Current Pharmaceutical Biotechnology

Author(s): Iryna Kamyshna* and Aleksandr Kamyshnyi

DOI: 10.2174/1389201023666220217123454

Transcription Factors and Regulators Pathway-focused Genes Expression Analysis in Patients with Different Forms of Thyroid Pathology

Page: [1396 - 1404] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Autoimmune thyroiditis (AIT), a T cell-mediated organ-specific disorder, and transcription factors have a critical role in the regulation of immune responses, especially in the fate of T-helper cells.

Objectives: This study aims to investigate changes in the gene expression profile of transcription factors and regulators in patients with different forms of thyroid pathology.

Methods: We used the pathway-specific real-time PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and verify transcription factors and regulators pathway-focused genes expression in peripheral white blood cells of patients with postoperative hypothyroidism, hypothyroidism as a result of AIT and AIT with elevated serum and antithyroglobulin (anti-Tg) and anti-thyroid peroxidase (anti-TPO) antibodies.

Results: It was shown that in patients with postoperative hypothyroidism FOS, NR1I2, STAT4, and TP53 significantly increased their expression, whereas the expression of STAT1, STAT2, and STAT3 decreased. In patients with hypothyroidism as a result of AIT, we have found increased expression of NR1I2, STAT2, and STAT3. In contrast, the expression of STAT1 and TP53 decreased. FOS and STAT4 mRNAs did not change their expression. In patients with AIT and elevated serum anti-Tg and anti-TPO antibodies, the expression of FOS and NR1I2 reduced, whereas the mRNA level of STAT3 increased. STAT1, STAT2, and STAT4 mRNAs did not change their expression. MYC did not change its expression in all groups of patients.

Conclusion: The results of this study demonstrate that autoimmune thyroiditis and hypothyroidism affect the mRNA-level expression of transcription factors and regulators genes in a gene-specific manner and that these changes to genes expression can be one of the triggers of autoimmune inflammation progression in the thyroid gland.

Keywords: Transcription factors, mRNA, autoimmune thyroiditis, hypothyroidism, STAT1, STAT2.

