Voxel-Based Intraclass Correlation Coefficient to Evaluate the Inter- Scanner Reproducibility of Quantitative Susceptibility Mapping Over the Deep Gray Matter Structure at 3.0T MR

Article ID: e160222201194 Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: The quantitative susceptibility mapping (QSM) technique can be used to quantitatively evaluate the cerebral iron deposition of the deep gray matter structure (DGM) in clinical practice. However, it could be significantly important to assess the reproducibility of the susceptibility values at different magnetic resonance (MR) scanners before the QSM technique can be widely used in clinical applications.

Objective: This study aimed to assess the reproducibility of susceptibility value of the deep gray matter structure (DGM) at two different MR systems with the same magnetic strength.

Methods: Raw data of 21 normal subjects (M/F = 7/14, median age 29 (21, 63) years) were acquired from a 3D multi-echo enhanced gradient recalled echo sequence at two different 3.0T MR systems, and STI software was used to reconstruct the magnetic susceptibility images. Brain structural images were used to be coregistered with magnitude images to generate normalized parameters and normalized susceptibility images. Voxel-based intraclass correlation coefficient (VB-ICC) was used to evaluate the reproducibility of susceptibility value of DGM at different 3.0T MR systems.

Results: DGM with ICC > 0.75 is located in the bilateral posterior putamen and globus pallidus, bilateral red nuclei, and left dental nucleus. DGM with 0.6 < ICC < 0.75 is mainly located in the bilateral anterior putamen and globus pallidus, the margin of the bilateral red nuclei, right dental nucleus, and the margin of the left dental nucleus. DGM with 0.4 < ICC < 0.6 is located in anterior parts of the bilateral putamen, bilateral globus pallidus and substantia nigra, the margin of the bilateral dental nuclei, and the inferior part of the right dental nucleus.

Conclusion: DGM presented regional dependent reproducibility of susceptibility value at two different 3.0T MR systems based on VB-ICC analysis.

Keywords: Quantitative Susceptibility Mapping (QSM), gray matter, magnetic resonance imaging, reproducibility of results, basal ganglia, voxel-based intraclass correlation coefficient.

