Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Gholamreza Daryabor, Zahra Amirghofran*, Nasser Gholijani and Peyman Bemani

DOI: 10.2174/1871530322666220215110041

Obesity and Adipose Tissue-derived Cytokines in the Pathogenesis of Multiple Sclerosis

Page: [1217 - 1231] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disease of the central nervous system (CNS) characterized by demyelination, neuronal loss, and permanent neurological impairments. The etiology of MS is not clearly understood, but genetics and environmental factors can affect the susceptibility of individuals. Obesity or a body mass index of (BMI) > 30 kg/m2 is associated with serious health consequences such as lipid profile abnormalities, hypertension, type 2 diabetes mellitus, reduced levels of vitamin D, and a systemic lowgrade inflammatory state. The inflammatory milieu can negatively affect the CNS and promote MS pathogenesis due in part to the increased blood-brain barrier permeability by the actions of adipose tissue-derived cytokines or adipokines. By crossing the blood-brain barrier, the pro-inflammatory adipokines such as leptin, resistin, and visfatin activate the CNS-resident immune cells, and promote the inflammatory responses; subsequently, demyelinating lesions occur in the white matter of the brain and spinal cord. Therefore, better knowledge of the adipokines’ role in the induction of obesity‐related chronic inflammation and subsequent events leading to the dysfunctional blood-brain barrier is essential. In this review, recent evidence regarding the possible roles of obesity and its related systemic low-grade inflammation, and the roles of adipokines and their genetic variants in the modulation of immune responses and altered blood-brain barrier permeability in MS patients, has been elucidated. Besides, the results of the current studies regarding the potential use of adipokines in predicting MS disease severity and response to treatment have been explored.

Keywords: Adipose tissue, adipokines, central nervous system (CNS), inflammation, multiple sclerosis (MS), obesity.

Graphical Abstract

[1]
Wallin, M.T.; Culpepper, W.J.; Nichols, E.; Bhutta, Z.A.; Gebrehiwot, T.T.; Hay, S.I.; Khalil, I.A.; Krohn, K.J.; Liang, X.; Naghavi, M.; Mokdad, A.H.; Nixon, M.R.; Reiner, R.C.; Sartorius, B.; Smith, M.; Topor-Madry, R.; Wersdecker, A.; Vos, T.; Feigin, V.L.; Murray, C.J.L. GBD 2016 Multiple Sclerosis Collaborators. Global, regional, and national burden of multiple sclerosis 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(3), 269-285.
[http://dx.doi.org/10.1016/S1474-4422(18)30443-5] [PMID: 30679040]
[2]
Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; Wallin, M.; Helme, A.; Angood Napier, C.; Rijke, N.; Baneke, P. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler., 2020, 26(14), 1816-1821.
[http://dx.doi.org/10.1177/1352458520970841] [PMID: 33174475]
[3]
Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol., 2017, 13(1), 25-36.
[http://dx.doi.org/10.1038/nrneurol.2016.187] [PMID: 27934854]
[4]
Lassmann, H.; Brück, W.; Lucchinetti, C. Heterogeneity of multiple sclerosis pathogenesis: Implications for diagnosis and therapy. Trends Mol. Med., 2001, 7(3), 115-121.
[http://dx.doi.org/10.1016/S1471-4914(00)01909-2] [PMID: 11286782]
[5]
Peiravian, F.; Rajaian, H.; Samiei, A.; Gholijani, N.; Gharesi-Fard, B.; Mokaram, P.; Rahimi-Jaberi, A.; Kamali Sarvestani, E. Altered se-rum cytokine profiles in relapse phase of relapsing-remitting multiple sclerosis. Iran. J. Immunol., 2016, 13(3), 186-196.
[PMID: 27671510]
[6]
Goldenberg, M.M. Multiple sclerosis review. P&T, 2012, 37(3), 175-184.
[PMID: 22605909]
[7]
Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol., 2011, 11(2), 85-97.
[http://dx.doi.org/10.1038/nri2921] [PMID: 21252989]
[8]
Hurt, R.T.; Kulisek, C.; Buchanan, L.A.; McClave, S.A. The obesity epidemic: Challenges, health initiatives, and implications for gastroen-terologists. Gastroenterol. Hepatol. (N. Y.), 2010, 6(12), 780-792.
[PMID: 21301632]
[9]
Daryabor, G.; Kabelitz, D.; Kalantar, K. An update on immune dysregulation in obesity-related insulin resistance. Scand. J. Immunol., 2019, 89(4), e12747.
[http://dx.doi.org/10.1111/sji.12747] [PMID: 30593678]
[10]
Zorena, K.; Jachimowicz-Duda, O.; Ślęzak, D.; Robakowska, M.; Mrugacz, M. Adipokines and obesity. potential link to metabolic disorders and chronic complications. Int. J. Mol. Sci., 2020, 21(10), e3570.