Graphical Abstract

[1]
Chen, Z.; Wang, Y.; Ding, X.; Zhang, M.; He, M.; Zhao, Y.; Hu, S.; Zhao, F.; Wang, J.; Xie, B.; Shi, B. The proportion of peripheral blood Tregs among the CD4+ T cells of autoimmune thyroid disease patients: A meta-analysis. Endocr. J., 2020, 67(3), 317-326.
[http://dx.doi.org/10.1507/endocrj.EJ19-0307] [PMID: 31827051]
[2]
Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract. Res. Clin. Endocrinol. Metab., 2019, 33(6), 101367.
[http://dx.doi.org/10.1016/j.beem.2019.101367] [PMID: 31812326]
[3]
Kotkowska, A.; Sewerynek, E. Domańska, D.; Pastuszak-Lewandoska, D.; Brzeziańska, E. Single nucleotide polymorphisms in the STAT3 gene influence AITD susceptibility, thyroid autoantibody levels, and IL6 and IL17 secretion. Cell. Mol. Biol. Lett., 2015, 20(1), 88-101.
[http://dx.doi.org/10.1515/cmble-2015-0004] [PMID: 26204395]
[4]
Huang, P.S.; Wang, C.S.; Yeh, C.T.; Lin, K.H. Roles of thyroid hormone-associated micrornas affecting oxidative stress in human hepato-cellular carcinoma. Int. J. Mol. Sci., 2019, 20(20), 5220.
[http://dx.doi.org/10.3390/ijms20205220] [PMID: 31640265]
[5]
Krashin, E. Piekiełko-Witkowska, A.; Ellis, M.; Ashur-Fabian, O. Thyroid hormones and cancer: A comprehensive review of preclinical and clinical studies. Front. Endocrinol. (Lausanne), 2019, 10, 59.
[http://dx.doi.org/10.3389/fendo.2019.00059] [PMID: 30814976]
[6]
Singh, R.; Upadhyay, G.; Kumar, S.; Kapoor, A.; Kumar, A.; Tiwari, M.; Godbole, M.M. Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in the developing cerebellum. J. Endocrinol., 2003, 176(1), 39-46.
[http://dx.doi.org/10.1677/joe.0.1760039] [PMID: 12525248]
[7]
Bilous, I.; Pavlovych, L.; Krynytska, I.; Marushchak, M.; Kamyshnyi, A. Apoptosis and cell cycle pathway-focused genes expression analysis in patients with different forms of thyroid pathology., Open Access Macedonian J. Med. Sci., 2020, 8(B), 784-792..
[http://dx.doi.org/10.3889/oamjms.2020.4760]
[8]
Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The human transcription factors. Cell, 2018, 172(4), 650-665.
[http://dx.doi.org/10.1016/j.cell.2018.01.029] [PMID: 29425488]
[9]
Ikushima, H.; Negishi, H.; Taniguchi, T. The IRF family transcription factors at the interface of innate and adaptive immune responses. Cold Spring Harb. Symp. Quant. Biol., 2013, 78, 105-116.
[http://dx.doi.org/10.1101/sqb.2013.78.020321] [PMID: 24092468]
[10]
Seif, F.; Khoshmirsafa, M.; Aazami, H.; Mohsenzadegan, M.; Sedighi, G.; Bahar, M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal., 2017, 15(1), 23.
[http://dx.doi.org/10.1186/s12964-017-0177-y] [PMID: 28637459]
[11]
O’Shea, J.J.; Holland, S.M.; Staudt, L.M. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med., 2013, 368(2), 161-170.
[http://dx.doi.org/10.1056/NEJMra1202117] [PMID: 23301733]
[12]
Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT signaling pathway. J. Cell Sci., 2004, 117(Pt 8), 1281-1283.
[http://dx.doi.org/10.1242/jcs.00963] [PMID: 15020666]
[13]
Bathla, M.; Singh, M.; Relan, P. Prevalence of anxiety and depressive symptoms among patients with hypothyroidism. Indian J. Endocrinol. Metab., 2016, 20(4), 468-474.
[http://dx.doi.org/10.4103/2230-8210.183476] [PMID: 27366712]
[14]
Bilous, I.I.; Korda, M.M.; Krynytska, I.Y.; Kamyshnyi, A.M. Nerve impulse transmission pathway-focused genes expression analysis in patients with primary hypothyroidism and autoimmune thyroiditis. Endocr. Regul., 2020, 54(2), 109-118.
