A Review on Novel Synthesis Approaches and Biological Activities of 1,2,4- Oxadiazole and 1,3,4-Oxadiazole Tailored Compounds

Page: [731 - 747] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Rational design and synthesis of novel compounds with both effectivity and safety properties have always been a formidable task in the development of drugs. Oxadiazoles are heterocyclic bioscaffolds occurring as motifs in drug-like molecules. This review article highlights comprehensive and systematic information of compounds containing 1,2,4-oxadiazoles and 1,3,4-oxadiazole rings. The routes for the synthesis of the oxadiazoles have also been discussed, along with their biological significance. This review may help researchers in rational design for the development of effective and less toxic 1,3,4- oxadiazole based compounds. We present an informative review about the drugs derived from oxadiazole rings and their therapeutic application as well as a brief remark on the future development prospects.

Keywords: Organic derivatives, bioscaffolds, heterocyclic compounds, synthetic chemistry, rational design, oxadiazole.

Graphical Abstract

[1]
Karabelyov, V.; Kondeva-Burdina, M.; Angelova, V.T. Synthetic approaches to unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles and their MAO-B inhibitory activity. A review. Bioorg. Med. Chem., 2021, 29, 115888.
[http://dx.doi.org/10.1016/j.bmc.2020.115888] [PMID: 33360082]
[2]
Pitasse-santos, P.; Sueth-santiago, V.; Lima, M.E.F. 1,2,4- and 1,3,4-oxadiazoles as scaffolds in the development of antiparasitic agents. J. Braz. Chem. Soc., 2018, 29(3), 435-456.
[3]
Glomb, T.; Szymankiewicz, K.; Świątek, P. Anti-cancer activity of derivatives of 1,3,4-oxadiazole. Molecules, 2018, 23(12), 3361.
[http://dx.doi.org/10.3390/molecules23123361] [PMID: 30567416]
[4]
Ono, Y.; Ninomiya, M.; Kaneko, D.; Sonawane, A.D.; Udagawa, T.; Tanaka, K.; Nishina, A.; Koketsu, M. Design and synthesis of quinoxa-line-1,3,4-oxadiazole hybrid derivatives as potent inhibitors of the anti-apoptotic Bcl-2 protein. Bioorg. Chem., 2020, 104, 104245.
[http://dx.doi.org/10.1016/j.bioorg.2020.104245] [PMID: 32911196]
[5]
Shreeve, J.M.; Ma, J.; Chinnam, A.K.; Cheng, G.; Yang, H.; Zhang, J. 1,3,4-oxadiazole bridges: a strategy to improve energetics at the molecular level. Angew. Chem. Int. Ed. Engl., 2020, 60(1), 5497-5504.
[6]
El Mansouri, A.E.; Oubella, A.; Maatallah, M.; AitItto, M.Y.; Zahouily, M.; Morjani, H.; Lazrek, H.B. Design, synthesis, biological evaluation and molecular docking of new uracil analogs-1,2,4-oxadiazole hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2020, 30(19), 127438.
[http://dx.doi.org/10.1016/j.bmcl.2020.127438] [PMID: 32736079]
[7]
Patel, K.D.; Prajapati, S.M.; Panchal, S.N.; Patel, H.D. Review of synthesis of 1,3,4-oxadiazole derivatives. Synth. Commun., 2014, 44(13), 1859-1875.
[http://dx.doi.org/10.1080/00397911.2013.879901]
[8]
Teslenko, F.E.; Churakov, A.I.; Larin, A.A.; Ananyev, I.V.; Fershtat, L.L.; Makhova, N.N. Route to 1,2,4- and 1,2,5-oxadiazole ring assemblies via a one-pot condensation/oxidation protocol. Tetrahedron Lett., 2020, 61(13), 151678.
[http://dx.doi.org/10.1016/j.tetlet.2020.151678]
[9]
Zhang, Y.; Shang, J.; Li, H.; Liu, H.; Song, H.; Wang, B.; Li, Z. Synthesis of novel N-pyridylpyrazole derivatives containing 1,2,4-oxadiazole moiety via 1,3-dipolar cycloaddition and their structures and biological activities. Chin. Chem. Lett., 2020, 31(5), 1276-1280.