[http://dx.doi.org/10.3390/ijms21103570] [PMID: 32443588]
[11]
Engin, A. The definition and prevalence of obesity and metabolic syndrome. Adv. Exp. Med. Biol., 2017, 960, 1-17.
[http://dx.doi.org/10.1007/978-3-319-48382-5_1] [PMID: 28585193]
[12]
Mazon, J.N.; de Mello, A.H.; Ferreira, G.K.; Rezin, G.T. The impact of obesity on neurodegenerative diseases. Life Sci., 2017, 182, 22-28.
[http://dx.doi.org/10.1016/j.lfs.2017.06.002] [PMID: 28583368]
[13]
Soliman, R.H.; Farhan, H.M.H.; Mohamed, O.; Mohammed, I.K.; Shaimaa, H.H.; Amr, H. Impact of insulin resistance and metabolic syn-drome on disability in patients with multiple sclerosis. Egypt. J. Neurol. Psychiat. Neurosurg., 2020, 56(1), e18.
[http://dx.doi.org/10.1186/s41983-020-0155-y]
[14]
Gianfrancesco, M.A.; Barcellos, L.F. Obesity and multiple sclerosis susceptibility: A review. J. Neurol. Neuromedicine, 2016, 1(7), 1-5.
[http://dx.doi.org/10.29245/2572.942X/2016/7.1064] [PMID: 27990499]
[15]
Kanoski, S.E.; Zhang, Y.; Zheng, W.; Davidson, T.L. The effects of a high-energy diet on hippocampal function and blood-brain barrier integrity in the rat. J. Alzheimers Dis., 2010, 21(1), 207-219.
[http://dx.doi.org/10.3233/JAD-2010-091414] [PMID: 20413889]
[16]
Stampanoni Bassi, M.; Iezzi, E.; Buttari, F.; Gilio, L.; Simonelli, I.; Carbone, F.; Micillo, T.; De Rosa, V.; Sica, F.; Furlan, R.; Finardi, A.; Fantozzi, R.; Storto, M.; Bellantonio, P.; Pirollo, P.; Di Lemme, S.; Musella, A.; Mandolesi, G.; Centonze, D.; Matarese, G. Obesity worsens central inflammation and disability in multiple sclerosis. Mult. Scler., 2020, 26(10), 1237-1246.
[http://dx.doi.org/10.1177/1352458519853473] [PMID: 31161863]
[17]
Hoffler, U.; Hobbie, K.; Wilson, R.; Bai, R.; Rahman, A.; Malarkey, D.; Travlos, G.; Ghanayem, B.I. Diet-induced obesity is associated with hyperleptinemia, hyperinsulinemia, hepatic steatosis, and glomerulopathy in C57Bl/6J mice. Endocrine, 2009, 36(2), 311-325.
[http://dx.doi.org/10.1007/s12020-009-9224-9] [PMID: 19669948]
[18]
Çoban, A.; Düzel, B.; Tüzün, E.; Tamam, Y. Investigation of the prognostic value of adipokines in multiple sclerosis. Mult. Scler. Relat. Disord., 2017, 15, 11-14.
[http://dx.doi.org/10.1016/j.msard.2017.04.006] [PMID: 28641765]
[19]
Düzel, B.; Tamam, Y.; Çoban, A.; Tüzün, E. Adipokines in multiple sclerosis patients with and without optic neuritis as the first clinical presentation. Immunol. Invest., 2019, 48(2), 190-197.
[http://dx.doi.org/10.1080/08820139.2018.1528270] [PMID: 30321074]
[20]
Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol., 2020, 11, 1582.
[http://dx.doi.org/10.3389/fimmu.2020.01582] [PMID: 32793223]
[21]
Li, V.L.; Kim, J.T.; Long, J.Z. Adipose tissue lipokines: Recent progress and future directions. Diabetes, 2020, 69(12), 2541-2548.
[http://dx.doi.org/10.2337/dbi20-0012] [PMID: 33219098]
[22]
Lefterova, M.I.; Haakonsson, A.K.; Lazar, M.A.; Mandrup, S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab., 2014, 25(6), 293-302.
[http://dx.doi.org/10.1016/j.tem.2014.04.001] [PMID: 24793638]
[23]
Ruiz-Ojeda, F.J.; Méndez-Gutiérrez, A.; Aguilera, C.M.; Plaza-Díaz, J. Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. Int. J. Mol. Sci., 2019, 20(19), e4888.
[http://dx.doi.org/10.3390/ijms20194888] [PMID: 31581657]
[24]
Goldberg, I. J.; Eckel, R. H.; Abumrad, N. A. Regulation of fatty acid uptake into tissues: Lipoprotein lipase- and CD36-mediated pathways. J. Lipid Res., 2009, 50(Suppl.), S86-S90.