[http://dx.doi.org/10.2478/enr-2020-0013] [PMID: 32597152]
[15]
Kotwal, S.K.; Kotwal, S.; Gupta, R.; Singh, J.B.; Mahajan, A. Cerebellar ataxia as presenting feature of hypothyroidism. Arch. Endocrinol. Metab., 2016, 60(2), 183-185.
[http://dx.doi.org/10.1590/2359-3997000000121] [PMID: 26886095]
[16]
Jucevičiūtė, N.; Žilaitienė, B Aniulienė, R.; Vanagienė, V. The link between thyroid autoimmunity, depression and bipolar disorder. Open Med. (Wars.), 2019, 14, 52-58.
[http://dx.doi.org/10.1515/med-2019-0008] [PMID: 30775452]
[17]
Gallo, F.T.; Katche, C.; Morici, J.F.; Medina, J.H.; Weisstaub, N.V. Immediate early genes, memory and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Front. Behav. Neurosci., 2018, 12, 79.
[http://dx.doi.org/10.3389/fnbeh.2018.00079] [PMID: 29755331]
[18]
Song, H.; Zheng, Y.; Cai, F.; Ma, Y.; Yang, J.; Wu, Y. c-Fos downregulation positively regulates EphA5 expression in a congenital hypo-thyroidism rat model. J. Mol. Histol., 2018, 49(2), 147-155.
[http://dx.doi.org/10.1007/s10735-018-9754-7] [PMID: 29330744]
[19]
Garber, J.R.; Cobin, R.H.; Gharib, H.; Hennessey, J.V.; Klein, I.; Mechanick, J.I.; Pessah-Pollack, R.; Singer, P.A.; Woeber, K.A. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr. Pract., 2012, 18(6), 988-1028.
[http://dx.doi.org/10.4158/EP12280.GL] [PMID: 23246686]
[20]
Kamyshna, I.; Kamyshnyi, A. Transcriptional activity of neurotrophins genes and their receptors in the peripheral blood in patients with thyroid diseases in bukovinian population of ukraine., Open Access Macedonian J. Med. Sci., 2021, 9(A), 208-216..
[http://dx.doi.org/10.3889/oamjms.2021.6037]
[21]
Kamyshna, I.I.; Pavlovych, L.B.; Maslyanko, V.A.; Kamyshnyi, A.M. Analysis of the transcriptional activity of genes of neuropeptides and their receptors in the blood of patients with thyroid pathology. J. Med. Life, 2021, 14(2), 243-249.
[http://dx.doi.org/10.25122/jml-2020-0183] [PMID: 34104248]
[22]
Degen, A.S.; Krynytska, I.Y.; Kamyshnyi, A.M. Changes in the transcriptional activity of the entero-insular axis genes in streptozotocin-induced diabetes and after the administration of TNF-α non-selective blockers. Endocr. Regul., 2020, 54(3), 160-171.
[http://dx.doi.org/10.2478/enr-2020-0019] [PMID: 32857721]
[23]
Kamyshna, I; Pavlovych, L; Kamyshnyi, A . Association between serum brain-derived neurotrophic factor and 25-OH vitamin D levels with vitamin D receptors gene polymorphism (rs2228570) in patients with autoimmune thyroiditis and hypothyroidism. Open Access Macedonian J. Med. Sci., 2021, 9(A), 659-664..
[http://dx.doi.org/10.3889/oamjms.2021.6631]
[24]
Bilous, I.I.; Pavlovych, L.L.; Kamyshnyi, A.M. Primary hypothyroidism and autoimmune thyroiditis alter the transcriptional activity of genes regulating neurogenesis in the blood of patients. Endocr. Regul., 2021, 55(1), 5-15.
[http://dx.doi.org/10.2478/enr-2021-0002] [PMID: 33600668]
[25]
Antonelli, A.; Ferrari, S.M.; Corrado, A.; Di Domenicantonio, A.; Fallahi, P. Autoimmune thyroid disorders. Autoimmun. Rev., 2015, 14(2), 174-180.
[http://dx.doi.org/10.1016/j.autrev.2014.10.016] [PMID: 25461470]
[26]
Lorenzini, T.; Dotta, L.; Giacomelli, M.; Vairo, D.; Badolato, R. STAT mutations as program switchers: turning primary immunodeficien-cies into autoimmune diseases. J. Leukoc. Biol., 2017, 101(1), 29-38.