[http://dx.doi.org/10.1016/j.cclet.2019.10.039]
[10]
Wang, M.; Liu, T.; Chen, S.; Wu, M.; Han, J.; Li, Z. Design and synthesis of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives as novel GSK-3β inhibitors and evaluation of their potential as multifunctional anti-Alzheimer agents. Eur. J. Med. Chem., 2021, 209, 112874.
[http://dx.doi.org/10.1016/j.ejmech.2020.112874] [PMID: 33017743]
[11]
Mohamed, M.F.A.; Marzouk, A.A.; Nafady, A.; El-Gamal, D.A.; Allam, R.M.; Abuo-Rahma, G.E.A.; El Subbagh, H.I.; Moustafa, A.H. De-sign, synthesis and molecular modeling of novel aryl carboximidamides and 3-aryl-1,2,4-oxadiazoles derived from indomethacin as potent anti-inflammatory iNOS/PGE2 inhibitors. Bioorg. Chem., 2020, 105, 104439.
[http://dx.doi.org/10.1016/j.bioorg.2020.104439] [PMID: 33161252]
[12]
Iftikhar, M. Shahnawaz; Saleem, M.; Riaz, N.; Aziz-ur-Rehman, ; Ahmed, I.; Rahman, J.; Ashraf, M.; Sharif, M.S.; Khan, S.U.; Htar, T.T. A novel five-step synthetic route to 1,3,4-oxadiazole derivatives with potent α-glucosidase inhibitory potential and their in silico studies. Arch. Pharm. (Weinheim), 2019, 352(12), e1900095.
[http://dx.doi.org/10.1002/ardp.201900095]
[13]
Briki, K.; Othman, A.A.; Abbassi, M.S.; Lahrech, M.B. Synthesis, characterization and biological activity of Hg(II), Fe(III) complexes with 1,3,4-oxadiazole, 1,2,4-triazole derivatives from L-methionine. J. Saudi Chem. Soc., 2020, 24(12), 1051-1059.
[http://dx.doi.org/10.1016/j.jscs.2020.11.004]
[14]
Kaneko, D.; Ninomiya, M.; Yoshikawa, R.; Ono, Y.; Sonawane, A.D.; Tanaka, K.; Nishina, A.; Koketsu, M. Synthesis of [1,2,4]triazolo[4,3-a]quinoxaline-1,3,4-oxadiazole derivatives as potent antiproliferative agents via a hybrid pharmacophore approach. Bioorg. Chem., 2020, 104, 104293.
[http://dx.doi.org/10.1016/j.bioorg.2020.104293] [PMID: 33010622]
[15]
Wang, S.; Liu, H.; Wang, X.; Lei, K.; Li, G.; Li, J.; Liu, R.; Quan, Z. Synthesis of 1,3,4-oxadiazole derivatives with anticonvulsant activity and their binding to the GABAA receptor. Eur. J. Med. Chem., 2020, 206, 112672.
[http://dx.doi.org/10.1016/j.ejmech.2020.112672] [PMID: 32798790]
[16]
Paoloni, L.; Cignitti, M. Electronic structure and chemical properties of 1,2,4-oxadiazole, bis-1,2,4-oxadiazoles and other derivaties. Tetrahedron, 1968, 24(1), 485-489.
[http://dx.doi.org/10.1016/0040-4020(68)89047-7]
[17]
Gao, P.; Wei, Y. Efficient oxidative cyclization of N-acylhydrazones for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles using t-BuOI under neutral conditions. Heterocycl. Commun., 2013, 19(2), 113-119.
[http://dx.doi.org/10.1515/hc-2012-0179]
[18]
Ding, D.; Boudreau, M.A.; Leemans, E.; Spink, E.; Yamaguchi, T.; Testero, S.A.; O’Daniel, P.I.; Lastochkin, E.; Chang, M.; Mobashery, S. Exploration of the structure-activity relationship of 1,2,4-oxadiazole antibiotics. Bioorg. Med. Chem. Lett., 2015, 25(21), 4854-4857.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.044] [PMID: 26144346]
[19]
Sauer, A.C.; Wolf, L.; Quoos, N.; Rodrigues, M.B.; Braga, A.L.; Rodrigues, O.E.D. A straightforward and high-yielding synthesis of 1,2,4-oxadiazoles from chiral N-protected α-Amino acids and amidoximes in acetone-water: an eco-friendly approach. J. Chem., 2019., 8589325.