[25]
Martyniak, K.; Masternak, M.M. Changes in adipose tissue cellular composition during obesity and aging as a cause of metabolic dysregulation. Exp. Gerontol., 2017, 94, 59-63.
[http://dx.doi.org/10.1016/j.exger.2016.12.007] [PMID: 27939445]
[26]
Makki, K.; Froguel, P.; Wolowczuk, I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflamm., 2013, 2013, 139239.
[http://dx.doi.org/10.1155/2013/139239] [PMID: 24455420]
[27]
Reilly, S.M.; Saltiel, A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol., 2017, 13(11), 633-643.
[http://dx.doi.org/10.1038/nrendo.2017.90] [PMID: 28799554]
[28]
Hersoug, L.G.; Møller, P.; Loft, S. Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr. Res. Rev., 2018, 31(2), 153-163.
[http://dx.doi.org/10.1017/S0954422417000269] [PMID: 29362018]
[29]
Teixeira, T.F.; Souza, N.C.; Chiarello, P.G.; Franceschini, S.C.; Bressan, J.; Ferreira, C.L.; Peluzio, M.C. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin. Nutr., 2012, 31(5), 735-740.
[http://dx.doi.org/10.1016/j.clnu.2012.02.009] [PMID: 22444236]
[30]
Cheru, L.; Saylor, C.F.; Lo, J. Gastrointestinal barrier breakdown, and adipose tissue inflammation. Curr. Obes. Rep., 2019, 8(2), 165-174.
[http://dx.doi.org/10.1007/s13679-019-00332-6] [PMID: 30847735]
[31]
Okamura, T.; Hashimoto, Y.; Hamaguchi, M.; Obora, A.; Kojima, T.; Fukui, M. Ectopic fat obesity presents the greatest risk for incident type 2 diabetes: A population-based longitudinal study. Int. J. Obes., 2019, 43(1), 139-148.
[http://dx.doi.org/10.1038/s41366-018-0076-3] [PMID: 29717276]
[32]
Koliaki, C.; Liatis, S.; Kokkinos, A. Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism, 2019, 92, 98-107.
[http://dx.doi.org/10.1016/j.metabol.2018.10.011] [PMID: 30399375]
[33]
Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism, 2019, 92, 121-135.
[http://dx.doi.org/10.1016/j.metabol.2018.11.001] [PMID: 30445141]
[34]
O’Brien, P.D.; Hinder, L.M.; Callaghan, B.C.; Feldman, E.L. Neurological consequences of obesity. Lancet Neurol., 2017, 16(6), 465-477.
[http://dx.doi.org/10.1016/S1474-4422(17)30084-4] [PMID: 28504110]
[35]
Michalakis, K.; Ilias, I. SARS-CoV-2 infection and obesity: Common inflammatory and metabolic aspects. Diabetes Metab. Syndr., 2020, 14(4), 469-471.
[http://dx.doi.org/10.1016/j.dsx.2020.04.033] [PMID: 32387864]
[36]
Mauvais-Jarvis, F. Aging, Male Sex, Obesity, and metabolic inflammation create the perfect storm for COVID-19. Diabetes, 2020, 69(9), 1857-1863.
[http://dx.doi.org/10.2337/dbi19-0023] [PMID: 32669390]
[37]
Vlaicu, S.I.; Tatomir, A.; Boodhoo, D.; Vesa, S.; Mircea, P.A.; Rus, H. The role of complement system in adipose tissue-related inflammation. Immunol. Res., 2016, 64(3), 653-664.
[http://dx.doi.org/10.1007/s12026-015-8783-5] [PMID: 26754764]
[38]
Tripathy, D.; Mohanty, P.; Dhindsa, S.; Syed, T.; Ghanim, H.; Aljada, A.; Dandona, P. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes, 2003, 52(12), 2882-2887.
[http://dx.doi.org/10.2337/diabetes.52.12.2882] [PMID: 14633847]
[39]
Hahm, J.R.; Jo, M.H.; Ullah, R.; Kim, M.W.; Kim, M.O. Metabolic stress alters antioxidant systems, suppresses the adiponectin receptor 1 and induces Alzheimer’s like pathology in mice brain. Cells, 2020, 9(1), e249.
[http://dx.doi.org/10.3390/cells9010249] [PMID: 31963819]
[40]
Noronha, S.S.R.; Lima, P.M.; Campos, G.S.V.; Chírico, M.T.T.; Abreu, A.R.; Figueiredo, A.B.; Silva, F.C.S.; Chianca, D.A., Jr; Lowry, C.A.; De Menezes, R.C.A. Association of high-fat diet with neuroinflammation, anxiety-like defensive behavioral responses, and altered thermoregulatory responses in male rats. Brain Behav. Immun., 2019, 80, 500-511.
