Application of Selenium Nanoparticles in Localized Drug Targeting for Cancer Therapy

Page: [2715 - 2725] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Selenium nanoparticles (SeNPs) have gained a place in the biomedical field; they serve as chemotherapeutic agents for targeted drug delivery due to their capacity to exert distinct mechanisms of action on cancer and normal cells. The principle behind these mechanisms is the generation of reactive oxygen species (ROS), which accelerates apoptosis via the dysfunction of various pathways. SeNPs, when used in higher concentrations, induce toxicity; however, conjugation and surface functionalization are some techniques available to ameliorate their toxic nature as well as enhance their anticancer activity.

Objectives: The primary goal of this analysis is to provide a thorough and systematic investigation into the use of various SeNPs in localized drug targeting for cancer therapy. This has been achieved by citing examples of numerous SeNPs and their use as a drug targeting agent for cancer therapy.

Methods: All relevant data and information about the various SeNPs for drug targeting in cancer therapy were gathered from various databases, including Science Direct, PubMed, Taylor and Francis imprints, American Chemical Society, Springer, Royal Society of Chemistry, and Google Scholar.

Results: SeNPs are explored due to their better biopharmaceutical properties and cytostatic behavior. Se, as an essential component of the enzyme glutathione peroxidase (GPx) and other seleno-chemical substances, might boost chemotherapeutic efficacy and protect tissues from cellular damage caused by ROS. SeNPs have the potential to set the stage for developing new strategies to treat malignancy.

Conclusion: This review extensively analyzed the anticancer efficacy and functionalization strategies of SeNPs in drug delivery to cancer cells. In addition, this review highlights the mechanism of action of drug-loaded SeNPs to suppress the proliferation of cancer cells in different cell lines.

Keywords: Nanoparticles, selenium nanoparticles, apoptosis, anti-cancer, ROS, functionalized Se-NPs.

Graphical Abstract

[1]
Leucuta, S.E. Nanotechnology for delivery of drugs and biomedical applications. Curr. Clin. Pharmacol., 2010, 5(4), 257-280.
[http://dx.doi.org/10.2174/157488410793352003] [PMID: 20925643]
[2]
Cuenca, A.G.; Jiang, H.; Hochwald, S.N.; Delano, M.; Cance, W.G.; Grobmyer, S.R. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 2006, 107(3), 459-466.
[http://dx.doi.org/10.1002/cncr.22035] [PMID: 16795065]
[3]
Madaan, T.; Pandey, S.; Talegaonkar, S.; Delhi, N. Nanotechnology: A smart drug delivery tool in modern healthcare. J. Chem. Pharm. Res., 2015, 7(6), 257-264.
[4]
Sahoo, S.K.; Parveen, S.; Panda, J.J. The present and future of nanotechnology in human health care. Nanomedicine, 2007, 3(1), 20-31.
[http://dx.doi.org/10.1016/j.nano.2006.11.008] [PMID: 17379166]
[5]
Gupta, J. Nanotechnology applications in medicine and dentistry. J. Investig. Clin. Dent., 2011, 2(2), 81-88.
[http://dx.doi.org/10.1111/j.2041-1626.2011.00046.x] [PMID: 25426600]
[6]
Anu, K.; Devanesan, S.; Prasanth, R.; AlSalhi, M.S.; Ajithkumar, S.; Singaravelu, G. Biogenesis of selenium nanoparticles and their anti-leukemia activity. J. King Saud Univ. Sci., 2020, 32(4), 2520-2526.
[http://dx.doi.org/10.1016/j.jksus.2020.04.018]
[7]
Guo, T.; Lin, M.; Huang, J.; Zhou, C.; Tian, W.; Yu, H.; Jiang, X.; Ye, J.; Shi, Y.; Xiao, Y.; Bian, X.; Feng, X. The recent advances of mag-netic nanoparticles in medicine. J. Nanomater., 2018, 2018, 7805147.
[http://dx.doi.org/10.1155/2018/7805147]
[8]
Faraji, M.; Yamini, Y.; Rezaee, M. Iranian chemical society magnetic nanoparticles: Synthesis, stabilization, functionalization, characteri-zation, and applications. J. Iran. Chem. Soc., 2010, 7(1), 1-37.
[http://dx.doi.org/10.1007/BF03245856]
[9]
Jang, J.H.; Lim, H.B. Characterization and analytical application of surface modified magnetic nanoparticles. Microchem. J., 2010, 94(2), 148-158.
[http://dx.doi.org/10.1016/j.microc.2009.10.011]
[10]
Liu, F.; Zhang, P. Tailoring the local structure and electronic property of AuPd nanoparticles by selecting capping molecules. Appl. Phys. Lett., 2010, 96(4), 3290245.
[http://dx.doi.org/10.1063/1.3290245]
[11]
Matsui, I. Nanoparticles for electronic device applications: A brief review. J. Chem. Eng., 2005, 38(8), 535-546.
[http://dx.doi.org/10.1252/jcej.38.535]
[12]
Liao, J.; Blok, S.; van der Molen, S.J.; Diefenbach, S.; Holleitner, A.W.; Schönenberger, C.; Vladyka, A.; Calame, M. Ordered nanoparticle arrays interconnected by molecular linkers: Electronic and optoelectronic properties. Chem. Soc. Rev., 2015, 44(4), 999-1014.