[20]
Pace, A.; Buscemi, S.; Piccionello, A.P.; Pibiri, I. Chapter Three - Recent Advances in the Chemistry of 1,2,4-Oxadiazoles. In: Ramsden CABT-A in HC; Scriven, E.F.V., Ed.; Academic Press, 2015; pp. 85-136.
[21]
Zhu, L.; Zeng, H.; Liu, D.; Fu, Y.; Wu, Q.; Song, B.; Gan, X. Design, synthesis, and biological activity of novel 1,2,4-oxadiazole derivatives. BMC Chem., 2020, 14(1), 68.
[http://dx.doi.org/10.1186/s13065-020-00722-1] [PMID: 33292412]
[22]
Polothi, R.; Raolji, G.S.B.; Kuchibhotla, V.S.; Sheelam, K.; Tuniki, B.; Thodupunuri, P. Synthesis and biological evaluation of 1,2,4-oxadiazole linked 1,3,4-oxadiazole derivatives as tubulin binding agents. Synth. Commun., 2019, 49(13), 1603-1612.
[http://dx.doi.org/10.1080/00397911.2018.1535076]
[23]
Parrino, B.; Carbone, D.; Pecoraro, C.; Giovannetti, E.; Deng, D. 1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. Eur. J. Med. Chem., 2021, 209, 112892.
[http://dx.doi.org/10.1016/j.ejmech.2020.112892] [PMID: 33035921]
[24]
Shaykoon, M.S.; Marzouk, A.A.; Soltan, O.M.; Wanas, A.S.; Radwan, M.M.; Gouda, A.M.; Youssif, B.G.M.; Abdel-Aziz, M. Design, synthesis and antitrypanosomal activity of heteroaryl-based 1,2,4-triazole and 1,3,4-oxadiazole derivatives. Bioorg. Chem., 2020, 100, 103933.
[http://dx.doi.org/10.1016/j.bioorg.2020.103933] [PMID: 32446119]
[25]
Thakkar, S.S.; Thakor, P.; Doshi, H.; Ray, A. 1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(15), 4064-4075.
[http://dx.doi.org/10.1016/j.bmc.2017.05.054] [PMID: 28634040]
[26]
Gobec, M.; Tomašič, T.; Markovič, T.; Mlinarič-Raščan, I.; Dolenc, M.S.; Jakopin, Ž. Antioxidant and anti-inflammatory properties of 1,2,4-oxadiazole analogs of resveratrol. Chem. Biol. Interact., 2015, 240, 200-207.
[http://dx.doi.org/10.1016/j.cbi.2015.08.018] [PMID: 26335192]
[27]
Benmansour, F.; Eydoux, C.; Querat, G.; de Lamballerie, X.; Canard, B.; Alvarez, K.; Guillemot, J.C.; Barral, K. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. Eur. J. Med. Chem., 2016, 109, 146-156.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.046] [PMID: 26774922]
[28]
Jiang, C.S.; Fu, Y.; Zhang, L.; Gong, J.X.; Wang, Z.Z.; Xiao, W.; Zhang, H.Y.; Guo, Y.W. Synthesis and biological evaluation of novel marine-derived indole-based 1,2,4-oxadiazoles derivatives as multifunctional neuroprotective agents. Bioorg. Med. Chem. Lett., 2015, 25(2), 216-220.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.068] [PMID: 25499879]
[29]
Xu, L.L.; Wu, Y.F.; Wang, L.; Li, C.C.; Li, L.; Di, B.; You, Q.D.; Jiang, Z.Y. Structure-activity and structure-property relationships of novel Nrf2 activators with a 1,2,4-oxadiazole core and their therapeutic effects on acetaminophen (APAP)-induced acute liver injury. Eur. J. Med. Chem., 2018, 157, 1376-1394.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.071] [PMID: 30196061]
[30]
Oliveira, V.S.; Pimenteira, C.; da Silva-Alves, D.C.; Leal, L.L.; Neves-Filho, R.A.; Navarro, D.M.; Santos, G.K.; Dutra, K.A.; dos Anjos, J.V.; Soares, T.A. The enzyme 3-hydroxykynurenine transaminase as potential target for 1,2,4-oxadiazoles with larvicide activity against the dengue vector Aedes aegypti. Bioorg. Med. Chem., 2013, 21(22), 6996-7003.
