Fangchinoline Inhibited Proliferation of Neoplastic B-lymphoid Cells and Alleviated Sjögren’s Syndrome-like Responses in NOD/Ltj Mice via the Akt/mTOR Pathway

Article ID: e170222201221 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Fangchinoline is a bisbenzylisoquinoline alkaloid extracted from Stephania tetrandra S. Moore that is conventionally used as an analgesic, antirheumatic, and antihypertensive drug in China. However, the application of Fanchinoline in Sjögren syndrome (SS) remains unreported.

Objective: This study aimed to identify the potential role of Fangchinoline in the treatment of SS via altering Akt/mTOR signaling.

Methods: First, we examined levels of p-Akt and p-mTOR in infiltrating lymphocytes of labial glands from SS patients by immunohistochemistry. Then, the effects of Fangchinoline on Raji cells and Daudi cells were investigated using the CCK-8 assay, propidium iodide (PI)/RNase, and Annexin V/PI staining. Western blotting was used to identify the levels of Akt, p-Akt(ser473), mTOR, and p-mTOR. For in vivo analyses, NOD/Ltj and wild-type ICR mice were treated with a Fangchinoline solution, an LY294002 solution (an inhibitor of the PI3K/Akt/mTOR pathway), or their solvent for 28 days. Then, salivary flow assays and hematoxylin and eosin staining of submandibular glands were performed to determine the severity of SS-like responses in the mice.

Results: Immunohistochemical staining of labial glands from SS patients showed that activation of p-Akt and p-mTOR in infiltrating lymphocytes might be correlated with SS development. In vitro, Fangchinoline and LY294002 inhibited proliferation, induced cell cycle arrest, and promoted apoptosis in Raji and Daudi cells by altering Akt/mTOR signaling. In vivo, Fangchinoline and LY294002 significantly improved the salivary secretion by NOD/Ltj mice and reduced the number of lymphocytic foci in the submandibular glands.

Conclusion: These results indicated that Fangchinoline could effectively inhibit the proliferation of neoplastic B-lymphoid cells and reduce SS-like responses in NOD/Ltj mice. Our study highlights the potential value of the clinical application of Fangchinoline for SS treatment.

Keywords: Fangchinoline, Akt/mTOR pathway, B cells, lymphocytic focus, Sjögren’s syndrome, LY294002, wild-type ICR mice.