[http://dx.doi.org/10.1039/C4CS00225C] [PMID: 25367894]
[13]
Elilarassi, R.; Chandrasekaran, G. Synthesis and optical properties of Ni-doped zinc oxide nanoparticles for optoelectronic applications. Optoelectron. Lett., 2010, 6(1), 6-10.
[http://dx.doi.org/10.1007/s11801-010-9236-y]
[14]
Choi, H.; Ko, S.J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B.R.; Jung, J.W.; Choi, H.J.; Cha, M.; Jeong, J.R.; Hwang, I.W.; Song, M.H.; Kim, B.S.; Kim, J.Y. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photonics, 2013, 7(9), 732-738.
[http://dx.doi.org/10.1038/nphoton.2013.181]
[15]
Liu, W.T. Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng., 2006, 102(1), 1-7.
[http://dx.doi.org/10.1263/jbb.102.1] [PMID: 16952829]
[16]
Ju-Nam, Y.; Lead, J.R. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ., 2008, 400(1-3), 396-414.
[http://dx.doi.org/10.1016/j.scitotenv.2008.06.042] [PMID: 18715626]
[17]
Tran, Q.T.; Nguyen, V.S.; Hoang, T.K.; Nguyen, H.L.; Bui, T.T.; Nguyen, T.V.; Nguyen, D.H.; Nguyen, H.H. Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. J. Hazard. Mater., 2011, 192(3), 1321-1329.
[http://dx.doi.org/10.1016/j.jhazmat.2011.06.044] [PMID: 21764213]
[18]
Zhang, X.; Niu, H.; Pan, Y.; Shi, Y.; Cai, Y. Chitosan-coated octadecyl-functionalized magnetite nanoparticles: Preparation and application in extraction of trace pollutants from environmental water samples. Anal. Chem., 2010, 82(6), 2363-2371.
[http://dx.doi.org/10.1021/ac902589t] [PMID: 20155948]
[19]
Zhang, Y.; He, X.; Ouyang, J.; Yang, H. Palladium nanoparticles deposited on silanized halloysite nanotubes: Synthesis, characterization and enhanced catalytic property. Sci. Rep., 2013, 3(29), 2948.
[http://dx.doi.org/10.1038/srep02948] [PMID: 24126604]
[20]
Aromal, S.A.; Babu, K.V.; Philip, D. Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 1025-1030.
[http://dx.doi.org/10.1016/j.saa.2012.08.010] [PMID: 22954810]
[21]
Tripathi, R.M.; Gupta, R.K.; Bhadwal, A.S.; Singh, P.; Shrivastav, A.; Shrivastav, B.R. Fungal biomolecules assisted biosynthesis of Au-Ag alloy nanoparticles and evaluation of their catalytic property. IET Nanobiotechnol., 2015, 9(4), 178-183.
[http://dx.doi.org/10.1049/iet-nbt.2014.0043] [PMID: 26224346]
[22]
Chaudhary, S.; Mehta, S.K. Selenium nanomaterials: Applications in electronics, catalysis and sensors. J. Nanosci. Nanotechnol., 2014, 14(2), 1658-1674.
[http://dx.doi.org/10.1166/jnn.2014.9128] [PMID: 24749448]
[23]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8(24), 1112-1120.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[24]
Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J., 2015, 17(6), 1327-1340.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[25]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[26]
Bonica, J.J. The management of cancer pain. GP, 1954, 10(5), 35-43.
[PMID: 13210548]
[27]
Dy, G.K.; Adjei, A.A. Online continuing education activity understanding, recognizing, and managing toxicities of targeted anticancer ther-apies. Cancer J Clin, 2013, 6363(4), 249-279.
[http://dx.doi.org/10.3322/caac.21184]
[28]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[29]
Rahman, M.; Ahmad, M.Z.; Kazmi, I.; Akhter, S.; Afzal, M.; Gupta, G.; Jalees Ahmed, F.; Anwar, F. Advancement in multifunctional na-noparticles for the effective treatment of cancer. Expert Opin. Drug Deliv., 2012, 9(4), 367-381.
[http://dx.doi.org/10.1517/17425247.2012.668522] [PMID: 22400808]
[30]
Praetorius, N.P.; Mandal, T.K. Engineered nanoparticles in cancer therapy. Recent Pat. Drug Deliv. Formul., 2007, 1(1), 37-51.
[http://dx.doi.org/10.2174/187221107779814104] [PMID: 19075873]
[31]
Menon, S.; Ks, S.D. R, S.; S, R.; S, V.K. Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf. B Biointerfaces, 2018, 170(April), 280-292.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.006] [PMID: 29936381]
[32]
Khurana, A.; Tekula, S.; Saifi, M.A.; Venkatesh, P.; Godugu, C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother., 2019, 111(111), 802-812.