[http://dx.doi.org/10.1016/j.bmc.2013.09.020] [PMID: 24095017]
[31]
Cottrell, D.M.; Capers, J.; Salem, M.M.; DeLuca-Fradley, K.; Croft, S.L.; Werbovetz, K.A. Antikinetoplastid activity of 3-aryl-5-thiocyanatomethyl-1,2,4-oxadiazoles. Bioorg. Med. Chem., 2004, 12(11), 2815-2824.
[http://dx.doi.org/10.1016/j.bmc.2004.03.054] [PMID: 15142541]
[32]
Medebielle, M.; Ait-Mohand, S.; Burkhloder, C.; Dolbier, W.R., Jr; Laumond, G.; Aubertin, A.M. Syntheses of new difluoromethylene benzoxazole and 1,2,4-oxadiazole derivatives, as potent non-nucleoside HIV-1 reverse transcriptase inhibitors. J. Fluor. Chem., 2005, 126(4), 533-540.
[http://dx.doi.org/10.1016/j.jfluchem.2004.12.016]
[33]
Ceyhan, B.B.; Karakurt, S. Effect of oxolamine on cough sensitivity in COPD patients. Respir. Med., 2002, 96(1), 61-63.
[http://dx.doi.org/10.1053/rmed.2001.1199] [PMID: 11863211]
[34]
Wieser, O.; Maieron, B. Report on a multi-center study of a new prenoxdiazine antitussive agent. Z. Allgemeinmed., 1973, 49(16), 805-809.
[PMID: 4576446]
[35]
Sterne, J. Butalamine hydrochloride. A new vasoactive substance. Fortschr. Med., 1976, 94(11), 657-659.
[PMID: 823083]
[36]
Güngör, T. One pot, multicomponent protocol for the synthesis of novel imidazo[1,2-a]pyrimidine-based pyran analogs: a potential biological scaffold. Monatshefte für Chemie - Chem Mon, 2020, 151(5), 781-789.
[37]
Mishra, A.; Kumar, A.; Sahu, D.J. Recent advancements on biological activities of oxadiazole and their derivatives: a review. Lett. Org. Chem., 2020, 17(6), 409-429.
[38]
Pevear, D.C.; Tull, T.M.; Seipel, M.E.; Groarke, J.M. Activity of pleconaril against enteroviruses. Antimicrob. Agents Chemother., 1999, 43(9), 2109-2115.
[http://dx.doi.org/10.1128/AAC.43.9.2109] [PMID: 10471549]
[39]
Volobueva, A.; Egorova, A.; Galochkina, A.; Ekins, S.; Zarubaev, V.; Makarov, V. The Evolution of pleconaril: modified O-alkyl linker analogs have biological activity towards coxsackievirus B3 nancy. Molecules, 2020, 25(6), 1345.
[http://dx.doi.org/10.3390/molecules25061345] [PMID: 32188089]
[40]
Schiff, G.M.; Sherwood, J.R. Clinical activity of pleconaril in an experimentally induced coxsackievirus A21 respiratory infection. J. Infect. Dis., 2000, 181(1), 20-26.
[http://dx.doi.org/10.1086/315176] [PMID: 10608746]
[41]
Egorova, A.; Kazakova, E.; Jahn, B.; Ekins, S.; Makarov, V.; Schmidtke, M. Novel pleconaril derivatives: Influence of substituents in the isoxazole and phenyl rings on the antiviral activity against enteroviruses. Eur. J. Med. Chem., 2020, 188, 112007.
[http://dx.doi.org/10.1016/j.ejmech.2019.112007] [PMID: 31881489]
[42]
Namgoong, J.H.; Bertoni, C. Clinical potential of ataluren in the treatment of Duchenne muscular dystrophy. Degener. Neurol. Neuromuscul. Dis., 2016, 6, 37-48.