[http://dx.doi.org/10.1189/jlb.5RI0516-237RR] [PMID: 27803128]
[27]
Gupta, U.; Mir, S.S.; Srivastava, A.; Garg, N.; Agarwal, S.K.; Pande, S.; Mittal, B. Signal transducers and activators of transcription (STATs) gene polymorphisms related with susceptibility to rheumatic heart disease in north Indian population. Immunol. Lett., 2014, 161(1), 100-105.
[http://dx.doi.org/10.1016/j.imlet.2014.04.015] [PMID: 24797343]
[28]
Bezrodnik, L.; Gaillard, M.I.; Caldirola, M.S. Dysregulatory syndromes: the role of signal transducers and activators of transcription. Curr. Opin. Pediatr., 2018, 30(6), 821-828.
[http://dx.doi.org/10.1097/MOP.0000000000000685] [PMID: 30407975]
[29]
Mogensen, T.H. IRF and STAT transcription factors - from basic biology to roles in infection, protective immunity, and primary immuno-deficiencies. Front. Immunol., 2019, 9, 3047.
[http://dx.doi.org/10.3389/fimmu.2018.03047] [PMID: 30671054]
[30]
Bao, L.; Zhang, H.; Chan, L.S. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermati-tis. JAK-STAT, 2013, 2(3), e24137.
[http://dx.doi.org/10.4161/jkst.24137] [PMID: 24069552]
[31]
Zundler, S.; Neurath, M.F. Integrating immunologic signaling networks: The JAK/STAT pathway in colitis and colitis-associated cancer. Vaccines (Basel), 2016, 4(1), 5.
[http://dx.doi.org/10.3390/vaccines4010005] [PMID: 26938566]
[32]
Benveniste, E.N.; Liu, Y.; McFarland, B.C.; Qin, H. Involvement of the janus kinase/signal transducer and activator of transcription signal-ing pathway in multiple sclerosis and the animal model of experimental autoimmune encephalomyelitis. J. Interferon Cytokine Res., 2014, 34(8), 577-588.
[http://dx.doi.org/10.1089/jir.2014.0012] [PMID: 25084174]
[33]
Isomäki, P.; Junttila, I.; Vidqvist, K.L.; Korpela, M.; Silvennoinen, O. The activity of JAK-STAT pathways in rheumatoid arthritis: consti-tutive activation of STAT3 correlates with interleukin 6 levels. Rheumatology (Oxford), 2015, 54(6), 1103-1113.
[http://dx.doi.org/10.1093/rheumatology/keu430] [PMID: 25406356]
[34]
Manoochehrabadi, S.; Arsang-Jang, S.; Mazdeh, M.; Inoko, H.; Sayad, A.; Taheri, M. Analysis of STAT1, STAT2 and STAT3 mRNA expression levels in the blood of patients with multiple sclerosis. Hum. Antibodies, 2019, 27(2), 91-98.
[http://dx.doi.org/10.3233/HAB-180352] [PMID: 30412483]
[35]
Schimke, L.F.; Hibbard, J.; Martinez-Barricarte, R.; Khan, T.A.; de Souza Cavalcante, R.; Borges de Oliveira, Junior, E.; Takahashi França, T.; Iqbal, A.; Yamamoto, G.; Arslanian, C.; Feriotti, C.; Costa, T.A.; Bustamante, J.; Boisson-Dupuis, S.; Casanova, J.L. Marzagao Bar-buto, J.A.; Zatz, M.; Poncio Mendes, R.; Garcia Calich, V.L.; Ochs, H.D.; Torgerson, T.R.; Cabral-Marques, O.; Condino-Neto, A. Para-coccidioidomycosis Associated With a Heterozygous STAT4 Mutation and Impaired IFN-γ Immunity. J. Infect. Dis., 2017, 216(12), 1623-1634.
[http://dx.doi.org/10.1093/infdis/jix522] [PMID: 29029192]
[36]
Azuma, Y.T.; Matsuo, Y.; Kuwamura, M.; Yancopoulos, G.D.; Valenzuela, D.M.; Murphy, A.J.; Nakajima, H.; Karow, M.; Takeuchi, T. Interleukin-19 protects mice from innate-mediated colonic inflammation. Inflamm. Bowel Dis., 2010, 16(6), 1017-1028.
[http://dx.doi.org/10.1002/ibd.21151] [PMID: 19834971]
[37]