[http://dx.doi.org/10.1016/j.bbi.2019.04.030] [PMID: 31022457]
[41]
Buckman, L.B.; Hasty, A.H.; Flaherty, D.K.; Buckman, C.T.; Thompson, M.M.; Matlock, B.K.; Weller, K.; Ellacott, K.L.J. Obesity in-duced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav. Immun., 2014, 35, 33-42.
[http://dx.doi.org/10.1016/j.bbi.2013.06.007] [PMID: 23831150]
[42]
Bai, M.; Wang, Y.; Han, R.; Xu, L.; Huang, M.; Zhao, J.; Lin, Y.; Song, S.; Chen, Y. Intermittent caloric restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis. J. Nutr. Biochem., 2021, 87, 108493.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108493] [PMID: 32920091]
[43]
Fontana, L.; Ghezzi, L.; Cross, A.H.; Piccio, L. Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. J. Exp. Med., 2021, 218(2), e20190086.
[http://dx.doi.org/10.1084/jem.20190086] [PMID: 33416892]
[44]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[45]
Arcuri, C.; Mecca, C.; Bianchi, R.; Giambanco, I.; Donato, R. The pathophysiological role of microglia in dynamic surveillance, phagocytosis, and structural remodeling of the developing CNS. Front. Mol. Neurosci., 2017, 10, 191.
[http://dx.doi.org/10.3389/fnmol.2017.00191] [PMID: 28674485]
[46]
Jäkel, S.; Dimou, L. Glial cells and their function in the adult brain: A journey through the history of their ablation. Front. Cell. Neurosci., 2017, 11, 24.
[http://dx.doi.org/10.3389/fncel.2017.00024] [PMID: 28243193]
[47]
Antel, J.P.; Becher, B.; Ludwin, S.K.; Prat, A.; Quintana, F.J. Glial cells as regulators of neuroimmune interactions in the central nervous system. J. Immunol., 2020, 204(2), 251-255.
[http://dx.doi.org/10.4049/jimmunol.1900908] [PMID: 31907266]
[48]
Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in development, myelin generation and beyond. Cells, 2019, 8(11), e1424.
[http://dx.doi.org/10.3390/cells8111424] [PMID: 31726662]
[49]
Abbott, N.J. Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat., 2002, 200(6), 629-638.
[http://dx.doi.org/10.1046/j.1469-7580.2002.00064.x] [PMID: 12162730]
[50]
Prins, M.; Schul, E.; Geurts, J.; van der Valk, P.; Drukarch, B.; van Dam, A.M. Pathological differences between white and grey matter multiple sclerosis lesions. Ann. N. Y. Acad. Sci., 2015, 1351(1), 99-113.
[http://dx.doi.org/10.1111/nyas.12841] [PMID: 26200258]
[51]
Sospedra, M.; Martin, R. Immunology of multiple sclerosis. Semin. Neurol., 2016, 36(2), 115-127.
[http://dx.doi.org/10.1055/s-0036-1579739] [PMID: 27116718]
[52]
McCaffrey, G.; Davis, T.P. Physiology and pathophysiology of the blood-brain barrier: P-glycoprotein and occludin trafficking as therapeutic targets to optimize central nervous system drug delivery. J. Investig. Med., 2012, 60(8), 1131-1140.
[http://dx.doi.org/10.2310/JIM.0b013e318276de79] [PMID: 23138008]
[53]
Minagar, A.; Alexander, J.S. Blood-brain barrier disruption in multiple sclerosis. Mult. Scler., 2003, 9(6), 540-549.
[http://dx.doi.org/10.1191/1352458503ms965oa] [PMID: 14664465]
[54]
Haghayegh Jahromi, N.; Marchetti, L.; Moalli, F.; Duc, D.; Basso, C.; Tardent, H.; Kaba, E.; Deutsch, U.; Pot, C.; Sallusto, F.; Stein, J.V.; Engelhardt, B. Intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 differentially contribute to peripheral activation and CNS entry of autoaggressive Th1 and Th17 cells in experimental autoimmune encephalomyelitis. Front. Immunol., 2020, 10(10), 3056.
[http://dx.doi.org/10.3389/fimmu.2019.03056] [PMID: 31993059]
[55]
Wang, J.; Wang, J.; Wang, J.; Yang, B.; Weng, Q.; He, Q. Targeting microglia and macrophages: A potential treatment strategy for multiple sclerosis. Front. Pharmacol., 2019, 10, 286.
[http://dx.doi.org/10.3389/fphar.2019.00286] [PMID: 30967783]
[56]
Veroni, C.; Serafini, B.; Rosicarelli, B.; Fagnani, C.; Aloisi, F.; Agresti, C. Connecting immune cell infiltration to the multitasking microglia response and TNF receptor 2 induction in the multiple sclerosis brain. Front. Cell. Neurosci., 2020, 14, 190.