[PMID: 30050367]
[43]
Peltz, S.W.; Morsy, M.; Welch, E.M.; Jacobson, A. Ataluren as an agent for therapeutic nonsense suppression. Annu. Rev. Med., 2013, 64(1), 407-425.
[http://dx.doi.org/10.1146/annurev-med-120611-144851] [PMID: 23215857]
[44]
Landfeldt, E.; Sejersen, T.; Tulinius, M. A mini-review and implementation model for using ataluren to treat nonsense mutation Duchenne muscular dystrophy. Acta Paediatr., 2019, 108(2), 224-230.
[http://dx.doi.org/10.1111/apa.14568] [PMID: 30188594]
[45]
Ebrahimi-Fakhari, D.; Dillmann, U.; Flotats-Bastardas, M.; Poryo, M.; Abdul-Khaliq, H.; Shamdeen, M.G.; Mischo, B.; Zemlin, M.; Meyer, S. Flotats-Bastardas, M; Poryo, M; Abdul-Khaliq, H; Shamdeen MG. Off-Label Use of Ataluren in Four Non-ambulatory Patients With Duchenne Muscular Dystrophy: Effects on Cardiac and Pulmonary Function and Muscle Strength. Front Pediatr., 2018, 6, 316.
[http://dx.doi.org/10.3389/fped.2018.00316] [PMID: 30406066]
[46]
Burberi, S.; Silvestrini, B. Preventive action of proxazole in experimentally induced renal hypertension in rats. Jpn. J. Pharmacol., 1971, 21(3), 283-291.
[http://dx.doi.org/10.1016/S0021-5198(19)36217-1] [PMID: 5314719]
[47]
Amato, G.; Benedetti, A.; Masiero, M.G.; Migliorini, A. Controlled study of the effects of proxazole in labor. Minerva Ginecol., 1979, 31(9), 693-697.
[PMID: 537714]
[48]
Glomb, T.; Wiatrak, B.; Gębczak, K.; Gębarowski, T.; Bodetko, D.; Czyżnikowska, Ż.; Świątek, P. New 1,3,4-Oxadiazole Derivatives of Pyridothiazine-1,1-Dioxide with Anti-Inflammatory Activity. Int. J. Mol. Sci., 2020, 21(23), E9122.
[http://dx.doi.org/10.3390/ijms21239122] [PMID: 33266208]
[49]
Chawla, G.; Naaz, B.; Siddiqui, A.A. Exploring 1,3,4-Oxadiazole Scaffold for Anti-inflammatory and Analgesic Activities: A Review of Literature From 2005-2016. Mini Rev. Med. Chem., 2018, 18(3), 216-233.
[http://dx.doi.org/10.2174/1389557517666170127121215] [PMID: 28137242]
[50]
Weidong, L.; Sanna, L.; Bordoni, V.; Tiansheng, Z.; Chengxun, L.; Murineddu, G.; Pinna, G.A.; Kelvin, D.J.; Bagella, L. Target identification of a novel unsymmetrical 1,3,4-oxadiazole derivative with antiproliferative properties. J. Cell. Physiol., 2020.
[PMID: 33089499]
[51]
Faheem, M.; Ali, S.H.; Khan, A.W.; Alam, M.; Ilyas, U.; Zahoor, M.; Sahibzada, M.U.K.; Khalid, S.; Ullah, R.; Alqahtani, A.S.; Alqahtani, A.M. 1,3,4-Oxadiazole derivative attenuates chronic constriction injury induced neuropathic pain: a computational, behavioral, and molecular approach. Brain Sci., 2020, 10(10), 731.
[http://dx.doi.org/10.3390/brainsci10100731] [PMID: 33066162]
[52]
Das, R.; Mehta, D.K. Evaluation and Docking Study of Pyrazine Containing 1, 3, 4-Oxadiazoles Clubbed with Substituted Azetidin-2-one: A New Class of Potential Antimicrobial and Antitubercular. Drug Res. (Stuttg.), 2021, 7(11), 26-35.
[PMID: 33027823]
[53]
Vaidya, A.; Pathak, D.; Shah, K. 1,3,4-oxadiazole and its derivatives: A review on recent progress in anticancer activities. Chem. Biol. Drug Des., 2021, 97(3), 572-559.
