Inhibition of Cytochrome P450 Enzyme and Drug-Drug Interaction Potential of Acid Reducing Agents Used in Management of CDK Inhibitors for Breast Cancer Chemotherapy

Page: [137 - 149] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background and Objective: Concurrent usage of proton pump inhibitors and their effect on survival and medication termination has been found in individuals receiving protein kinase inhibitor chemotherapy. To investigate the drug-drug interaction mechanism between CDK inhibitors and proton pump inhibitors, the in-silico docking approach was designed by applying computer simulation modules to predict the binding and inhibitory potential.

Methods: The interaction potential of proton pump inhibitors and CDK inhibitors was predicted utilising molecular docking techniques that employed Schrödinger algorithms to capture the dynamics of the CYP450 enzyme-inhibitor interaction between proton pump inhibitors and CDK inhibitors. Additionally, the human liver microsomes assay was used to determine the in vitro half-maximal inhibitory concentration (IC50) of proton pump inhibitors and the inactivation of CDK inhibitors via CYP3A4.

Results: Proton pump inhibitors alter the conformation of the CYP3A4 and CYP2C19 enzymes and interact with the heme prosthetic group, as determined by docking studies. It may result in the suppression of CDK inhibitors' metabolism via competitive inhibition at the binding site of an enzyme. Omeprazole and rabeprazole both significantly block midazolam's 1′-hydroxylation by CYP3A4 in vitro, with IC50 values of 9.86μM and 9.71μM, respectively. When omeprazole and rabeprazole are co-incubated in human liver microsomes at a 30μM concentration equivalent to the Cmax of omeprazole and rabeprazole, rabeprazole significantly prolongs the metabolic clearance of palbociclib, whereas omeprazole affects the ribociclib CYP3A4-mediated metabolism.

Conclusion: Using dynamic models, we determined that proton pump inhibitors such as rabeprazole and omeprazole indeed have the potential to cause clinically significant drug-drug interactions with CDK inhibitors in the treatment of estrogen receptor (ER) positive and HER2-positive breast cancer. As a result, it is suggested to use caution when prescribing proton pump inhibitors to these individuals.

Keywords: CDK inhibitors, CYP450, drug-drug interactions, HER2-positive breast cancer, ligand-based docking, proton pump inhibitors, human liver microsomes, metabolic stability.

Graphical Abstract

[1]
Parylo, S.; Vennepureddy, A.; Dhar, V.; Patibandla, P.; Sokoloff, A. Role of cyclin-dependent kinase 4/6 inhibitors in the current and future eras of cancer treatment. J. Oncol. Pharm. Pract., 2019, 25(1), 110-129.
[http://dx.doi.org/10.1177/1078155218770904] [PMID: 29726787 ]
[2]
Hecht, K.A.; Selby, C. Review of Cyclin-Dependent Kinase 4/6 Inhibitors for the treatment of hormone receptor-positive advanced breast cancer. Ann. Pharmacother., 2019, 53(2), 195-203.
[http://dx.doi.org/10.1177/1060028018793656] [PMID: 30079740 ]
[3]
Rocca, A.; Schirone, A.; Maltoni, R.; Bravaccini, S.; Cecconetto, L.; Farolfi, A.; Bronte, G.; Andreis, D. Progress with palbociclib in breast cancer: Latest evidence and clinical considerations. Ther. Adv. Med. Oncol., 2017, 9(2), 83-105.
[http://dx.doi.org/10.1177/1758834016677961] [PMID: 28203301 ]
[4]
de Dueñas, E.M.; Gavila-Gregori, J.; Olmos-Antón, S. Santaballa- Bertrán, A.; Lluch-Hernández, A.; Espinal-Dominguez, E.J.; Rivero- Silva, M.; Llombart-Cussac, A. Preclinical and clinical development of palbociclib and future perspectives. Clin. Transl. Oncol., 2018, 20(9), 1136-1144.