Graphical Abstract

[1]
Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E. MRI estimates of brain iron concentration in normal aging using quanti-tative susceptibility mapping. Neuroimage 2012; 59(3): 2625-35.
[http://dx.doi.org/10.1016/j.neuroimage.2011.08.077] [PMID: 21925274]
[2]
Langkammer C, Schweser F, Krebs N, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage 2012; 62(3): 1593-9.
[http://dx.doi.org/10.1016/j.neuroimage.2012.05.049] [PMID: 22634862]
[3]
Liu MQ, Chen ZY, Bian XB, Liu MY, Yu SY, Ma L. MRI evaluation of lateral geniculate body in normal aging brain using quantitative sus-ceptibility mapping. Chin Med Sci J 2015; 30(1): 34-6.
[http://dx.doi.org/10.1016/S1001-9294(15)30006-7] [PMID: 25837358]
[4]
Acosta-Cabronero J, Williams GB, Cardenas-Blanco A, Arnold RJ, Lupson V, Nestor PJ. In vivo quantitative susceptibility mapping (QSM) in Alzheimer’s disease. PLoS One 2013; 8(11): e81093.
[http://dx.doi.org/10.1371/journal.pone.0081093] [PMID: 24278382]
[5]
Uchida Y, Kan H, Sakurai K, et al. Voxel-based quantitative susceptibility mapping in Parkinson’s disease with mild cognitive impairment. Mov Disord 2019; 34(8): 1164-73.
[http://dx.doi.org/10.1002/mds.27717] [PMID: 31091347]
[6]
Li W, Wang N, Yu F, et al. A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. Neuroimage 2015; 108: 111-22.
[http://dx.doi.org/10.1016/j.neuroimage.2014.12.043] [PMID: 25536496]
[7]
Sullivan EV, Adalsteinsson E, Rohlfing T, Pfefferbaum A. Relevance of iron deposition in deep gray matter brain structures to cognitive and motor performance in healthy elderly men and women: Exploratory findings. Brain Imaging Behav 2009; 3(2): 167-75.
[http://dx.doi.org/10.1007/s11682-008-9059-7] [PMID: 20161183]
[8]
Darnai G, Nagy SA, Horváth R, et al. Iron concentration in deep gray matter structures is associated with worse visual memory performance in healthy young adults. J Alzheimers Dis 2017; 59(2): 675-81.
[http://dx.doi.org/10.3233/JAD-170118] [PMID: 28671115]
[9]
Darki F, Nemmi F, Möller A, Sitnikov R, Klingberg T. Quantitative susceptibility mapping of striatum in children and adults, and its asso-ciation with working memory performance. Neuroimage 2016; 136: 208-14.
[http://dx.doi.org/10.1016/j.neuroimage.2016.04.065] [PMID: 27132546]
[10]
Kaindlstorfer C, Jellinger KA, Eschlböck S, Stefanova N, Weiss G, Wenning GK. The relevance of iron in the pathogenesis of multiple sys-tem atrophy: A viewpoint. J Alzheimers Dis 2018; 61(4): 1253-73.
[http://dx.doi.org/10.3233/JAD-170601] [PMID: 29376857]
[11]
Chen L, Hua J, Ross CA, Cai S, van Zijl PCM, Li X. Altered brain iron content and deposition rate in Huntington’s disease as indicated by quantitative susceptibility MRI. J Neurosci Res 2019; 97(4): 467-79.
[http://dx.doi.org/10.1002/jnr.24358] [PMID: 30489648]
[12]
Neema M, Arora A, Healy BC, et al. Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis. J Neuroimaging 2009; 19(1): 3-8.
[http://dx.doi.org/10.1111/j.1552-6569.2008.00296.x] [PMID: 19192042]
[13]
Khalil M, Langkammer C, Pichler A, et al. Dynamics of brain iron levels in multiple sclerosis: A longitudinal 3T MRI study. Neurology 2015; 84(24): 2396-402.
[http://dx.doi.org/10.1212/WNL.0000000000001679] [PMID: 25979698]
[14]
Vinod K, Giridharan S, Dutta T. Hallervorden-Spatz syndrome: A rare cause of extrapyramidal manifestations. Ann Neurosci 2011; 18(3): 133-5.
[http://dx.doi.org/10.5214/ans.0972.7531.11183012] [PMID: 25205940]
[15]
Lin PY, Chao TC, Wu ML. Quantitative susceptibility mapping of human brain at 3T: A multisite reproducibility study. AJNR Am J Neuroradiol 2015; 36(3): 467-74.
[http://dx.doi.org/10.3174/ajnr.A4137] [PMID: 25339652]
[16]
Cicchetti DV, Sparrow SA. Developing criteria for establishing interrater reliability of specific items: Applications to assessment of adaptive behavior. Am J Ment Defic 1981; 86(2): 127-37.
[PMID: 7315877]
[17]
Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 2016; 14(3): 339-51.
[http://dx.doi.org/10.1007/s12021-016-9299-4] [PMID: 27075850]
[18]
Lim IA, Faria AV, Li X, et al. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: Applica-tion to determine iron content in deep gray matter structures. Neuroimage 2013; 82: 449-69.
[http://dx.doi.org/10.1016/j.neuroimage.2013.05.127] [PMID: 23769915]
[19]
Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull 1979; 86(2): 420-8.
[http://dx.doi.org/10.1037/0033-2909.86.2.420] [PMID: 18839484]
[20]
Zaino D, Chiarotti I, Battisti C, Salvatore S, Federico A, Cerase A. Six-year clinical and MRI quantitative susceptibility mapping (QSM) follow-up in neurological Wilson’s disease under zinc therapy: A case report. Neurol Sci 2019; 40(1): 199-201.
[http://dx.doi.org/10.1007/s10072-018-3557-1] [PMID: 30209700]
[21]
Oshima S, Fushimi Y, Okada T, et al. Brain MRI with Quantitative Susceptibility Mapping: Relationship to CT Attenuation Values. Radiology 2020; 294(3): 600-9.
[http://dx.doi.org/10.1148/radiol.2019182934] [PMID: 31909699]
[22]
Wei H, Dibb R, Zhou Y, et al. Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range. NMR Biomed 2015; 28(10): 1294-303.
[http://dx.doi.org/10.1002/nbm.3383] [PMID: 26313885]
[23]
Wang Y, Liu T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 2014.
[http://dx.doi.org/10.1002/mrm.25358] [PMID: 25044035]
[24]
Wang ZJ, Li S, Haselgrove JC. Magnetic resonance imaging measurement of volume magnetic susceptibility using a boundary condition. J Magn Reson 1999; 140(2): 477-81.
[http://dx.doi.org/10.1006/jmre.1999.1873] [PMID: 10497053]
[25]
Hernando D, Cook RJ, Diamond C, Reeder SB. Magnetic susceptibility as a B0 field strength independent MRI biomarker of liver iron over-load. Magn Reson Med 2013; 70(3): 648-56.
[http://dx.doi.org/10.1002/mrm.24848] [PMID: 23801540]
[26]
Hegde AN, Mohan S, Lath N, Lim CC. Differential diagnosis for bilateral abnormalities of the basal ganglia and thalamus. Radiographics 2011; 31(1): 5-30.
[http://dx.doi.org/10.1148/rg.311105041] [PMID: 21257930]
[27]
Hare DJ, Double KL. Iron and dopamine: A toxic couple. Brain 2016; 139(Pt 4): 1026-35.
[http://dx.doi.org/10.1093/brain/aww022] [PMID: 26962053]
[28]
Lewis MM, Du G, Kidacki M, et al. Higher iron in the red nucleus marks Parkinson’s dyskinesia. Neurobiol Aging 2013; 34(5): 1497-503.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.10.025] [PMID: 23177595]
[29]
Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem 1958; 3(1): 41-51.
[http://dx.doi.org/10.1111/j.1471-4159.1958.tb12607.x] [PMID: 13611557]
[30]
Au CKF, Abrigo J, Liu C, et al. Quantitative Susceptibility Mapping of the Hippocampal Fimbria in Alzheimer’s Disease. J Magn Reson Imaging 2021; 53(6): 1823-32.
[http://dx.doi.org/10.1002/jmri.27464] [PMID: 33295658]
[31]
Bechler E, Stabinska J, Thiel T, et al. Feasibility of quantitative susceptibility mapping (QSM) of the human kidney. MAGMA 2021; 34(3): 389-97.