Graphical Abstract

[1]
Tucci, M.; Quatraro, C.; Silvestris, F. Sjögren’s syndrome: An autoimmune disorder with otolaryngological involvement. Acta Otorhinolaryngol. Ital., 2005, 25(3), 139-144.
[PMID: 16450767]
[2]
Shiboski, S.C.; Shiboski, C.H.; Criswell, L.; Baer, A.; Challacombe, S.; Lanfranchi, H.; Schiødt, M.; Umehara, H.; Vivino, F.; Zhao, Y.; Dong, Y.; Greenspan, D.; Heidenreich, A.M.; Helin, P.; Kirkham, B.; Kitagawa, K.; Larkin, G.; Li, M.; Lietman, T.; Lindegaard, J.; McNamara, N.; Sack, K.; Shirlaw, P.; Sugai, S.; Vollenweider, C.; Whitcher, J.; Wu, A.; Zhang, S.; Zhang, W.; Greenspan, J.; Daniels, T. Sjögren’s International Collaborative Clinical Alliance (SICCA) Research Groups. American College of Rheumatology classification criteria for Sjögren’s syndrome: a data-driven, expert consensus approach in the Sjögren’s International Collaborative Clinical Alliance cohort. Arthritis Care Res. (Hoboken), 2012, 64(4), 475-487.
[http://dx.doi.org/10.1002/acr.21591] [PMID: 22563590]
[3]
Anaya, J.M.; Restrepo-Jiménez, P.; Rodríguez, Y.; Rodríguez-Jiménez, M.; Acosta-Ampudia, Y.; Monsalve, D.M.; Pacheco, Y.; Ramírez-Santana, C.; Molano-González, N.; Mantilla, R.D. Sjögren’s syndrome and autoimmune thyroid disease: Two sides of the same coin. Clin. Rev. Allergy Immunol., 2019, 56(3), 362-374.
[http://dx.doi.org/10.1007/s12016-018-8709-9] [PMID: 30187363]
[4]
Igoe, A.; Merjanah, S.; Scofield, R.H. Sjögren syndrome and cancer. Rheum. Dis. Clin. North Am., 2020, 46(3), 513-532.
[http://dx.doi.org/10.1016/j.rdc.2020.05.004] [PMID: 32631601]
[5]
Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; Mariette, X. International Sjögren’s Syndrome Criteria Working Group 2016 american college of rheumatology/European league against rheumatism classification criteria for primary Sjögren’s Syndrome: A consensus and data-driven methodology involving three international patient cohorts. Arthritis Rheumatol., 2017, 69(1), 35-45.
[http://dx.doi.org/10.1002/art.39859] [PMID: 27785888]
[6]
Pacheco, Y.; Acosta-Ampudia, Y.; Monsalve, D.M.; Chang, C.; Gershwin, M.E.; Anaya, J.M. Bystander activation and autoimmunity. J. Autoimmun., 2019, 103, 102301.
[http://dx.doi.org/10.1016/j.jaut.2019.06.012] [PMID: 31326230]
[7]
Long, D.; Chen, Y.; Wu, H.; Zhao, M.; Lu, Q. Clinical significance and immunobiology of IL-21 in autoimmunity. J. Autoimmun., 2019, 99, 1-14.
[http://dx.doi.org/10.1016/j.jaut.2019.01.013] [PMID: 30773373]
[8]
Ibrahem, H.M. B cell dysregulation in primary Sjögren’s syndrome: A review. Jpn. Dent. Sci. Rev., 2019, 55(1), 139-144.
[http://dx.doi.org/10.1016/j.jdsr.2019.09.006] [PMID: 31687053]
[9]
Gandolfo, S.; De, Vita.S. Double anti-B cell and anti-BAFF targeting for the treatment of primary Sjögren's syndrome. Clin Exp Rheumatol, 2019, 37 Suppl 118(3), 199-208.
[10]
Kim, H.S.; Zhang, Y.H.; Oh, K.W.; Ahn, H.Y. Vasodilating and hypotensive effects of fangchinoline and tetrandrine on the rat aorta and the stroke-prone spontaneously hypertensive rat. J. Ethnopharmacol., 1997, 58(2), 117-123.
[http://dx.doi.org/10.1016/S0378-8741(97)00092-5] [PMID: 9406900]
[11]
Zhang, Y.C.; Gao, X.Z.; Liu, C.; Wang, M.X.; Zhang, R.R.; Sun, J.Y.; Liu, Y.F. Design, synthesis and in vitro evaluation of fangchinoline derivatives as potential anticancer agents. Bioorg. Chem., 2020, 94, 103431.
[http://dx.doi.org/10.1016/j.bioorg.2019.103431] [PMID: 31759658]
[12]
Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.H.; Kwon, S. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules, 2019, 9(11), 696.