[http://dx.doi.org/10.1007/s12094-018-1850-3] [PMID: 29564714 ]
[5]
Shah, A.; Bloomquist, E.; Tang, S.; Fu, W.; Bi, Y.; Liu, Q.; Yu, J.; Zhao, P.; Palmby, T.R.; Goldberg, K.B.; Chang, C.J.G.; Patel, P.; Alebachew, E.; Tilley, A.; Pierce, W.F.; Ibrahim, A.; Blumenthal, G.M.; Sridhara, R.; Beaver, J.A.; Pazdur, R. FDA approval: Ribociclib for the treatment of postmenopausal women with hormone receptor-positive, her2-negative advanced or metastatic breast cancer. Clin. Cancer Res., 2018, 24(13), 2999-3004.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2369] [PMID: 29437768]
[6]
Yu, Y.; Loi, C.M.; Hoffman, J.; Wang, D. Physiologically based pharmacokinetic modeling of palbociclib. J. Clin. Pharmacol., 2017, 57(2), 173-184.
[http://dx.doi.org/10.1002/jcph.792] [PMID: 27402157 ]
[7]
de Gooijer, M.C.; Zhang, P.; Thota, N.; Mayayo-Peralta, I.; Buil, L.C.M.; Beijnen, J.H.; van Tellingen, O. P-glycoprotein and breast cancer resistance protein restrict the brain penetration of the CDK4/6 inhibitor palbociclib. Invest. New Drugs, 2015, 33(5), 1012-1019.
[http://dx.doi.org/10.1007/s10637-015-0266-y] [PMID: 26123925 ]
[8]
Sorf, A.; Hofman, J. Kučera, R.; Staud, F.; Ceckova, M. Ribociclib shows potential for pharmacokinetic drug-drug interactions being a substrate of ABCB1 and potent inhibitor of ABCB1, ABCG2 and CYP450 isoforms in vitro. Biochem. Pharmacol., 2018, 154, 10-17.
[http://dx.doi.org/10.1016/j.bcp.2018.04.013] [PMID: 29673999 ]
[9]
Shetty, K.J. Assessment of potential drug - drug interactions in an oncology unit of a tertiary care teaching hospital. Indian J. Med. Paediatr. Oncol., 2018, 39(04), 436-442.
[http://dx.doi.org/10.4103/ijmpo.ijmpo_93_17 ]
[10]
Marechal, J.D.; Yu, J.; Brown, S.; Kapelioukh, I.; Rankin, E.M.; Wolf, C.R.; Roberts, G.C.K.; Paine, M.J.I.; Sutcliffe, M.J. In silico and in vitro screening for inhibition of cytochrome P450 CYP3A4 by comedications commonly used by patients with cancer. Drug Metab. Dispos., 2006, 34(4), 534-538.
[http://dx.doi.org/10.1124/dmd.105.007625] [PMID: 16415122 ]
[11]
Sharma, M.; Holmes, H.M.; Mehta, H.B.; Chen, H.; Aparasu, R.R.; Shih, Y.T.; Giordano, S.H.; Johnson, M.L. The concomitant use of tyrosine kinase inhibitors and proton pump inhibitors: Prevalence, predictors, and impact on survival and discontinuation of therapy in older adults with cancer. Cancer, 2019, 125(7), 1155-1162.
[http://dx.doi.org/10.1002/cncr.31917] [PMID: 30605231 ]
[12]
Del Re, M.; Omarini, C.; Diodati, L.; Palleschi, M.; Meattini, I.; Crucitta, S.; Lorenzini, G.; Isca, C.; Fontana, A.; Livi, L.; Piacentini, F.; Fogli, S.; De Giorgi, U.; Danesi, R. Drug-drug interactions between palbociclib and proton pump inhibitors may significantly affect clinical outcome of metastatic breast cancer patients. ESMO Open, 2021, 6(5), 100231.
[http://dx.doi.org/10.1016/j.esmoop.2021.100231] [PMID: 34509802 ]
[13]
Meyer, U.A. Interaction of proton pump inhibitors with cytochromes P450: Consequences for drug interactions. Yale J. Biol. Med., 1996, 69(3), 203-209.