[http://dx.doi.org/10.1016/j.biopha.2018.12.146] [PMID: 30616079]
[33]
Huang, Y.; He, L.; Liu, W.; Fan, C.; Zheng, W.; Wong, Y.S.; Chen, T. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials, 2013, 34(29), 7106-7116.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.067] [PMID: 23800743]
[34]
Chan, L.; He, L.; Zhou, B.; Guan, S.; Bo, M.; Yang, Y.; Liu, Y.; Liu, X.; Zhang, Y.; Xie, Q.; Chen, T. Cancer-targeted selenium nanoparti-cles sensitize cancer cells to continuous γ radiation to achieve synergetic chemo-radiotherapy. Chem. Asian J., 2017, 12(23), 3053-3060.
[http://dx.doi.org/10.1002/asia.201701227] [PMID: 28892302]
[35]
Ikram, M.; Javed, B.; Raja, N.I.; Mashwani, Z.U.R. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int. J. Nanomedicine, 2021, 16, 249-268.
[http://dx.doi.org/10.2147/IJN.S295053] [PMID: 33469285]
[36]
Ferro, C.; Florindo, H.F.; Santos, H.A. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Adv. Healthc. Mater., 2021, 10(16), e2100598.
[http://dx.doi.org/10.1002/adhm.202100598] [PMID: 34121366]
[37]
Whanger, P.D. Selenium and its relationship to cancer: An update. Br. J. Nutr., 2004, 91(1), 11-28.
[http://dx.doi.org/10.1079/BJN20031015] [PMID: 14748935]
[38]
Lubinski, J.; Marciniak, W.; Muszynska, M.; Huzarski, T.; Gronwald, J.; Cybulski, C.; Jakubowska, A.; Debniak, T.; Falco, M.; Kladny, J.; Kotsopoulos, J.; Sun, P.; Narod, S.A. Serum selenium levels predict survival after breast cancer. Breast Cancer Res. Treat., 2018, 167(2), 591-598.
[http://dx.doi.org/10.1007/s10549-017-4525-9] [PMID: 29043463]
[39]
Dias, M.F.; Figueiredo, B.C.P.; Teixeira-Neto, J.; Guerra, M.C.A.; Fialho, S.L.; Silva Cunha, A. In vivo evaluation of antitumoral and anti-angiogenic effect of imiquimod-loaded polymeric nanoparticles. Biomed. Pharmacother., 2018, 103(April), 1107-1114.
[http://dx.doi.org/10.1016/j.biopha.2018.04.079] [PMID: 29715754]
[40]
Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A.P. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic. Biol. Med., 2018, 127, 80-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.001] [PMID: 29746900]
[41]
Valdiglesias, V.; Pásaro, E.; Méndez, J.; Laffon, B. In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch. Toxicol., 2010, 84(5), 337-351.
[http://dx.doi.org/10.1007/s00204-009-0505-0] [PMID: 20033805]
[42]
Chen, Y.C.; Prabhu, K.S.; Das, A.; Mastro, A.M. Dietary selenium supplementation modifies breast tumor growth and metastasis. Int. J. Cancer, 2013, 133(9), 2054-2064.
[http://dx.doi.org/10.1002/ijc.28224] [PMID: 23613334]
[43]
Gangadoo, S.; Stanley, D.; Hughes, R.J.; Moore, R.J.; Chapman, J. The synthesis and characterisation of highly stable and reproducible selenium nanoparticles. Inorg. Nano-Metal Chem., 2017, 47(11), 1568-1576.
[http://dx.doi.org/10.1080/24701556.2017.1357611]
[44]
Song, D.; Li, X.; Cheng, Y.; Xiao, X.; Lu, Z.; Wang, Y.; Wang, F. Aerobic biogenesis of selenium nanoparticles by Enterobacter cloacae Z0206 as a consequence of fumarate reductase mediated selenite reduction. Sci. Rep., 2017, 7(1), 3239.
[http://dx.doi.org/10.1038/s41598-017-03558-3] [PMID: 28607388]
[45]
Jain, R.; Dominic, D.; Jordan, N.; Rene, E.R.; Weiss, S.; van Hullebusch, E.D.; Hübner, R.; Lens, P.N.L. Higher Cd adsorption on biogenic elemental selenium nanoparticles. Environ. Chem. Lett., 2016, 14(3), 381-386.
[http://dx.doi.org/10.1007/s10311-016-0560-8]
[46]
Rajeshkumar, S.; Veena, P.; Santhiyaa, R.V. Synthesis and characterization of selenium nanoparticles using natural resources and its applications. In: Exploring the Realms of Nature for Nanosynthesis; Prasad, R. Jha, A. Prasad, K. Eds.; Nanotechnology in the Life Sciences. Springer, Cham., 2018, 63-79.
[http://dx.doi.org/10.1007/978-3-319-99570-0_4]
[47]
Fardsadegh, B.; Jafarizadeh-Malmiri, H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process. Synth., 2019, 8(1), 399-407.
[http://dx.doi.org/10.1515/gps-2019-0007]
[48]
Ahmadi, O.; Jafarizadeh-Malmiri, H.; Jodeiri, N. Eco-friendly microwave-enhanced green synthesis of silver nanoparticles using Aloe vera leaf extract and their physico-chemical and antibacterial studies. Green Process. Synth., 2018, 7(3), 231-240.
[http://dx.doi.org/10.1515/gps-2017-0039]
[49]
Sharma, G.; Sharma, A.R.; Bhavesh, R.; Park, J.; Ganbold, B.; Nam, J.S.; Lee, S.S. Biomolecule-mediated synthesis of selenium nanoparti-cles using dried Vitis vinifera (raisin) extract. Molecules, 2014, 19(3), 2761-2770.