[http://dx.doi.org/10.3389/fncel.2020.00190] [PMID: 32733206]
[57]
Dong, Y.; Yong, V.W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat. Rev. Neurol., 2019, 15(12), 704-717.
[http://dx.doi.org/10.1038/s41582-019-0253-6] [PMID: 31527807]
[58]
Wolf, Y.; Shemer, A.; Levy-Efrati, L.; Gross, M.; Kim, J-S.; Engel, A.; David, E.; Chappell-Maor, L.; Grozovski, J.; Rotkopf, R.; Biton, I.; Eilam-Altstadter, R.; Jung, S. Microglial MHC class II is dispensable for experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. Eur. J. Immunol., 2018, 48(8), 1308-1318.
[http://dx.doi.org/10.1002/eji.201847540] [PMID: 29697861]
[59]
Magnus, T.; Schreiner, B.; Korn, T.; Jack, C.; Guo, H.; Antel, J.; Ifergan, I.; Chen, L.; Bischof, F.; Bar-Or, A.; Wiendl, H. Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: Implications for immune responses and autoimmunity in the CNS. J. Neurosci., 2005, 25(10), 2537-2546.
[http://dx.doi.org/10.1523/JNEUROSCI.4794-04.2005] [PMID: 15758163]
[60]
Karmiris, K.; Koutroubakis, I.E.; Xidakis, C.; Polychronaki, M.; Voudouri, T.; Kouroumalis, E.A. Circulating levels of leptin, adiponectin, resistin, and ghrelin in inflammatory bowel disease. Inflamm. Bowel Dis., 2006, 12(2), 100-105.
[http://dx.doi.org/10.1097/01.MIB.0000200345.38837.46] [PMID: 16432373]
[61]
Biström, M.; Hultdin, J.; Andersen, O.; Alonso-Magdalena, L.; Jons, D.; Gunnarsson, M.; Vrethem, M.; Sundström, P. Leptin levels are associated with multiple sclerosis risk. Mult. Scler., 2021, 27(1), 19-27.
[http://dx.doi.org/10.1177/1352458520905033] [PMID: 32028836]
[62]
Chougule, D.; Nadkar, M.; Venkataraman, K.; Rajadhyaksha, A.; Hase, N.; Jamale, T.; Kini, S.; Khadilkar, P.; Anand, V.; Madkaikar, M.; Pradhan, V. Adipokine interactions promote the pathogenesis of systemic lupus erythematosus. Cytokine, 2018, 111, 20-27.
[http://dx.doi.org/10.1016/j.cyto.2018.08.002] [PMID: 30098476]
[63]
Neumann, E.; Lepper, N.; Vasile, M.; Riccieri, V.; Peters, M.; Meier, F.; Hülser, M-L.; Distler, O.; Gay, S.; Mahavadi, P.; Günther, A.; Roeb, E.; Frommer, K.W.; Diller, M.; Müller-Ladner, U. Adipokine expression in systemic sclerosis lung and gastrointestinal organ involvement. Cytokine, 2019, 117, 41-49.
[http://dx.doi.org/10.1016/j.cyto.2018.11.013] [PMID: 30784899]
[64]
Matarese, G.; Sanna, V.; Lechler, R.I.; Sarvetnick, N.; Fontana, S.; Zappacosta, S.; La Cava, A. Leptin accelerates autoimmune diabetes in female NOD mice. Diabetes, 2002, 51(5), 1356-1361.
[http://dx.doi.org/10.2337/diabetes.51.5.1356] [PMID: 11978630]
[65]
Polito, R.; Nigro, E.; Messina, A.; Monaco, M.L.; Monda, V.; Scudiero, O.; Cibelli, G.; Valenzano, A.; Picciocchi, E.; Zammit, C.; Pisanelli, D.; Monda, M.; Cincione, I.R.; Daniele, A.; Messina, G. Adiponectin and orexin-A as a potential immunity link between Adipose tissue and central nervous system. Front. Physiol., 2018, 9, 982.
[http://dx.doi.org/10.3389/fphys.2018.00982] [PMID: 30140232]
[66]
Krause, M.P.; Liu, Y.; Vu, V.; Chan, L.; Xu, A.; Riddell, M.C.; Sweeney, G.; Hawke, T.J. Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function. Am. J. Physiol. Cell Physiol., 2008, 295(1), C203-C212.
[http://dx.doi.org/10.1152/ajpcell.00030.2008] [PMID: 18463233]
[67]
Weyer, C.; Funahashi, T.; Tanaka, S.; Hotta, K.; Matsuzawa, Y.; Pratley, R.E.; Tataranni, P.A. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab., 2001, 86(5), 1930-1935.
