha, N.; Abbasi, R. Brain tumor detection and multi-classification using advanced deep learning techniques. Microsc. Res. Tech., 2021, 84(6), 1296-1308.
[http://dx.doi.org/10.1002/jemt.23688] [PMID: 33400339]
[97]
Saba, T.; Mohamed, A.S.; El-Affendi, M.; Amin, J.; Sharif, M. Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res., 2020, 59, 221-230.
[http://dx.doi.org/10.1016/j.cogsys.2019.09.007]
[98]
Argenziano, G.; Soyer, H.P. Dermoscopy of pigmented skin lesions--a valuable tool for early diagnosis of melanoma. Lancet Oncol., 2001, 2(7), 443-449.
[http://dx.doi.org/10.1016/S1470-2045(00)00422-8] [PMID: 11905739]
[99]
R D, S.; A, S. Deep learning based skin lesion segmentation and classification of melanoma using support vector machine (SVM). Asian Pac. J. Cancer Prev., 2019, 20(5), 1555-1561.
[http://dx.doi.org/10.31557/APJCP.2019.20.5.1555] [PMID: 31128062]
[100]
Codella, N.C.F.; Nguyen, Q.B.; Pankanti, S.; Gutman, D.A.; Helba, B.; Halpern, A.C.; Smith, J.R. Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J. Res. Dev., 2017, 61, 4-5.
[http://dx.doi.org/10.1147/JRD.2017.2708299]
[101]
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv, 2016, 2016, 1512.03385.
[http://dx.doi.org/10.1109/CVPR.2016.90]
[102]
Gautam, D.; Ahmed, M.; Meena, Y.K.; Ul Haq, A. Machine learning-based diagnosis of melanoma using macro images. Int. J. Numer. Methods Biomed. Eng., 2018, 34(5), e2953.
[http://dx.doi.org/10.1002/cnm.2953] [PMID: 29266819]
[103]
Nock, R.; Nielsen, F. Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26(11), 1452-1458.
[http://dx.doi.org/10.1109/TPAMI.2004.110] [PMID: 15521493]
[104]
Glaister, J.; Amelard, R.; Wong, A.; Clausi, D.A. MSIM: multistage illumination modeling of dermatological photographs for illumination-corrected skin lesion analysis. IEEE Trans. Biomed. Eng., 2013, 60(7), 1873-1883.
[http://dx.doi.org/10.1109/TBME.2013.2244596] [PMID: 23380843]
[105]
Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238.
[http://dx.doi.org/10.1109/TPAMI.2005.159] [PMID: 16119262]
[106]
Kingsly, A.A.S.; Sankaragomathi, B. Performance analysis of machine learning based classifiers for the diagnosis of melanoma cancer and comparison. J. Comput. Theor. Nanosci., 2018, 15(2), 558-575.
[http://dx.doi.org/10.1166/jctn.2018.7124]
[107]
Ramya, V.J.; Navarajan, J.; Prathipa, R.; Kumar, L.A. Detection of melanoma skin cancer using digital camera images. ARPN J. Eng. Appl. Sci., 2015, 10(7), 3082-3085.
[108]
Al-amri, S.S.; Kalyankar, N.V.; Khamitkar, S.D. Linear and non-linear contrast enhancement image. Int. J. Comput. Sci. Netw., 2010, 10(2), 139-143.
[109]
Lagendijk, R.L.; Biemond, J. Basic methods for image restoration and identification. In: The essential guide to image processing; Bovik, Al, Ed.; Academic Press: USA, 2009; pp. 323-348.
[http://dx.doi.org/10.1016/B978-0-12-374457-9.00014-7]
[110]
Premaladha, J.; Ravichandran, K.S. Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J. Med. Syst., 2016, 40(4), 96.
[http://dx.doi.org/10.1007/s10916-016-0460-2] [PMID: 26872778]
[111]
Paniagua, L.R.B.; Correa, D.N.L.; Pinto-Roa, D.; Noguera, J.L.V.; Toledo, L.A.S. Computerized medical diagnosis of melanocytic lesions based on the ABCD approach. CLEI Electr. J., 2016, 19(2), 6-6.