[http://dx.doi.org/10.3390/molecules19032761] [PMID: 24583881]
[50]
Anu, K.; Singaravelu, G.; Murugan, K.; Benelli, G. Green-synthesis of selenium nanoparticles using garlic cloves (Allium Sativum): Bio-physical characterization and cytotoxicity on vero cells. J. Cluster Sci., 2017, 28(1), 551-563.
[http://dx.doi.org/10.1007/s10876-016-1123-7]
[51]
Krishnan, V.; Loganathan, C.; Thayumanavan, P. Green synthesized selenium nanoparticle as carrier and potent delivering agent of S-Allyl glutathione: Anticancer effect against hepatocarcinoma cell line (HepG2) through induction of cell cycle arrest and apoptosis. J. Drug Deliv. Sci. Technol., 2019, 53, 101207.
[http://dx.doi.org/10.1016/j.jddst.2019.101207]
[52]
Krishnan, M.; Ranganathan, K.; Maadhu, P.; Thangavelu, P.; Kundan, S.; Arjunan, N. Leaf extract of Dillenia indica as a source of seleni-um nanoparticles with larvicidal and antimicrobial potential toward vector mosquitoes and pathogenic microbes. Coatings, 2020, 10(7), 1-16.
[http://dx.doi.org/10.3390/coatings10070626]
[53]
Rajasekar, S.; Kuppusamy, S. Eco-friendly formulation of selenium nanoparticles and its functional characterization against breast cancer and normal cells. J. Cluster Sci., 2021, 32(4), 907-915.
[http://dx.doi.org/10.1007/s10876-020-01856-x]
[54]
Menon, S.; Shrudhi, S.D.; Agarwal, H.; Shanmugam, V.K. Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid Interface Sci. Commun., 2018, 2019(29), 1-8.
[http://dx.doi.org/10.1016/j.colcom.2018.12.004]
[55]
Fan, D.; Li, L.; Li, Z.; Zhang, Y.; Ma, X.; Wu, L.; Zhang, H.; Guo, F. Biosynthesis of selenium nanoparticles and their protective, antioxi-dative effects in streptozotocin induced diabetic rats. Sci. Technol. Adv. Mater., 2020, 21(1), 505-514.
[http://dx.doi.org/10.1080/14686996.2020.1788907] [PMID: 32939175]
[56]
Sawant, V.J.; Sawant, V.J. Biogenic capped selenium nano rods as naked eye and selective hydrogen peroxide spectrometric sensor. Sens. Biosensing Res., 2020, 27(August), 100314.
[http://dx.doi.org/10.1016/j.sbsr.2019.100314]
[57]
Sadalage, P.S.; Nimbalkar, M.S.; Sharma, K.K.K.; Patil, P.S.; Pawar, K.D. Sustainable approach to almond skin mediated synthesis of tun-able selenium microstructures for coating cotton fabric to impart specific antibacterial activity. J. Colloid Interface Sci., 2020, 569, 346-357.
[http://dx.doi.org/10.1016/j.jcis.2020.02.094] [PMID: 32126347]
[58]
Liang, T.; Qiu, X.; Ye, X.; Liu, Y.; Li, Z.; Tian, B.; Yan, D. Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech, 2020, 10(1), 1-6.
[http://dx.doi.org/10.1007/s13205-019-1999-7]
[59]
Valueva, S.V.; Borovikova, L.N.; Koreneva, V.V.; Nazarkina, Y.I.; Kipper, A.I.; Kopeikin, V.V. Structural-morphological and biological properties of selenium nanoparticles stabilized by bovine serum albumin. Russ. J. Phys. Chem. A, 2007, 81(7), 1170-1173.
[http://dx.doi.org/10.1134/S0036024407070291]
[60]
Gan, L.; Liu, Q.; Xu, H.B.; Zhu, Y.S.; Yang, X.L. Effects of selenium overexposure on glutathione peroxidase and thioredoxin reductase gene expressions and activities. Biol. Trace Elem. Res., 2002, 89(2), 165-175.
[http://dx.doi.org/10.1385/BTER:89:2:165] [PMID: 12449240]
[61]
Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological appli-cations and photocatalytic activities. Bionanoscience, 2019, 9(1), 105-116.
[http://dx.doi.org/10.1007/s12668-018-0566-8]
[62]
Murugesan, G.; Nagaraj, K.; Sunmathi, D.; Subramani, K. Methods involved in the synthesis of selenium nanoparticles and their different applications-A review. Eur. J. Biomed. Pharm. Sci., 2019, 6(4), 189-194.
[63]
Gopinath, K.; Venkatesh, K.S.; Ilangovan, R.; Sankaranarayanan, K.; Arumugam, A. Green synthesis of gold nanoparticles from leaf ex-tract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind. Crops Prod., 2013, 50, 737-742.
[http://dx.doi.org/10.1016/j.indcrop.2013.08.060]
[64]
Bozoudi, D.; Tsaltas, D. The multiple and versatile roles of Aureobasidium pullulans in the vitivinicultural sector. Fermentation (Basel), 2018, 4(4), 1-15.