[PMID: 9165689 ]
[14]
Patel, D.; Bertz, R.; Ren, S.; Boulton, D.W.; Någård, M. A systematic review of gastric acid-reducing agent-mediated drug-drug interactions with orally administered medications. Clin. Pharmacokinet., 2020, 59(4), 447-462.
[http://dx.doi.org/10.1007/s40262-019-00844-3] [PMID: 31788764 ]
[15]
Egorin, M.J.; Shah, D.D.; Christner, S.M.; Yerk, M.A.; Komazec, K.A.; Appleman, L.R.; Redner, R.L.; Miller, B.M.; Beumer, J.H. Effect of a proton pump inhibitor on the pharmacokinetics of imatinib. Br. J. Clin. Pharmacol., 2009, 68(3), 370-374.
[http://dx.doi.org/10.1111/j.1365-2125.2009.03466.x] [PMID: 19740393 ]
[16]
Pichard-Garcia, L.; Whomsley, R.; Daujat, M.; Maurel, P.; Setoyama, T.; Humphries, T.J. Comparative effects of rabeprazole and omeprazole on the inducibility of cytochrome P450-1A and cytochrome P450- 3A isoenzymes in human hepatocytes, and effects on cyclosporin metabolism in human liver microsomes. Clin. Drug Investig., 2000, 20(4), 245-254.
[http://dx.doi.org/10.2165/00044011-200020040-00006 ]
[17]
Novotna, A.; Dvorak, Z. Omeprazole and lansoprazole enantiomers induce CYP3A4 in human hepatocytes and cell lines via glucocorticoid receptor and pregnane X receptor axis. PLoS One, 2014, 9(8), e105580.
[http://dx.doi.org/10.1371/journal.pone.0105580] [PMID: 25141173 ]
[18]
Liu, K.H.; Kim, M.J.; Shon, J.H.; Moon, Y.S.; Seol, S.Y.; Kang, W.; Cha, I.J.; Shin, J.G. Stereoselective inhibition of cytochrome P450 forms by lansoprazole and omeprazole in vitro. Xenobiotica, 2005, 35(1), 27-38.
[http://dx.doi.org/10.1080/00498250400026472] [PMID: 15788366 ]
[19]
Li, X.Q.; Andersson, T.B.; Ahlström, M.; Weidolf, L. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab. Dispos., 2004, 32(8), 821-827.
[http://dx.doi.org/10.1124/dmd.32.8.821] [PMID: 15258107 ]
[20]
Pauli-Magnus, C.; Rekersbrink, S.; Klotz, U.; Fromm, M.F. Interaction of omeprazole, lansoprazole and pantoprazole with p-glycoprotein. Naunyn Schmiedebergs Arch. Pharmacol., 2001, 364(6), 551-557.
[http://dx.doi.org/10.1007/s00210-001-0489-7] [PMID: 11770010 ]
[21]
Quinn, D.I.; Nemunaitis, J.; Fuloria, J.; Britten, C.D.; Gabrail, N.; Yee, L.; Acharya, M.; Chan, K.; Cohen, N.; Dudov, A. Effect of the cytochrome P450 2C19 inhibitor omeprazole on the pharmacokinetics and safety profile of bortezomib in patients with advanced solid tumours, non-Hodgkin’s lymphoma or multiple myeloma. Clin. Pharmacokinet., 2009, 48(3), 199-209.
[http://dx.doi.org/10.2165/00003088-200948030-00006] [PMID: 19385713 ]
[22]
Nathan, M.R.; Schmid, P. A review of fulvestrant in breast cancer. Oncol. Therapy, 2017, 5, 17-19.
[http://dx.doi.org/10.1007/s40487-017-0046-2 ]
[23]
Sun, W.; Klamerus, K.J.; Yuhas, L.M.; Pawlak, S.; Plotka, A.; O’Gorman, M.; Kirkovsky, L.; Kosa, M.; Wang, D. Impact of acidreducing agents on the pharmacokinetics of palbociclib, a weak base with pH-dependent solubility, with different food intake conditions. Clin. Pharmacol. Drug Dev., 2017, 6(6), 614-626.