[http://dx.doi.org/10.19153/cleiej.19.2.5]
[112]
Aima, A.; Sharma, A.K. Predictive approach for melanoma skin cancer detection using CNN. In: Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan Jaipur-India, 2019, 26-28 Feb.
[http://dx.doi.org/10.2139/ssrn.3352407]
[113]
Monika, M.K.; Vignesh, N.A.; Kumari, C.U.; Kumar, M.N.V.S.S.; Lydia, E.L. Skin cancer detection and classification using machine learning. Mater. Today Proc., 2020, 33, 4266-4270.
[http://dx.doi.org/10.1016/j.matpr.2020.07.366]
[114]
Lopez, A.R.; Giro-i-Nieto, X.; Burdick, J.; Marques, O. Skin lesion classification from dermoscopic images using deep learning techniques. In: Proceedings of the 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria, 2017, 20-21 Feb.
[http://dx.doi.org/10.2316/P.2017.852-053]
[115]
Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.M.R.; Jafari, M.H.; Ward, K.; Najarian, K. Melanoma detection by analysis of clinical images using convolutional neural network. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2016, 1373-1376.
[http://dx.doi.org/10.1109/EMBC.2016.7590963]
[116]
Ameri, A. A deep learning approach to skin cancer detection in dermoscopy images. J. Biomed. Phys. Eng., 2020, 10(6), 801-806.
[http://dx.doi.org/10.31661/jbpe.v0i0.2004-1107] [PMID: 33364218]
[117]
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM, 2017, 60(6), 84-90.
[http://dx.doi.org/10.1145/3065386]
[118]
Saba, T.; Khan, M.A.; Rehman, A.; Marie-Sainte, S.L. Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction. J. Med. Syst., 2019, 43(9), 289.
[http://dx.doi.org/10.1007/s10916-019-1413-3] [PMID: 31327058]
[119]
Sylvain, P.; Hasinoff, S.W.; Kautz, J. Local laplacian filters: Edge-aware image processing with a Laplacian pyramid. ACM Trans. Graph., 2011, 30(4), 68.
[http://dx.doi.org/10.1145/2010324.1964963]
[120]
Lei, B.; Kim, J.; Ahn, E.; Kumar, A.; Feng, D.; Fulham, M. Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recognit., 2019, 85, 78-89.
[http://dx.doi.org/10.1016/j.patcog.2018.08.001]
[121]
Wu, J.T.; Dernoncourt, F.; Gehrmann, S.; Tyler, P.D.; Moseley, E.T.; Carlson, E.T.; Grant, D.W.; Li, Y.; Welt, J.; Celi, L.A. Behind the scenes: A medical natural language processing project. Int. J. Med. Inform., 2018, 112, 68-73.
[http://dx.doi.org/10.1016/j.ijmedinf.2017.12.003] [PMID: 29500024]
[122]
Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; Halpern, A. Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC), IEEE. In: Proceedings of the 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 2018, 4-7 April, .
[http://dx.doi.org/10.1109/ISBI.2018.8363547]
[123]
Li, Y.; Shen, L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors (Basel), 2018, 18(2), 556.
[http://dx.doi.org/10.3390/s18020556] [PMID: 29439500]
[124]
Dai, X.; Spasić, I.; Meyer, B.; Chapman, S.; Andres, F. Machine learning on mobile: An on-device inference app for skin cancer detection. In: Proceedings of the Fourth International Conference on Fog and Mobile Edge Computing (FMEC); , 2019; pp. 301-305.
[http://dx.doi.org/10.1109/FMEC.2019.8795362]
[125]
Jojoa Acosta, M.F.; Caballero Tovar, L.Y.; Garcia-Zapirain, M.B.; Percybrooks, W.S. Melanoma diagnosis using deep learning techniques on dermatoscopic images. BMC Med. Imaging, 2021, 21(1), 6.
[http://dx.doi.org/10.1186/s12880-020-00534-8] [PMID: 33407213]
[126]
Ali, M.S.; Miah, M.S.; Haque, J.; Rahman, M.M.; Islam, M.K. An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Machine Learn. Appl., 2021, 5, 100036.
[http://dx.doi.org/10.1016/j.mlwa.2021.100036]