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[13]
Liu, T.; Zeng, Q.; Zhao, X.; Wei, W.; Li, Y.; Deng, H.; Song, D. Synthesis and biological evaluation of fangchinoline derivatives as anti-inflammatory agents through inactivation of inflammasome. Molecules, 2019, 24(6), 1154.
[http://dx.doi.org/10.3390/molecules24061154] [PMID: 30909541]
[14]
Shen, Y.C.; Chou, C.J.; Chiou, W.F.; Chen, C.F. Anti-inflammatory effects of the partially purified extract of radix Stephaniae tetrandrae: Comparative studies of its active principles tetrandrine and fangchinoline on human polymorphonuclear leukocyte functions. Mol. Pharmacol., 2001, 60(5), 1083-1090.
[http://dx.doi.org/10.1124/mol.60.5.1083] [PMID: 11641437]
[15]
Wei, L.; Xiong, H.; Li, W.; Li, B.; Cheng, Y. Upregulation of IL-6 expression in human salivary gland cell line by IL-17 via activation of p38 MAPK, ERK, PI3K/Akt, and NF-κB pathways. J. Oral Pathol. Med., 2018, 47(9), 847-855.
[http://dx.doi.org/10.1111/jop.12765] [PMID: 30007092]
[16]
Tu, Y.; Guo, R.; Li, J.; Wang, S.; Leng, L.; Deng, J.; Bucala, R.; Lu, L. MiRNA regulation of MIF in SLE and attenuation of murine lupus nephritis with miR-654. Front. Immunol., 2019, 10, 2229.
[http://dx.doi.org/10.3389/fimmu.2019.02229] [PMID: 31608058]
[17]
Hou, H.; Cao, R.; Quan, M.; Sun, Y.; Sun, H.; Zhang, J.; Li, B.; Guo, L.; Song, X. Rapamycin and fingolimod modulate Treg/Th17 cells in experimental autoimmune encephalomyelitis by regulating the Akt-mTOR and MAPK/ERK pathways. J. Neuroimmunol., 2018, 324, 26-34.
[http://dx.doi.org/10.1016/j.jneuroim.2018.08.012] [PMID: 30205205]
[18]
Tian, F.; Ding, D.; Li, D. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells. Int. J. Oncol., 2015, 46(6), 2355-2363.
[http://dx.doi.org/10.3892/ijo.2015.2959] [PMID: 25872479]
[19]
Care, N.; Animals, N. Guide For the Care And Use Of Laboratory Animals; National Academies Press (US): Washington (DC), 2011.
[20]
Christodoulou, M.I.; Kapsogeorgou, E.K.; Moutsopoulos, H.M. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. J. Autoimmun., 2010, 34(4), 400-407.
[http://dx.doi.org/10.1016/j.jaut.2009.10.004] [PMID: 19889514]
[21]
Chen, C.; Zheng, L.Y. The expression of bone marrow stromal antigen-2 in primary Sjogren’s syndrome; Shanghai Jiao Tong Universtiy: Shanghai, 2018.
[22]
Yu, J.S.; Cui, W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development, 2016, 143(17), 3050-3060.
[http://dx.doi.org/10.1242/dev.137075] [PMID: 27578176]
[23]
Mavragani, C.P.; Moutsopoulos, H.M. Sjögren’s syndrome: Old and new therapeutic targets. J. Autoimmun., 2020, 110, 102364.
[http://dx.doi.org/10.1016/j.jaut.2019.102364] [PMID: 31831255]
[24]
Ma, G.; Gezer, D.; Herrmann, O.; Feldberg, K.; Schemionek, M.; Jawhar, M.; Reiter, A.; Brümmendorf, T.H.; Koschmieder, S.; Chatain, N. LCP1 triggers mTORC2/AKT activity and is pharmacologically targeted by enzastaurin in hypereosinophilia. Mol. Carcinog., 2020, 59(1), 87-103.
[http://dx.doi.org/10.1002/mc.23131] [PMID: 31691359]
[25]
Wang, X.; Zhang, C.; Wu, Z.; Chen, Y.; Shi, W. CircIBTK inhibits DNA demethylation and activation of AKT signaling pathway via miR-29b in peripheral blood mononuclear cells in systemic lupus erythematosus. Arthritis Res. Ther., 2018, 20(1), 118.
[http://dx.doi.org/10.1186/s13075-018-1618-8] [PMID: 29884225]
[26]