[http://dx.doi.org/10.1002/cpdd.356] [PMID: 28430398 ]
[24]
van der Bol, J.M.; Loos, W.J.; de Jong, F.A.; van Meerten, E.; Konings, I.R.H.M.; Lam, M.H.; de Bruijn, P.; Wiemer, E.A.C.; Verweij, J.; Mathijssen, R.H.J. Effect of omeprazole on the pharmacokinetics and toxicities of irinotecan in cancer patients: A prospective cross-over drug-drug interaction study. Eur. J. Cancer, 2011, 47(6), 831-838.
[http://dx.doi.org/10.1016/j.ejca.2010.11.030] [PMID: 21216137 ]
[25]
Takahashi, K.; Yano, I.; Fukuhara, Y.; Katsura, T.; Takahashi, T.; Ito, N.; Yamamoto, S.; Ogawa, O.; Inui, K. Distinct effects of omeprazole and rabeprazole on the tacrolimus blood concentration in a kidney transplant recipient. Drug Metab. Pharmacokinet., 2007, 22(6), 441-444.
[http://dx.doi.org/10.2133/dmpk.22.441] [PMID: 18159131 ]
[26]
Waters, N.J. Evaluation of drug-drug interactions for oncology therapies: in vitro-in vivo extrapolation model-based risk assessment. Br. J. Clin. Pharmacol., 2015, 79(6), 946-958.
[http://dx.doi.org/10.1111/bcp.12563] [PMID: 25443889 ]
[27]
van Leeuwen, R.W.F.; Brundel, D.H.S.; Neef, C.; van Gelder, T.; Mathijssen, R.H.J.; Burger, D.M.; Jansman, F.G.A. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs. Br. J. Cancer, 2013, 108(5), 1071-1078.
[http://dx.doi.org/10.1038/bjc.2013.48] [PMID: 23412102 ]
[28]
Verma, R.; Boshoff, H.I.M.; Arora, K.; Bairy, I.; Tiwari, M.; Bhat, V.G.; Shenoy, G.G. Synthesis, antitubercular evaluation, molecular docking and molecular dynamics studies of 4,6-disubstituted-2-oxodihydropyridine- 3-carbonitriles. J. Mol. Struct., 2019, 1197, 117-133.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.035 ]
[29]
Jana, S.; Rastogi, H. Effects of caffeic acid and quercetin on in vitro permeability, metabolism and in vivo pharmacokinetics of melatonin in rats: potential for herb-drug interaction. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(5), 781-791.
[http://dx.doi.org/10.1007/s13318-016-0393-7] [PMID: 28070878 ]
[30]
Yan, M.; Wu, Z.F.; Tang, D.; Wang, F.; Xiao, Y.W.; Xu, P.; Zhang, B.K.; Liu, Y.P.; Xiang, D.X.; Banh, H.L. The impact of proton pump inhibitors on the pharmacokinetics of voriconazole in vitro and in vivo. Biomed. Pharmacother., 2018, 108, 60-64.
[http://dx.doi.org/10.1016/j.biopha.2018.08.121] [PMID: 30216801 ]
[31]
Daali, Y.; Ancrenaz, V.; Bosilkovska, M.; Dayer, P.; Desmeules, J. Ritonavir inhibits the two main prasugrel bioactivation pathways in vitro: a potential drug-drug interaction in HIV patients. Metabolism, 2011, 60(11), 1584-1589.
[http://dx.doi.org/10.1016/j.metabol.2011.03.015] [PMID: 21550074 ]
[32]
Hsu, M.H.; Johnson, E.F. Active-site differences between substratefree and ritonavir-bound cytochrome P450 (CYP) 3A5 reveal plasticity differences between CYP3A5 and CYP3A4. J. Biol. Chem., 2019, 294(20), 8015-8022.
[http://dx.doi.org/10.1074/jbc.RA119.007928] [PMID: 30926609 ]
[33]
Ekroos, M.; Sjo, T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. U.S.A, 2006, 103(37), 13682-7.
