Hypomyelination with Atrophy of Basal Ganglia and Cerebellum (HABC) Due to UFM1 Mutation in Roma Patients - Severe Early Encephalopathy with Stridor and Severe Hearing and Visual Impairment. A Single Center Experience

Page: [207 - 214] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a neurodegenerative disease with neurodevelopmental delay, motor, and speech regression, pronounced extrapyramidal syndrome, and sensory deficits due to TUBB4A mutation. In 2017, a severe variant was described in 16 Roma infants due to mutation in UFM1.

Objective: The objective of this study is to expand the clinical manifestations of H-ABC due to UFM1 mutation and suggest clues for clinical diagnosis.

Methodology: Retrospective analysis of all 9 cases with H-ABC due to c.-273_-271delTCA mutation in UFM1 treated during 2013-2020 in a Neuropediatric Ward in Plovdiv, Bulgaria.

Results: Presentation is no later than 2 months with inspiratory stridor, impaired sucking, swallowing, vision and hearing, and reduced active movements. By the age of 10 months, a monomorphic disease was observed: microcephaly (6/9), malnutrition (5/9), muscle hypertonia (9/9) and axial hypotonia (4/9), progressing to opisthotonus (6/9), dystonic posturing (5/9), nystagmoid ocular movements (6/9), epileptic seizures (4/9), non-epileptic spells (3/9). Dysphagia (7/9), inspiratory stridor (9/9), dyspnea (5/9), bradypnea (5/9), apnea (2/9) were major signs. Vision and hearing were never achieved or lost by 4-8 mo. Neurodevelopment was absent or minimal with subsequent regression after 2-5 mo. Brain imaging revealed cortical atrophy (7/9), atrophic ventricular dilatation (4/9), macrocisterna magna (5/9), reduced myelination (6/6), corpus callosum atrophy (3/6) and abnormal putamen and caput nuclei caudati. The age at death was between 8 and 18 mo.

Conclusion: Roma patients with severe encephalopathy in early infancy with stridor, opisthotonus, bradypnea, severe hearing and visual impairment should be tested for the Roma founder mutation of H-ABC in UFM1.

Keywords: H-ABC, Roma, UFM1, infant encephalopathy, extrapyramidal stridor, paroxysmal.