Jiang, X.; Wang, Y.; Li, X.; He, L.; Yang, Q.; Wang, W.; Liu, J.; Zha, B. Microarray profile of B cells from Graves’ disease patients reveals biomarkers of proliferation. Endocr. Connect., 2020, 9(5), 405-417.
[http://dx.doi.org/10.1530/EC-20-0045] [PMID: 32432440]
[27]
Ren, F.; Zhang, W.; Lu, S.; Ren, H.; Guo, Y. NRSN2 promotes breast cancer metastasis by activating PI3K/AKT/mTOR and NF-κB signaling pathways. Oncol. Lett., 2020, 19(1), 813-823.
[PMID: 31885716]
[28]
Si, X.; Xu, F.; Xu, F.; Wei, M.; Ge, Y.; Chenge, S. CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR pathway. Biomed. Pharmacother., 2020, 123, 109717.
[http://dx.doi.org/10.1016/j.biopha.2019.109717] [PMID: 31865146]
[29]
O’Donnell, J.S.; Massi, D.; Teng, M.W.L.; Mandala, M. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin. Cancer Biol., 2018, 48, 91-103.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.015] [PMID: 28467889]
[30]
Werner, M.; Hobeika, E.; Jumaa, H. Role of PI3K in the generation and survival of B cells. Immunol. Rev., 2010, 237(1), 55-71.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00934.x] [PMID: 20727029]
[31]
Cornec, D.; Devauchelle-Pensec, V.; Tobón, G.J.; Pers, J.O.; Jousse-Joulin, S.; Saraux, A. B cells in Sjögren’s syndrome: from pathophysiology to diagnosis and treatment. J. Autoimmun., 2012, 39(3), 161-167.
[http://dx.doi.org/10.1016/j.jaut.2012.05.014] [PMID: 22749831]
[32]
Zhang, Y.; Qi, D.; Gao, Y.; Liang, C.; Zhang, Y.; Ma, Z.; Liu, Y.; Peng, H.; Zhang, Y.; Qin, H.; Song, X.; Sun, X.; Li, Y.; Liu, Z. History of uses, phytochemistry, pharmacological activities, quality control and toxicity of the root of Stephania tetrandra S. Moore: A review. J. Ethnopharmacol., 2020, 260, 112995.
[http://dx.doi.org/10.1016/j.jep.2020.112995] [PMID: 32497674]
[33]
Li, T.; Xu, X.H.; Guo, X.; Yuan, T.; Tang, Z.H.; Jiang, X.M.; Xu, Y.L.; Zhang, L.L.; Chen, X.; Zhu, H.; Shi, J.J.; Lu, J.J. Activation of notch 3/c-MYC/CHOP axis regulates apoptosis and promotes sensitivity of lung cancer cells to mTOR inhibitor everolimus. Biochem. Pharmacol., 2020, 175, 113921.
[http://dx.doi.org/10.1016/j.bcp.2020.113921] [PMID: 32201213]
[34]
Yoshimoto, K.; Suzuki, K.; Takei, E.; Ikeda, Y.; Takeuchi, T. Elevated expression of BAFF receptor, BR3, on monocytes correlates with B cell activation and clinical features of patients with primary Sjögren’s syndrome. Arthritis Res. Ther., 2020, 22(1), 157.
[http://dx.doi.org/10.1186/s13075-020-02249-1] [PMID: 32576236]
[35]
Carrillo-Ballesteros, F.J.; Palafox-Sánchez, C.A.; Franco-Topete, R.A.; Muñoz-Valle, J.F.; Orozco-Barocio, G.; Martínez-Bonilla, G.E.; Gómez-López, C.E.; Marín-Rosales, M.; López-Villalobos, E.F.; Luquin, S.; Castañeda-Chávez, A.; Oregon-Romero, E. Expression of BAFF and BAFF receptors in primary Sjögren’s syndrome patients with ectopic germinal center-like structures. Clin. Exp. Med., 2020, 20(4), 615-626.
[http://dx.doi.org/10.1007/s10238-020-00637-0] [PMID: 32506205]
[36]
Ge, F.; Wang, F.; Yan, X.; Li, Z.; Wang, X. Association of BAFF with PI3K/Akt/mTOR signaling in lupus nephritis. Mol. Med. Rep., 2017, 16(5), 5793-5798.
[http://dx.doi.org/10.3892/mmr.2017.7367] [PMID: 28849060]
[37]
Liu, D.; Li, P.; Song, S.; Liu, Y.; Wang, Q.; Chang, Y.; Wu, Y.; Chen, J.; Zhao, W.; Zhang, L.; Wei, W. Pro-apoptotic effect of epigallo-catechin-3-gallate on B lymphocytes through regulating BAFF/PI3K/Akt/mTOR signaling in rats with collagen-induced arthritis. Eur. J. Pharmacol., 2012, 690(1-3), 214-225.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.026] [PMID: 22760071]