[http://dx.doi.org/10.3390/fermentation4040085]
[65]
Liang, X.; Perez, M.A.M.; Nwoko, K.C.; Egbers, P.; Feldmann, J.; Csetenyi, L.; Gadd, G.M. Fungal formation of selenium and tellurium nanoparticles. Appl. Microbiol. Biotechnol., 2019, 103(17), 7241-7259.
[http://dx.doi.org/10.1007/s00253-019-09995-6] [PMID: 31324941]
[66]
Hu, D.; Yu, S.; Yu, D.; Liu, N.; Tang, Y.; Fan, Y.; Wang, C.; Wu, A. Biogenic trichoderma harzianum-derived selenium nanoparticles with control functionalities originating from diverse recognition metabolites against phytopathogens and mycotoxins. Food Control, 2019, 106(1), 106748.
[http://dx.doi.org/10.1016/j.foodcont.2019.106748]
[67]
Nandini, B.; Hariprasad, P.; Prakash, H.S.; Shetty, H.S.; Geetha, N. Trichogenic-selenium nanoparticles enhance disease suppressive abil-ity of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci. Rep., 2017, 7(1), 2612.
[http://dx.doi.org/10.1038/s41598-017-02737-6] [PMID: 28572579]
[68]
Zhang, H.; Zhou, H.; Bai, J.; Li, Y.; Yang, J.; Ma, Q.; Qu, Y. Biosynthesis of selenium nanoparticles mediated by fungus mariannaea Sp. HJ and their characterization. Colloids Surf. A Physicochem. Eng. Asp., 2019, 571, 9-16.
[http://dx.doi.org/10.1016/j.colsurfa.2019.02.070]
[69]
Xiao, Y.; Huang, Q.; Zheng, Z.; Guan, H.; Liu, S. Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparti-cles and enhancement of their antioxidant activities. Int. J. Biol. Macromol., 2017, 99, 483-491.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.016] [PMID: 28274870]
[70]
Hamza, F.; Vaidya, A.; Apte, M.; Kumar, A.R.; Zinjarde, S. Selenium nanoparticle-enriched biomass of Yarrowia lipolytica enhances growth and survival of Artemia salina. Enzyme Microb. Technol., 2017, 106, 48-54.
[http://dx.doi.org/10.1016/j.enzmictec.2017.07.002] [PMID: 28859809]
[71]
Fesharaki, P.J.; Nazari, P.; Shakibaie, M.; Rezaie, S.; Banoee, M.; Abdollahi, M.; Shahverdi, A.R. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol., 2010, 41(2), 461-466.
[http://dx.doi.org/10.1590/S1517-83822010000200028] [PMID: 24031517]
[72]
Sasidharan, S.; Balakrishnaraja, R. Comparison studies on the synthesis of selenium nanoparticles by various micro-organisms. Int. J. Pure App. Biosci, 2014, 2(1), 112-117.
[73]
Wang, Y.; Shu, X.; Hou, J.; Lu, W.; Zhao, W.; Huang, S.; Wu, L. Selenium nanoparticle synthesized by Proteus mirabilis YC801: An effi-cacious pathway for selenite biotransformation and detoxification. Int. J. Mol. Sci., 2018, 19(12), 1-19.
[http://dx.doi.org/10.3390/ijms19123809] [PMID: 30501097]
[74]
V, P; N, K.; S, P; J, S; E, A.; K, G Biosynthesis and structural characteristics of selenium nanoparticles using lactobacillus acidophilus bacteria by wet sterilization process. Int. J. Adv. Vet. Sci. Technol., 2015, 4(1), 178-183.
[http://dx.doi.org/10.23953/cloud.ijavst.183]
[75]
Srivastava, N.; Mukhopadhyay, M. Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol., 2013, 244, 26-29.
[http://dx.doi.org/10.1016/j.powtec.2013.03.050]
[76]
Eszenyi, P.; Sztrik, A.; Babka, B.; Prokisch, J. Elemental, nano-sized (100-500 Nm) selenium production by probiotic lactic acid bacteria. Int. J. Biosci. Biochem. Bioinform., 2011, 1(2), 148-152.
[http://dx.doi.org/10.7763/IJBBB.2011.V1.27]
[77]
Kora, A.J.; Rastogi, L. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for con-version of selenite. J. Environ. Manage., 2016, 181, 231-236.
[http://dx.doi.org/10.1016/j.jenvman.2016.06.029] [PMID: 27353373]
[78]
Van Overschelde, O.; Guisbiers, G.; Snyders, R. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. APL Mater., 2013, 1(4), 4824148.
[http://dx.doi.org/10.1063/1.4824148]
[79]
El-Sayyad, G.S.; El-Bastawisy, H.S.; Gobara, M.; El-Batal, A.I. Gentamicin-assisted mycogenic selenium nanoparticles synthesized under gamma irradiation for robust reluctance of resistant urinary tract infection-causing pathogens. Biol. Trace Elem. Res., 2020, 195(1), 323-342.
[http://dx.doi.org/10.1007/s12011-019-01842-z] [PMID: 31396853]
[80]
Horizonte, B. Radiobiologia - Centro de Desenvolvimento Da Tecnologia Nuclear; MG, Brasil, 2018, pp. 286-290.