[PMID: 32946168]
[54]
Aziz-Ur-Rehman Khan, S.G.; Bokhari, T.H.; Anjum, F.; Akhter, N.; Rasool, S.; Ali Shah, S.A.; Shahid, M.; Arshad, A. Synthesis, characterization, antibacterial, hemolytic and thrombolytic activity evaluation of 5-(3-chlorophenyl)-2-((N-(substituted)-2-acetamoyl)sulfanyl)-1,3,4-oxadiazole derivatives. Pak. J. Pharm. Sci., 2020, 33(2), 871-876.
[PMID: 32863264]
[55]
Yang, G.; Zheng, H.; Shao, W.; Liu, L.; Wu, Z. Study of the in vivo antiviral activity against TMV treated with novel 1-(t-butyl)-5-amino-4-pyrazole derivatives containing a 1,3,4-oxadiazole sulfide moiety. Pestic. Biochem. Physiol., 2021, 171, 104740.
[http://dx.doi.org/10.1016/j.pestbp.2020.104740] [PMID: 33357562]
[56]
Chen, J.; Wei, C.; Wu, S.; Luo, Y.; Wu, R.; Hu, D.; Song, B. Novel 1,3,4-oxadiazole thioether derivatives containing flexible-chain moiety: Design, synthesis, nematocidal activities, and pesticide-likeness analysis. Bioorg. Med. Chem. Lett., 2020, 30(8), 127028.
[http://dx.doi.org/10.1016/j.bmcl.2020.127028] [PMID: 32085970]
[57]
Zheng, X.J.; Li, C.S.; Cui, M.Y.; Song, Z.W.; Bai, X.Q.; Liang, C.W.; Wang, H.Y.; Zhang, T.Y. Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2020, 30(13), 127237.
[http://dx.doi.org/10.1016/j.bmcl.2020.127237] [PMID: 32386981]
[58]
Chortani, S.; Edziri, H.; Manachou, M.; Al-Ghamdi, Y.O.; Almalki, S.G.; Alqurashi, Y.E.; Ben Jannet, H.; Romdhane, A.; Manachou, M.; Al-Ghamdi, Y.O.; Almalki, S.G.; Alqurashi, Y.E. Novel 1,3,4-oxadiazole linked benzopyrimidinones conjugates: Synthesis, DFT study and antimicrobial evaluation. J. Mol. Struct., 2020, 1217, 128357.
[http://dx.doi.org/10.1016/j.molstruc.2020.128357]
[59]
Bitla, S.; Sagurthi, S.R.; Dhanavath, R.; Puchakayala, M.R.; Birudaraju, S.; Gayatri, A.A.; Bhukya, V.K.; Atcha, K.R. Design and synthesis of triazole conjugated novel 2,5-diaryl substituted 1,3,4-oxadiazoles as potential antimicrobial and anti-fungal agents. J. Mol. Struct., 2020, 1220, 128705.
[http://dx.doi.org/10.1016/j.molstruc.2020.128705]
[60]
Ningegowda, R.; Chandrashekharappa, S.; Singh, V.; Mohanlall, V.; Venugopala, K.N. Design, synthesis and characterization of novel 2-(2, 3-dichlorophenyl)-5-aryl-1,3,4-oxadiazole derivatives for their anti-tubercular activity against Mycobacterium tuberculosis. Chem Data Collect, 2020, 28, 100431.
[http://dx.doi.org/10.1016/j.cdc.2020.100431]
[61]
Singh, R.B.; Das, N.; Singh, G.K.; Singh, S.K.; Zaman, K. Synthesis and pharmacological evaluation of 3-[5-(aryl-[1,3,4]oxadiazole-2-yl]-piperidine derivatives as anticonvulsant and antidepressant agents. Arab. J. Chem., 2020, 13(5), 5299-5311.
[http://dx.doi.org/10.1016/j.arabjc.2020.03.009]
[62]
Kalia, V.; Kumar, P.; Kumar, S.; Pahuja, P.; Jhaa, G.; Lata, S.; Dahiya, H. Synthesized oxadiazole derivatives as benign agents for controlling mild steel dissolution: Experimental and theoretical approach. J. Mol. Liq., 2020, 313, 113601.