[http://dx.doi.org/10.1210/jcem.86.5.7463] [PMID: 11344187]
[68]
Wang, Y.; Lau, W.B.; Gao, E.; Tao, L.; Yuan, Y.; Li, R.; Wang, X.; Koch, W.J.; Ma, X-L. Cardiomyocyte-derived adiponectin is biologically active in protecting against myocardial ischemia-reperfusion injury. Am. J. Physiol. Endocrinol. Metab., 2010, 298(3), E663-E670.
[http://dx.doi.org/10.1152/ajpendo.00663.2009] [PMID: 20028965]
[69]
Yokota, T.; Oritani, K.; Takahashi, I.; Ishikawa, J.; Matsuyama, A.; Ouchi, N.; Kihara, S.; Funahashi, T.; Tenner, A.J.; Tomiyama, Y.; Matsuzawa, Y. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood, 2000, 96(5), 1723-1732.
[http://dx.doi.org/10.1182/blood.V96.5.1723] [PMID: 10961870]
[70]
Leth, H.; Andersen, K.K.; Frystyk, J.; Tarnow, L.; Rossing, P.; Parving, H-H.; Flyvbjerg, A. Elevated levels of high-molecular-weight adiponectin in type 1 diabetes. J. Clin. Endocrinol. Metab., 2008, 93(8), 3186-3191.
[http://dx.doi.org/10.1210/jc.2008-0360] [PMID: 18505763]
[71]
Yamauchi, T.; Iwabu, M.; Okada-Iwabu, M.; Kadowaki, T. Adiponectin receptors: A review of their structure, function and how they work. Best Pract. Res. Clin. Endocrinol. Metab., 2014, 28(1), 15-23.
[http://dx.doi.org/10.1016/j.beem.2013.09.003] [PMID: 24417942]
[72]
Kadowaki, T.; Yamauchi, T.; Kubota, N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett., 2008, 582(1), 74-80.
[http://dx.doi.org/10.1016/j.febslet.2007.11.070] [PMID: 18054335]
[73]
Neumeier, M.; Weigert, J.; Buettner, R.; Wanninger, J.; Schäffler, A.; Müller, A.M.; Killian, S.; Sauerbruch, S.; Schlachetzki, F.; Steinbrecher, A.; Aslanidis, C.; Schölmerich, J.; Buechler, C. Detection of adiponectin in cerebrospinal fluid in humans. Am. J. Physiol. Endocrinol. Metab., 2007, 293(4), E965-E969.
[http://dx.doi.org/10.1152/ajpendo.00119.2007] [PMID: 17623750]
[74]
Kusminski, C.M.; McTernan, P.G.; Schraw, T.; Kos, K.; O’Hare, J.P.; Ahima, R.; Kumar, S.; Scherer, P.E. Adiponectin complexes in human cerebrospinal fluid: Distinct complex distribution from serum. Diabetologia, 2007, 50(3), 634-642.
[http://dx.doi.org/10.1007/s00125-006-0577-9] [PMID: 17242917]
[75]
Thundyil, J.; Pavlovski, D.; Sobey, C.G.; Arumugam, T.V. Adiponectin receptor signalling in the brain. Br. J. Pharmacol., 2012, 165(2), 313-327.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01560.x] [PMID: 21718299]
[76]
Wan, Z.; Mah, D.; Simtchouk, S.; Klegeris, A.; Little, J.P. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells. Biochem. Biophys. Res. Commun., 2014, 446(1), 37-42.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.077] [PMID: 24582565]
[77]
Song, J.; Choi, S-M.; Kim, B.C. Adiponectin regulates the polarization and function of microglia via PPAR-γ signaling under amyloid β toxicity. Front. Cell. Neurosci., 2017, 11, 64.
[http://dx.doi.org/10.3389/fncel.2017.00064] [PMID: 28326017]
[78]
Nicolas, S.; Cazareth, J.; Zarif, H.; Guyon, A.; Heurteaux, C.; Chabry, J.; Petit-Paitel, A. Globular adiponectin limits microglia pro-inflammatory phenotype through an AdipoR1/NF-κB signaling pathway. Front. Cell. Neurosci., 2017, 11, 352.
[http://dx.doi.org/10.3389/fncel.2017.00352] [PMID: 29184485]
[79]
Song, J.; Choi, S-M.; Whitcomb, D.J.; Kim, B.C. Adiponectin controls the apoptosis and the expression of tight junction proteins in brain endothelial cells through AdipoR1 under beta amyloid toxicity. Cell Death Dis., 2017, 8(10), e3102.
[http://dx.doi.org/10.1038/cddis.2017.491] [PMID: 29022894]
[80]
Sun, L.; Li, H.; Tai, L.W.; Gu, P.; Cheung, C.W. Adiponectin regulates thermal nociception in a mouse model of neuropathic pain. Br. J. Anaesth., 2018, 120(6), 1356-1367.