[34]
Zhou, X.; Wang, Y.; Hu, T.; Or, P.M.Y.; Wong, J.; Wa, Y.; Wan, D.C.C.; Man, P.; Lai, P.B.S.; Yeung, J.H.K. Enzyme kinetic and molecular docking studies for the inhibitions of miltirone on major human cytochrome p450 isozymes. Phytomedicine, 2013, 20(3-4), 367-374.
[http://dx.doi.org/10.1016/j.phymed.2012.09.021] [PMID: 23102508 ]
[35]
Subhani, S.; Jamil, K. Molecular docking of chemotherapeutic agents to CYP3A4 in non-small cell lung cancer. Biomed. Pharmacother., 2015, 73, 65-74.
[http://dx.doi.org/10.1016/j.biopha.2015.05.018] [PMID: 26211584 ]
[36]
Shirasaka, Y.; Sager, J.E.; Lutz, J.D.; Davis, C.; Isoherranen, N. Inhibition of CYP2C19 and CYP3A4 by omeprazole metabolites and their contribution to drug-drug interactions. Drug Metab. Dispos., 2013, 41(7), 1414-1424.
[http://dx.doi.org/10.1124/dmd.113.051722] [PMID: 23620487 ]
[37]
Ko, J.W.; Sukhova, N.; Thacker, D.; Chen, P.; Flockhart, D.A. Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metab. Dispos., 1997, 25(7), 853-862.
[PMID: 9224780 ]
[38]
Zvyaga, T.; Chang, S.Y.; Chen, C.; Yang, Z.; Vuppugalla, R.; Hurley, J.; Thorndike, D.; Wagner, A.; Chimalakonda, A.; Rodrigues, A.D. Evaluation of six proton pump inhibitors as inhibitors of various human cytochromes P450: Focus on cytochrome P450 2C19. Drug Metab. Dispos., 2012, 40(9), 1698-1711.
[http://dx.doi.org/10.1124/dmd.112.045575] [PMID: 22648560 ]
[39]
Miura, M.; Satoh, S.; Tada, H.; Habuchi, T.; Suzuki, T. Stereoselective metabolism of rabeprazole-thioether to rabeprazole by human liver microsomes. Eur. J. Clin. Pharmacol., 2006, 62(2), 113-117.
[http://dx.doi.org/10.1007/s00228-005-0077-8] [PMID: 16389533 ]
[40]
Eagling, V.A.; Tjia, J.F.; Back, D.J. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. Br. J. Clin. Pharmacol., 1998, 45(2), 107-114.
[http://dx.doi.org/10.1046/j.1365-2125.1998.00679.x] [PMID: 9491822 ]
[41]
Greenblatt, D.J.; Zhao, Y.; Venkatakrishnan, K.; Duan, S.X.; Harmatz, J.S.; Parent, S.J.; Court, M.H.; von Moltke, L.L. Mechanism of cytochrome P450-3A inhibition by ketoconazole. J. Pharm. Pharmacol., 2011, 63(2), 214-221.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01202.x] [PMID: 21235585 ]
[42]
von Moltke, L.L.; Greenblatt, D.J.; Duan, S.X.; Schmider, J.; Wright, C.E.; Harmatz, J.S.; Shader, R.I.; Moltke, L.L.V. Human cytochromes mediating N-demethylation of fluoxetine in vitro. Psychopharmacology (Berl.), 1997, 132(4), 402-407.
[http://dx.doi.org/10.1007/s002130050362] [PMID: 9298519 ]
[43]
Raymond, L.; Rayani, N.; Polson, G.; Sikorski, K.; Lian, A.; VanAlstine-Parris, M.A. Determining the IC 50 Values for Vorozole and Letrozole, on a Series of Human Liver Cytochrome P450s, to Help Determine the Binding Site of vorozole in the Liver. Enzyme Res., 2015, 2015, 321820.
[http://dx.doi.org/10.1155/2015/321820] [PMID: 26635974]