[http://dx.doi.org/10.1016/j.molliq.2020.113601]
[63]
Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A Review Exploring Therapeutic Worth of 1,3,4-Oxadiazole Tailored Compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509.
[http://dx.doi.org/10.2174/1389557518666181015152433] [PMID: 30324877]
[64]
Hirao, I.; Kato, Y.; Hirota, T. Studies of the synthesis of furan compounds. xxiv. the synthesis of 5-[2-(5-Nitro-2-furyl)-1-(4-nitrophenyl)vinyl]-1,3,4-oxadiazole and its related compounds. Bull. Chem. Soc. Jpn., 1971, 44(7), 1923-1927.
[http://dx.doi.org/10.1246/bcsj.44.1923]
[65]
Schlecker, R.; Thieme, P.C. The synthesis of antihypertensive 3-(1,3,4-oxadiazol-2-yl)phenoxypropanolahines. Tetrahedron, 1988, 44(11), 3289-3294.
[http://dx.doi.org/10.1016/S0040-4020(01)85962-7]
[66]
Serrao, E.; Odde, S.; Ramkumar, K.; Neamati, N. Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors. Retrovirology, 2009, 6(1), 25.
[http://dx.doi.org/10.1186/1742-4690-6-25] [PMID: 19265512]
[67]
Vardan, S.; Smulyan, H.; Mookherjee, S.; Eich, R. Effects of tiodazosin, a new antihypertensive, hemodynamics and clinical variables. Clin. Pharmacol. Ther., 1983, 34(3), 290-296.
[http://dx.doi.org/10.1038/clpt.1983.170] [PMID: 6883905]
[68]
Schelman, W.R.; Liu, G.; Wilding, G.; Morris, T.; Phung, D.; Dreicer, R. A phase I study of zibotentan (ZD4054) in patients with metastatic, castrate-resistant prostate cancer. Invest. New Drugs, 2011, 29(1), 118-125.
[http://dx.doi.org/10.1007/s10637-009-9318-5] [PMID: 19763400]
[69]
Miller, K.; Moul, J.W.; Gleave, M.; Fizazi, K.; Nelson, J.B.; Morris, T.; Nathan, F.E.; McIntosh, S.; Pemberton, K.; Higano, C.S. Phase III, randomized, placebo-controlled study of once-daily oral zibotentan (ZD4054) in patients with non-metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis., 2013, 16(2), 187-192.
[http://dx.doi.org/10.1038/pcan.2013.2] [PMID: 23381694]
[70]
Bajaj, S.; Roy, P.P.; Singh, J. 1,3,4-oxadiazoles as telomerase inhibitor: potential anticancer agents. Anticancer. Agents Med. Chem., 2018, 1869-1883.
[71]
Vaidya, A.; Jain, S.; Jain, P.; Jain, P.; Tiwari, N.; Jain, R.; Jain, R.; Jain, A.K.; Agrawal, R.K. Synthesis and biological activities of oxadiazole derivatives: a review. Mini Rev. Med. Chem., 2016, 16(10), 825-845.
[http://dx.doi.org/10.2174/1389557516666160211120835] [PMID: 26864552]
[72]
Chaluvaraju, K.C.; Niranjan, M.S.; Kiran, S. 1,3,4 oxadiazole: a potent drug candidate with various pharmacological activities. Int. J. Pharm. Pharm. Sci., 2011, 3(3), 916.
[73]
Biernacki, K.; Daśko, M.; Ciupak, O.; Kubiński, K.; Rachon, J.; Demkowicz, S. Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery. Pharmaceuticals (Basel), 2020, 13(6), 111.
[http://dx.doi.org/10.3390/ph13060111] [PMID: 32485996]
[74]
Bokach, N.A.; Khripoun, A.V.; Kukushkin, V.Y.; Haukka, M.; Pombeiro, A.J. A Route to 1,2,4-oxadiazoles and their complexes via platinum-mediated 1,3-dipolar cycloaddition of nitrile oxides to organonitriles. Inorg. Chem., 2003, 42(3), 896-903.
[http://dx.doi.org/10.1021/ic026103v] [PMID: 12562205]