[1]
van der Knaap MS, Naidu S, Pouwels PJ, et al. New syndrome characterized by hypomyelination with atrophy of the basal ganglia and cerebellum. AJNR Am J Neuroradiol 2002; 23(9): 1466-74.
[PMID: 12372733]
[2]
Simons C, Wolf NI, McNeil N, et al. A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet 2013; 92(5): 767-73.
[http://dx.doi.org/10.1016/j.ajhg.2013.03.018] [PMID: 23582646]
[3]
Hamilton EM, Polder E, Vanderver A, et al. Hypomyelination with atrophy of the basal ganglia and cerebellum: Further delineation of the phenotype and genotype-phenotype correlation. Brain 2014; 137(Pt 7): 1921-30.
[http://dx.doi.org/10.1093/brain/awu110] [PMID: 24785942]
[4]
Hamilton EMC, Bertini E, Kalaydjieva L, et al. UFM1 founder mutation in the Roma population causes recessive variant of H-ABC. Neurology 2017; 89(17): 1821-8.
[http://dx.doi.org/10.1212/WNL.0000000000004578] [PMID: 28931644]
[5]
Nahorski MS, Maddirevula S, Ishimura R, et al. Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development. Brain 2018; 141(7): 1934-45.
[http://dx.doi.org/10.1093/brain/awy135] [PMID: 29868776]
[6]
Yu L, Li G, Deng J, et al. The UFM1 cascade times mitosis entry associated with microcephaly. FASEB J 2020; 34(1): 1319-30.
[http://dx.doi.org/10.1096/fj.201901751R] [PMID: 31914610]
[7]
Colin E, Daniel J, Ziegler A, et al. Biallelic variants in UBA5 reveal that disruption of the UFM1 cascade can result in early-onset encephalopathy. Am J Hum Genet 2016; 99(3): 695-703.
[http://dx.doi.org/10.1016/j.ajhg.2016.06.030] [PMID: 27545681]
[8]
Muona M, Ishimura R, Laari A, et al. Biallelic variants in UBA5 link dysfunctional UFM1 Ubiquitin-like modifier pathway to severe infantile-onset encephalopathy. Am J Hum Genet 2016; 99(3): 683-94.
[http://dx.doi.org/10.1016/j.ajhg.2016.06.020] [PMID: 27545674]
[9]
Arnadottir GA, Jensson BO, Marelsson SE, et al. Compound heterozygous mutations in UBA5 causing early-onset epileptic encephalopathy in two sisters. BMC Med Genet 2017; 18(1): 103.
[http://dx.doi.org/10.1186/s12881-017-0466-8] [PMID: 28965491]
[10]
Daida A, Hamano SI, Ikemoto S, et al. Biallelic loss-of-function UBA5 mutations in a patient with intractable West syndrome and profound failure to thrive. Epileptic Disord 2018; 20(4): 313-8.
[http://dx.doi.org/10.1684/epd.2018.0981] [PMID: 30078785]
[11]
Low KJ, Baptista J, Babiker M, et al. Hemizygous UBA5 missense mutation unmasks recessive disorder in a patient with infantile-onset encephalopathy, acquired microcephaly, small cerebellum, movement disorder and severe neurodevelopmental delay. Eur J Med Genet 2019; 62(2): 97-102.
[http://dx.doi.org/10.1016/j.ejmg.2018.06.009] [PMID: 29902590]
[12]
Duan R, Shi Y, Yu L, et al. UBA5 mutations cause a new form of autosomal recessive cerebellar ataxia. PLoS One 2016; 11(2): e0149039.
[http://dx.doi.org/10.1371/journal.pone.0149039] [PMID: 26872069]
[13]
Pfleger A, Eber E. Assessment and causes of stridor. Paediatr Respir Rev 2016; 18: 64-72.
[PMID: 26707546]
[14]
Hennegan; K, Giudice A. Synonyms of Pierre Robin Sequence NORD. Rare disease database 2018. Available from: https://rarediseases.org/rare-diseases/pierre-robin-sequence/
[15]
Bagalkot PS, Parshwanath BA, Joshi SN. Neck swelling in a newborn with congenital goiter. J Clin Neonatol 2013; 2(1): 36-8.
[http://dx.doi.org/10.4103/2249-4847.109247] [PMID: 24027744]
[16]
Claes J, Boudewyns A, Deron P, Vander Poorten V, Hoeve H. Management of stridor in neonates and infants. B-ENT 2005; (Suppl. 1)113-22.
[PMID: 16363272]
[17]
Cohen SR, Geller KA, Birns JW, Thompson JW. Laryngeal paralysis in children: A long-term retrospective study. Ann Otol Rhinol Laryngol 1982; 91(4 Pt 1): 417-24.
[http://dx.doi.org/10.1177/000348948209100420] [PMID: 7114725]
[18]
Dunn NM, Katial RK, Hoyte FCL. Vocal cord dysfunction: A review. Asthma Res Pract 2015; 1(1): 9.
[http://dx.doi.org/10.1186/s40733-015-0009-z] [PMID: 27965763]
[19]
Ropper AH, Samuels MA. Abnormalities of movement and posture caused by disease of the basal ganglia. In: Ropper AH, Samuels MA, Eds. Adams and Victor’s Principles of Neurology. (9th ed.), USA: The McGraw-Hill Companies, Inc. 2009.
[20]
Alsaleem M, Hpa N, Kumar VHS. Stridor in infants with hypoxic-ischemic encephalopathy and whole body hypothermia: A case series. J Neonatal Perinatal Med 2020; 13(4): 463-8.
[http://dx.doi.org/10.3233/NPM-190332] [PMID: 31985477]
[21]
Worley G, Witsell DL, Hulka GF. Laryngeal dystonia causing inspiratory stridor in children with cerebral palsy. Laryngoscope 2003; 113(12): 2192-5.
[http://dx.doi.org/10.1097/00005537-200312000-00028] [PMID: 14660926]
[22]
Mignot C, Doummar D, Maire I, De Villemeur TB. Type 2 Gaucher disease: 15 new cases and review of the literature. Brain Dev 2006; 28(1): 39-48.
[http://dx.doi.org/10.1016/j.braindev.2005.04.005] [PMID: 16485335]
[23]
Levy JM, Glass DA, Rodriguez KH. An unusual presentation of Gaucher disease in an infant with progressive dyspnea. Ochsner J 2013; 13(2): 270-2.
[PMID: 23789017]
[24]
Manji H, Howard RS, Miller DH, et al. Status dystonicus: The syndrome and its management. Brain 1998; 121(Pt 2): 243-52.
[http://dx.doi.org/10.1093/brain/121.2.243] [PMID: 9549503]
[25]
Seddon PC, Khan Y. Respiratory problems in children with neurological impairment. Arch Dis Child 2003; 88(1): 75-8.
[http://dx.doi.org/10.1136/adc.88.1.75] [PMID: 12495971]
[26]
Denoyelle F, Garabedian EN, Roger G, Tashjian G. Laryngeal dyskinesia as a cause of stridor in infants. Arch Otolaryngol Head Neck Surg 1996; 122(6): 612-6.
[http://dx.doi.org/10.1001/archotol.1996.01890180020007] [PMID: 8639291]
[27]
van der Knaap MS, Schiffmann R, Mochel F, Wolf NI. Diagnosis, prognosis, and treatment of leukodystrophies. Lancet Neurol 2019; 18(10): 962-72.
[http://dx.doi.org/10.1016/S1474-4422(19)30143-7] [PMID: 31307818]
[28]
Liang JR, Lingeman E, Luong T, et al. A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation. Cell 2020; 180(6): 1160-1177.e20.
[http://dx.doi.org/10.1016/j.cell.2020.02.017] [PMID: 32160526]
[29]
Ashrafi MR, Amanat M, Garshasbi M, et al. An update on clinical, pathological, diagnostic, and therapeutic perspectives of childhood leukodystrophies. Expert Rev Neurother 2020; 20(1): 65-84.
[http://dx.doi.org/10.1080/14737175.2020.1699060] [PMID: 31829048]
[30]
Gerakis Y, Quintero M, Li H, Hetz C. The UFMylation system in proteostasis and beyond. Trends Cell Biol 2019; 29(12): 974-86.
[http://dx.doi.org/10.1016/j.tcb.2019.09.005] [PMID: 31703843]