[http://dx.doi.org/10.1016/j.bja.2018.01.016] [PMID: 29793601]
[81]
Spranger, J.; Verma, S.; Göhring, I.; Bobbert, T.; Seifert, J.; Sindler, A.L.; Pfeiffer, A.; Hileman, S.M.; Tschöp, M.; Banks, W.A. Adiponectin does not cross the blood-brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes, 2006, 55(1), 141-147.
[http://dx.doi.org/10.2337/diabetes.55.01.06.db05-1077] [PMID: 16380487]
[82]
Luo, Y.; Liu, M. Adiponectin: A versatile player of innate immunity. J. Mol. Cell Biol., 2016, 8(2), 120-128.
[http://dx.doi.org/10.1093/jmcb/mjw012] [PMID: 26993045]
[83]
Jasinski-Bergner, S.; Büttner, M.; Quandt, D.; Seliger, B.; Kielstein, H. Adiponectin and its receptors are differentially expressed in human tissues and cell lines of distinct origin. Obes. Facts, 2017, 10(6), 569-583.
[http://dx.doi.org/10.1159/000481732] [PMID: 29207395]
[84]
Yamaguchi, N.; Argueta, J.G.M.; Masuhiro, Y.; Kagishita, M.; Nonaka, K.; Saito, T.; Hanazawa, S.; Yamashita, Y. Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS Lett., 2005, 579(30), 6821-6826.
[http://dx.doi.org/10.1016/j.febslet.2005.11.019] [PMID: 16325814]
[85]
Ohashi, K.; Parker, J.L.; Ouchi, N.; Higuchi, A.; Vita, J.A.; Gokce, N.; Pedersen, A.A.; Kalthoff, C.; Tullin, S.; Sams, A.; Summer, R.; Walsh, K. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem., 2010, 285(9), 6153-6160.
[http://dx.doi.org/10.1074/jbc.M109.088708] [PMID: 20028977]
[86]
Mandal, P.; Pratt, B.T.; Barnes, M.; McMullen, M.R.; Nagy, L.E. Molecular mechanism for adiponectin-dependent M2 macrophage polari-zation: Link between the metabolic and innate immune activity of full-length adiponectin. J. Biol. Chem., 2011, 286(15), 13460-13469.
[http://dx.doi.org/10.1074/jbc.M110.204644] [PMID: 21357416]
[87]
Hui, X.; Gu, P.; Zhang, J.; Nie, T.; Pan, Y.; Wu, D.; Feng, T.; Zhong, C.; Wang, Y.; Lam, K.S.; Xu, A. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab., 2015, 22(2), 279-290.
[http://dx.doi.org/10.1016/j.cmet.2015.06.004] [PMID: 26166748]
[88]
Wilk, S.; Scheibenbogen, C.; Bauer, S.; Jenke, A.; Rother, M.; Guerreiro, M.; Kudernatsch, R.; Goerner, N.; Poller, W.; Elligsen-Merkel, D.; Utku, N.; Magrane, J.; Volk, H.D.; Skurk, C. Adiponectin is a negative regulator of antigen-activated T cells. Eur. J. Immunol., 2011, 41(8), 2323-2332.
[http://dx.doi.org/10.1002/eji.201041349] [PMID: 21538348]
[89]
Yokota, T.; Meka, C.S.; Kouro, T.; Medina, K.L.; Igarashi, H.; Takahashi, M.; Oritani, K.; Funahashi, T.; Tomiyama, Y.; Matsuzawa, Y.; Kincade, P.W. Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase-prostaglandin pathway in stromal cells. J. Immunol., 2003, 171(10), 5091-5099.
[http://dx.doi.org/10.4049/jimmunol.171.10.5091] [PMID: 14607907]
[90]
Obeid, S.; Wankell, M.; Charrez, B.; Sternberg, J.; Kreuter, R.; Esmaili, S.; Ramezani-Moghadam, M.; Devine, C.; Read, S.; Bhathal, P.; Lopata, A.; Ahlensteil, G.; Qiao, L.; George, J.; Hebbard, L. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J. Biol. Chem., 2017, 292(16), 6569-6582.
[http://dx.doi.org/10.1074/jbc.M115.712646] [PMID: 28258220]
[91]
Niu, T.; Cheng, L.; Wang, H.; Zhu, S.; Yang, X.; Liu, K.; Jin, H.; Xu, X. KS23, a novel peptide derived from adiponectin, inhibits retinal inflammation and downregulates the proportions of Th1 and Th17 cells during experimental autoimmune uveitis. J. Neuroinflammation, 2019, 16(1), 278.