[81]
Tan, L.; Jia, X.; Jiang, X.; Zhang, Y.; Tang, H.; Yao, S.; Xie, Q. In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosens. Bioelectron., 2009, 24(7), 2268-2272.
[http://dx.doi.org/10.1016/j.bios.2008.10.030] [PMID: 19101136]
[82]
Kalishwaralal, K.; Jeyabharathi, S.; Sundar, K.; Muthukumaran, A. A novel one-pot green synthesis of selenium nanoparticles and evalua-tion of its toxicity in zebrafish embryos. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 471-477.
[http://dx.doi.org/10.3109/21691401.2014.962744] [PMID: 25287880]
[83]
Wadhwani, S.A.; Shedbalkar, U.U.; Singh, R.; Chopade, B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol., 2016, 100(6), 2555-2566.
[http://dx.doi.org/10.1007/s00253-016-7300-7] [PMID: 26801915]
[84]
Wang, Y.; Chen, P.; Zhao, G.; Sun, K.; Li, D.; Wan, X.; Zhang, J. Inverse relationship between elemental selenium nanoparticle size and inhibition of cancer cell growth in vitro and in vivo. Food Chem. Toxicol., 2015, 85, 71-77.
[http://dx.doi.org/10.1016/j.fct.2015.08.006] [PMID: 26260751]
[85]
Wang, L.; Wang, J.; Liu, X.; Liu, Q.; Zhang, G.; Liang, L. Association between selenium intake and the risk of pancreatic cancer: A meta-analysis of observational studies. Biosci. Rep., 2016, 36(5), 1-6.
[http://dx.doi.org/10.1042/BSR20160345] [PMID: 27623938]
[86]
Wang, X.; Sun, K.; Tan, Y.; Wu, S.; Zhang, J. Efficacy and safety of selenium nanoparticles administered intraperitoneally for the preven-tion of growth of cancer cells in the peritoneal cavity. Free Radic. Biol. Med., 2014, 72, 1-10.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.003] [PMID: 24727439]
[87]
Zhang, J.; Wang, X.; Xu, T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: Comparison with se-methylselenocysteine in mice. Toxicol. Sci., 2008, 101(1), 22-31.
[http://dx.doi.org/10.1093/toxsci/kfm221] [PMID: 17728283]
[88]
Srivastava, P.; Kowshik, M. Anti-neoplastic selenium nanoparticles from Idiomarina sp. PR58-8. Enzyme Microb. Technol., 2016, 95, 192-200.
[http://dx.doi.org/10.1016/j.enzmictec.2016.08.002] [PMID: 27866615]
[89]
Sun, D.; Liu, Y.; Yu, Q.; Qin, X.; Yang, L.; Zhou, Y.; Chen, L.; Liu, J. Inhibition of tumor growth and vasculature and fluorescence imag-ing using functionalized ruthenium-thiol protected selenium nanoparticles. Biomaterials, 2014, 35(5), 1572-1583.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.007] [PMID: 24268198]
[90]
Wang, Y.; Ma, J.; Zhou, L.; Chen, J.; Liu, Y.; Qiu, Z.; Zhang, S. Dual functional selenium-substituted hydroxyapatite. Interface Focus, 2012, 2(3), 378-386.
[http://dx.doi.org/10.1098/rsfs.2012.0002] [PMID: 23741613]
[91]
Zhang, P.; Hu, L.; Yin, Q.; Zhang, Z.; Feng, L.; Li, Y. Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: Synthesis, preparation and in vivo evaluation. J. Control. Release, 2012, 159(3), 429-434.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.031] [PMID: 22306333]
[92]
Xia, T.; Kovochich, M.; Liong, M.; Meng, H.; Kabehie, S.; George, S.; Zink, J.I.; Nel, A.E. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano, 2009, 3(10), 3273-3286.
[http://dx.doi.org/10.1021/nn900918w] [PMID: 19739605]
[93]
Zhang, Y.; Li, X.; Huang, Z.; Zheng, W.; Fan, C.; Chen, T. Enhancement of cell permeabilization apoptosis-inducing activity of selenium nanoparticles by ATP surface decoration. Nanomedicine, 2013, 9(1), 74-84.
[http://dx.doi.org/10.1016/j.nano.2012.04.002] [PMID: 22542821]
[94]
Vekariya, K.K. Kaur, J.; Tikoo, K. ERα signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer. Nanomedicine, 2012, 8(7), 1125-1132.