Takahashi, R.; Nishimoto, S.; Muto, G.; Sekiya, T.; Tamiya, T.; Kimura, A.; Morita, R.; Asakawa, M.; Chinen, T.; Yoshimura, A. SOCS1 is essential for regulatory T cell functions by preventing loss of Foxp3 expression as well as IFN-gamma and IL-17A production. J. Exp. Med., 2011, 208(10), 2055-2067.
[http://dx.doi.org/10.1084/jem.20110428] [PMID: 21893603]
[38]
Lucas, S.; Ghilardi, N.; Li, J.; de Sauvage, F.J. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 15047-15052.
[http://dx.doi.org/10.1073/pnas.2536517100] [PMID: 14657353]
[39]
Romberg, N.; Morbach, H.; Lawrence, M.G.; Kim, S.; Kang, I.; Holland, S.M.; Milner, J.D.; Meffre, E. Gain-of-function STAT1 mutations are associated with PD-L1 overexpression and a defect in B-cell survival. J. Allergy Clin. Immunol., 2013, 131(6), 1691-1693.
[http://dx.doi.org/10.1016/j.jaci.2013.01.004] [PMID: 23403048]
[40]
Mogensen, T.H. STAT3 and the Hyper-IgE syndrome: Clinical presentation, genetic origin, pathogenesis, novel findings and remaining uncertainties. JAK-STAT, 2013, 2(2), e23435.
[http://dx.doi.org/10.4161/jkst.23435] [PMID: 24058807]
[41]
Nishihara, M.; Ogura, H.; Ueda, N.; Tsuruoka, M.; Kitabayashi, C.; Tsuji, F.; Aono, H.; Ishihara, K.; Huseby, E.; Betz, U.A.; Murakami, M.; Hirano, T. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int. Immunol., 2007, 19(6), 695-702.
[http://dx.doi.org/10.1093/intimm/dxm045] [PMID: 17493959]
[42]
Xiao, L.; Muhali, F.S.; Cai, T.T.; Song, R.H.; Hu, R.; Shi, X.H.; Jiang, W.J.; Li, D.F.; He, S.T.; Xu, J.; Zhang, J.A. Association of single-nucleotide polymorphisms in the STAT3 gene with autoimmune thyroid disease in Chinese individuals. Funct. Integr. Genomics, 2013, 13(4), 455-461.
[http://dx.doi.org/10.1007/s10142-013-0337-0] [PMID: 24081513]
[43]
Korman, B.D.; Kastner, D.L.; Gregersen, P.K.; Remmers, E.F. STAT4: genetics, mechanisms, and implications for autoimmunity. Curr. Allergy Asthma Rep., 2008, 8(5), 398-403.
[http://dx.doi.org/10.1007/s11882-008-0077-8] [PMID: 18682104]
[44]
Gao, X.; Wang, J.; Yu, Y. The association between STAT4 rs7574865 polymorphism and the susceptibility of autoimmune thyroid dis-ease: a meta-analysis. Front. Genet., 2019, 9, 708.
[http://dx.doi.org/10.3389/fgene.2018.00708] [PMID: 30666271]
[45]
Yan, N.; Meng, S.; Zhou, J.; Xu, J.; Muhali, F.S.; Jiang, W.; Shi, L.; Shi, X.; Zhang, J. Association between STAT4 gene polymorphisms and autoimmune thyroid diseases in a Chinese population. Int. J. Mol. Sci., 2014, 15(7), 12280-12293.
[http://dx.doi.org/10.3390/ijms150712280] [PMID: 25019342]
[46]
Hiz, M.M. Kılıç, S.; Işık, S.; Ogretmen, Z.; Silan, F. Contribution of the STAT4 rs7574865 gene polymorphism to the susceptibility to autoimmune thyroiditis in healthy Turk population and psoriatic subgroups. Cent. Eur. J. Immunol., 2015, 40(4), 437-441.
[http://dx.doi.org/10.5114/ceji.2015.57146] [PMID: 26862307]
[47]
Vousden, K.H.; Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol., 2007, 8(4), 275-283.
[http://dx.doi.org/10.1038/nrm2147] [PMID: 17380161]
[48]
Ruggeri, R.M.; Vicchio, T.M.; Giovinazzo, S.; Certo, R.; Alibrandi, A.; Trimarchi, F.; Benvenga, S.; Trovato, M. TP53 polymorphism may contribute to genetic susceptibility to develop Hashimoto’s thyroiditis. J. Endocrinol. Invest., 2015, 38(11), 1175-1182.
[http://dx.doi.org/10.1007/s40618-015-0292-9] [PMID: 25935255]
[49]
Lee, Y.H.; Bae, S.C.; Choi, S.J.; Ji, J.D.; Song, G.G. Associations between the p53 codon 72 polymorphisms and susceptibility to systemic lupus erythematosus and rheumatoid arthritis: A meta-analysis. Lupus, 2012, 21(4), 430-437.
[http://dx.doi.org/10.1177/0961203311434941] [PMID: 22427364]
[50]
Zhang, S.; Zheng, M.; Kibe, R.; Huang, Y.; Marrero, L.; Warren, S.; Zieske, A.W.; Iwakuma, T.; Kolls, J.K.; Cui, Y. Trp53 negatively regu-lates autoimmunity via the STAT3-Th17 axis. FASEB J., 2011, 25(7), 2387-2398.
[http://dx.doi.org/10.1096/fj.10-175299] [PMID: 21471252]
[51]
Salmaso, C.; Bagnasco, M.; Pesce, G.; Montagna, P.; Brizzolara, R.; Altrinetti, V.; Richiusa, P.; Galluzzo, A.; Giordano, C. Regulation of apoptosis in endocrine autoimmunity: insights from Hashimoto’s thyroiditis and Graves’ disease. Ann. N. Y. Acad. Sci., 2002, 966, 496-501.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04253.x] [PMID: 12114310]
[52]
Wu, Q.; Lemus, M.B.; Stark, R.; Bayliss, J.A.; Reichenbach, A.; Lockie, S.H.; Andrews, Z.B. The temporal pattern of cfos activation in hypothalamic, cortical, and brainstem nuclei in response to fasting and refeeding in male mice. Endocrinology, 2014, 155(3), 840-853.
[http://dx.doi.org/10.1210/en.2013-1831] [PMID: 24424063]
[53]
Velazquez, F.N.; Caputto, B.L.; Boussin, F.D. c-Fos importance for brain development. Aging (Albany NY), 2015, 7(12), 1028-1029.
[http://dx.doi.org/10.18632/aging.100862] [PMID: 26684501]
[54]
di Masi, A.; De Marinis, E.; Ascenzi, P.; Marino, M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol. Aspects Med., 2009, 30(5), 297-343.
[http://dx.doi.org/10.1016/j.mam.2009.04.002] [PMID: 19427329]
[55]
Chen, C.; Staudinger, J.L.; Klaassen, C.D. Nuclear receptor, pregname X receptor, is required for induction of UDP-glucuronosyltranferases in mouse liver by pregnenolone-16 alpha-carbonitrile. Drug Metab. Dispos., 2003, 31(7), 908-915.
[http://dx.doi.org/10.1124/dmd.31.7.908] [PMID: 12814968]
[56]
Curran, P.G.; DeGroot, L.J. The effect of hepatic enzyme-inducing drugs on thyroid hormones and the thyroid gland. Endocr. Rev., 1991, 12(2), 135-150.
[http://dx.doi.org/10.1210/edrv-12-2-135] [PMID: 2070777]
[57]
Kajta, M.; Wnuk, A.; Rzemieniec, J.; Lason, W.; Mackowiak, M.; Chwastek, E.; Staniszewska, M.; Nehring, I.; Wojtowicz, A.K. Triclocarban disrupts the epigenetic status of neuronal cells and induces AHR/CAR-mediated apoptosis. Mol. Neurobiol., 2019, 56(5), 3113-3131.
[http://dx.doi.org/10.1007/s12035-018-1285-4] [PMID: 30097849]
[58]
Litwa, E.; Rzemieniec, J.; Wnuk, A.; Lason, W.; Krzeptowski, W.; Kajta, M. RXRα PXR and CAR xenobiotic receptors mediate the apop-totic and neurotoxic actions of nonylphenol in mouse hippocampal cells. J. Steroid Biochem. Mol. Biol., 2016, 156, 43-52.
[http://dx.doi.org/10.1016/j.jsbmb.2015.11.018] [PMID: 26643981]
[59]
Trop-Steinberg, S.; Azar, Y. Is Myc an important biomarker? Myc expression in immune disorders and cancer. Am. J. Med. Sci., 2018, 355(1), 67-75.
[http://dx.doi.org/10.1016/j.amjms.2017.06.007] [PMID: 29289266]
[60]
Pérez-Juste, G.; García-Silva, S.; Aranda, A. An element in the region responsible for premature termination of transcription mediates repression of c-myc gene expression by thyroid hormone in neuroblastoma cells. J. Biol. Chem., 2000, 275(2), 1307-1314.
[http://dx.doi.org/10.1074/jbc.275.2.1307] [PMID: 10625678]