[http://dx.doi.org/10.1016/j.nano.2011.12.003] [PMID: 22197727]
[95]
Gao, F.; Yuan, Q.; Gao, L.; Cai, P.; Zhu, H.; Liu, R.; Wang, Y.; Wei, Y.; Huang, G.; Liang, J.; Gao, X. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials, 2014, 35(31), 8854-8866.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.004] [PMID: 25064805]
[96]
Li, Y.; Li, X.; Wong, Y.S.; Chen, T.; Zhang, H.; Liu, C.; Zheng, W. The reversal of cisplatin-induced nephrotoxicity by selenium nanopar-ticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials, 2011, 32(34), 9068-9076.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.001] [PMID: 21864903]
[97]
Kumar, S.; Tomar, M.S.; Acharya, A. Carboxylic group-induced synthesis and characterization of selenium nanoparticles and its anti-tumor potential on Dalton’s lymphoma cells. Colloids Surf. B Biointerfaces, 2015, 126, 546-552.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.009] [PMID: 25616972]
[98]
Luesakul, U.; Puthong, S.; Neamati, N.; Muangsin, N. pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxo-rubicin for overcoming drug-resistant cancer cells. Carbohydr. Polym., 2018, 181(November), 841-850.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.068] [PMID: 29254044]
[99]
Fu, X.; Yang, Y.; Li, X.; Lai, H.; Huang, Y.; He, L.; Zheng, W.; Chen, T. RGD peptide-conjugated selenium nanoparticles: Antiangiogene-sis by suppressing VEGF-VEGFR2-ERK/AKT pathway. Nanomedicine, 2016, 12(6), 1627-1639.
[http://dx.doi.org/10.1016/j.nano.2016.01.012] [PMID: 26961468]
[100]
Chittasupho, C.; Athikomkulchai, S. Nanoparticles of combretum quadrangulare leaf extract induce cytotoxicity, apoptosis, cell cycle ar-rest and anti-migration in lung cancer cells. J. Drug Deliv. Sci. Technol., 2017, 2018(45), 378-387.
[http://dx.doi.org/10.1016/j.jddst.2018.04.003]
[101]
Yang, F.; Tang, Q.; Zhong, X.; Bai, Y.; Chen, T.; Zhang, Y.; Li, Y.; Zheng, W. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int. J. Nanomedicine, 2012, 7, 835-844.
[http://dx.doi.org/10.2147/IJN.S28278] [PMID: 22359460]
[102]
Cui, D.; Yan, C.; Miao, J.; Zhang, X.; Chen, J.; Sun, L.; Meng, L.; Liang, T.; Li, Q. Synthesis, characterization and antitumor properties of selenium nanoparticles coupling with ferulic acid. Mater. Sci. Eng. C, 2018, 90(90), 104-112.
[http://dx.doi.org/10.1016/j.msec.2018.04.048] [PMID: 29853073]
[103]
Maiyo, F.; Singh, M. Selenium nanoparticles: Potential in cancer gene and drug delivery. Nanomedicine (Lond.), 2017, 12(9), 1075-1089.
[http://dx.doi.org/10.2217/nnm-2017-0024] [PMID: 28440710]
[104]
Chen, T.; Wong, Y.S.; Zheng, W.; Bai, Y.; Huang, L. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf. B Biointerfaces, 2008, 67(1), 26-31.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.010] [PMID: 18805679]
[105]
Feng, Y.; Su, J.; Zhao, Z.; Zheng, W.; Wu, H.; Zhang, Y.; Chen, T. Differential effects of amino acid surface decoration on the anticancer efficacy of selenium nanoparticles. Dalton Trans., 2014, 43(4), 1854-1861.
[http://dx.doi.org/10.1039/C3DT52468J] [PMID: 24257441]
[106]
Zhang, Z.; Du, Y.; Liu, T.; Wong, K.H.; Chen, T. Systematic acute and subchronic toxicity evaluation of polysaccharide-protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater. Sci., 2019, 7(12), 5112-5123.
[http://dx.doi.org/10.1039/C9BM01104H] [PMID: 31573569]
[107]
Liu, T.; Zeng, L.; Jiang, W.; Fu, Y.; Zheng, W.; Chen, T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine, 2015, 11(4), 947-958.
[http://dx.doi.org/10.1016/j.nano.2015.01.009] [PMID: 25680543]
[108]
Sun, D.; Liu, Y.; Yu, Q.; Zhou, Y.; Zhang, R.; Chen, X.; Hong, A.; Liu, J. The effects of luminescent ruthenium(II) polypyridyl functional-ized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signaling. Biomaterials, 2013, 34(1), 171-180.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.031] [PMID: 23059005]
[109]
Yu, B.; Zhang, Y.; Zheng, W.; Fan, C.; Chen, T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of sele-nium nanoparticles. Inorg. Chem., 2012, 51(16), 8956-8963.
[http://dx.doi.org/10.1021/ic301050v] [PMID: 22873404]
[110]
Tang, S.; Wang, T.; Jiang, M.; Huang, C.; Lai, C.; Fan, Y.; Yong, Q. Construction of arabinogalactans/selenium nanoparticles composites for enhancement of the antitumor activity. Int. J. Biol. Macromol., 2019, 128, 444-451.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.152] [PMID: 30703423]
[111]
Wu, H.; Li, X.; Liu, W.; Chen, T.; Li, Y.; Zheng, W.; Man, C.W.Y.; Wong, M.K.; Wong, K.H. Surface decoration of selenium nanoparticles by mushroom polysaccharides-protein complexes to achieve enhanced cellular uptake and antiproliferative activity. J. Mater. Chem., 2012, 22(19), 9602-9610.
[http://dx.doi.org/10.1039/c2jm16828f]
[112]
Xia, Y.; Xu, T.; Wang, C.; Li, Y.; Lin, Z.; Zhao, M.; Zhu, B. Novel functionalized nanoparticles for tumor-targeting co-delivery of doxoru-bicin and siRNA to enhance cancer therapy. Int. J. Nanomedicine, 2017, 13, 143-159.
[http://dx.doi.org/10.2147/IJN.S148960] [PMID: 29317822]
[113]
Gorain, B.; Choudhury, H.; Pandey, M.; Kesharwani, P. Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy. Mater. Sci. Eng. C, 2018, 91, 868-880.
[http://dx.doi.org/10.1016/j.msec.2018.05.054] [PMID: 30033322]
[114]
Li, H.; Liu, D.; Li, S.; Xue, C. Synthesis and cytotoxicity of selenium nanoparticles stabilized by α-D-glucan from Castanea mollissima Blume. Int. J. Biol. Macromol., 2019, 129, 818-826.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.085] [PMID: 30776437]
[115]
Baskar, G.; Lalitha, K.; George, G.B. Synthesis, characterization and anticancer activity of selenium nanobiocomposite of L-Asparaginase. Bull. Mater. Sci., 2019, 42(1), 1-7.
[http://dx.doi.org/10.1007/s12034-018-1686-z]
[116]
Bilek, O.; Fohlerova, Z.; Hubalek, J. Enhanced antibacterial and anticancer properties of Se-NPs decorated TiO2 nanotube film. PLoS One, 2019, 14(3), e0214066.
[http://dx.doi.org/10.1371/journal.pone.0214066] [PMID: 30901347]
[117]
Hu, Y.; Liu, T.; Li, J.; Mai, F.; Li, J.; Chen, Y.; Jing, Y.; Dong, X.; Lin, L.; He, J.; Xu, Y.; Shan, C.; Hao, J.; Yin, Z.; Chen, T.; Wu, Y. Sele-nium nanoparticles as new strategy to potentiate γδ T cell anti-tumor cytotoxicity through upregulation of tubulin-α acetylation. Biomaterials, 2019, 222, 119397.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119397] [PMID: 31442884]
[118]
Xia, Y.; Zhong, J.; Zhao, M.; Tang, Y.; Han, N.; Hua, L.; Xu, T.; Wang, C.; Zhu, B. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv., 2019, 26(1), 1-11.
[http://dx.doi.org/10.1080/10717544.2018.1556359] [PMID: 31928356]
[119]
Xia, Y.; Xiao, M.; Zhao, M.; Xu, T.; Guo, M.; Wang, C.; Li, Y.; Zhu, B.; Liu, H. Doxorubicin-loaded functionalized selenium nanoparti-cles for enhanced antitumor efficacy in cervical carcinoma therapy. Mater. Sci. Eng. C, 2020, 106(318), 110100.
[http://dx.doi.org/10.1016/j.msec.2019.110100] [PMID: 31753388]
[120]
Liu, F.; Liu, H.; Liu, R.; Xiao, C.; Duan, X.; McClements, D.J.; Liu, X. Delivery of sesamol using polyethylene-glycol-functionalized sele-nium nanoparticles in human liver cells in culture. J. Agric. Food Chem., 2019, 67(10), 2991-2998.
[http://dx.doi.org/10.1021/acs.jafc.8b06924] [PMID: 30779555]
[121]
Ranjitha, V.R.; Muddegowda, U.; Ravishankar Rai, V. Potent activity of bioconjugated peptide and selenium nanoparticles against colorec-tal adenocarcinoma cells. Drug Dev. Ind. Pharm., 2019, 45(9), 1496-1505.
[http://dx.doi.org/10.1080/03639045.2019.1634090] [PMID: 31241372]
[122]
Khan, S.; Ullah, M.W.; Siddique, R.; Liu, Y.; Ullah, I.; Xue, M.; Yang, G.; Hou, H. Catechins-modified selenium-doped hydroxyapatite nanomaterials for improved osteosarcoma therapy through generation of reactive oxygen species. Front. Oncol., 2019, 9, 499.
[http://dx.doi.org/10.3389/fonc.2019.00499] [PMID: 31263675]
[123]
Cui, D.; Ma, J.; Liang, T.; Sun, L.; Meng, L.; Liang, T.; Li, Q. Selenium nanoparticles fabricated in laminarin polysaccharides solutions exert their cytotoxicities in HepG2 cells by inhibiting autophagy and promoting apoptosis. Int. J. Biol. Macromol., 2019, 137, 829-835.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.031] [PMID: 31284007]
[124]
Johnson, W.D.; Morrissey, R.L.; Kapetanovic, I.; Crowell, J.A.; McCormick, D.L. Subchronic oral toxicity studies of Se-methylselenocysteine, an organoselenium compound for breast cancer prevention. Food Chem. Toxicol., 2008, 46(3), 1068-1078.
[http://dx.doi.org/10.1016/j.fct.2007.11.001] [PMID: 18082924]
[125]
Zhang, C.; Zhai, X.; Zhao, G.; Ren, F.; Leng, X. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohydr. Polym., 2015, 134, 158-166.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.065] [PMID: 26428112]
[126]
Zou, J.; Su, S.; Chen, Z.; Liang, F.; Zeng, Y.; Cen, W.; Zhang, X.; Xia, Y.; Huang, D. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3456-3464.
[http://dx.doi.org/10.1080/21691401.2019.1626863] [PMID: 31469318]