[http://dx.doi.org/10.1186/s12974-019-1686-y] [PMID: 31883532]
[92]
Surendar, J.; Frohberger, S.J.; Karunakaran, I.; Schmitt, V.; Stamminger, W.; Neumann, A-L.; Wilhelm, C.; Hoerauf, A.; Hübner, M.P. Adiponectin limits IFN-γ and IL-17 producing CD4 T cells in obesity and restraining cell intrinsic glycolysis. Front. Immunol., 2019, 10, 2555.
[http://dx.doi.org/10.3389/fimmu.2019.02555] [PMID: 31736971]
[93]
Galvan, M.D.; Hulsebus, H.; Heitker, T.; Zeng, E.; Bohlson, S.S. Complement protein C1q and adiponectin stimulate Mer tyrosine kinase-dependent engulfment of apoptotic cells through a shared pathway. J. Innate Immun., 2014, 6(6), 780-792.
[http://dx.doi.org/10.1159/000363295] [PMID: 24942043]
[94]
Chen, B.; Liao, W-Q.; Xu, N.; Xu, H.; Wen, J-Y.; Yu, C-A.; Liu, X-Y.; Li, C-L.; Zhao, S-M.; Campbell, W. Adiponectin protects against cerebral ischemia-reperfusion injury through anti-inflammatory action. Brain Res., 2009, 1273, 129-137.
[http://dx.doi.org/10.1016/j.brainres.2009.04.002] [PMID: 19362080]
[95]
Lee, H.; Tu, T.H.; Park, B.S.; Yang, S.; Kim, J.G. Adiponectin reverses the hypothalamic microglial inflammation during short-term exposure to fat-rich diet. Int. J. Mol. Sci., 2019, 20(22), e5738.
[http://dx.doi.org/10.3390/ijms20225738] [PMID: 31731705]
[96]
Wu, X.; Luo, J.; Liu, H.; Cui, W.; Guo, K.; Zhao, L.; Bai, H.; Guo, W.; Guo, H.; Feng, D.; Qu, Y. Recombinant adiponectin peptide ameliorates brain injury following intracerebral hemorrhage by suppressing astrocyte-derived inflammation via the inhibition of Drp1-mediated mitochondrial fission. Transl. Stroke Res., 2020, 11(5), 924-939.
[http://dx.doi.org/10.1007/s12975-019-00768-x] [PMID: 31902083]
[97]
Wang, S.; Yao, Q.; Wan, Y.; Wang, J.; Huang, C.; Li, D.; Yang, B. Adiponectin reduces brain injury after intracerebral hemorrhage by reducing NLRP3 inflammasome expression. Int. J. Neurosci., 2020, 130(3), 301-308.
[http://dx.doi.org/10.1080/00207454.2019.1679810] [PMID: 31607194]
[98]
Piccio, L.; Cantoni, C.; Henderson, J.G.; Hawiger, D.; Ramsbottom, M.; Mikesell, R.; Ryu, J.; Hsieh, C.S.; Cremasco, V.; Haynes, W.; Dong, L.Q.; Chan, L.; Galimberti, D.; Cross, A.H. Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. Eur. J. Immunol., 2013, 43(8), 2089-2100.
[http://dx.doi.org/10.1002/eji.201242836] [PMID: 23640763]
[99]
Zhang, K.; Guo, Y.; Ge, Z.; Zhang, Z.; Da, Y.; Li, W.; Zhang, Z.; Xue, Z.; Li, Y.; Ren, Y.; Jia, L.; Chan, K-H.; Yang, F.; Yan, J.; Yao, Z.; Xu, A.; Zhang, R. Adiponectin suppresses T helper 17 cell differentiation and limits autoimmune CNS inflammation via the SIRT1/PPARγ/RORγt pathway. Mol. Neurobiol., 2017, 54(7), 4908-4920.
[http://dx.doi.org/10.1007/s12035-016-0036-7] [PMID: 27514756]
[100]
Rasooli Tehrani, A.; Gholipour, S.; Sharifi, R.; Yadegari, S.; Abbasi-Kolli, M.; Masoudian, N. Plasma levels of CTRP-3, CTRP-9 and apelin in women with multiple sclerosis. J. Neuroimmunol., 2019, 333, 576968.
[http://dx.doi.org/10.1016/j.jneuroim.2019.576968] [PMID: 31129285]
[101]
Yousefian, M.; Nemati, R.; Daryabor, G.; Gholijani, N.; Nikseresht, A.; Borhani-Haghighi, A.; Kamali-Sarvestani, E. Gender-specific association of leptin and adiponectin genes with multiple sclerosis. Am. J. Med. Sci., 2018, 356(2), 159-167.
[http://dx.doi.org/10.1016/j.amjms.2018.03.008] [PMID: 30219158]
[102]
Kraszula, L.; Jasińska, A.; Eusebio, M.; Kuna, P.; Głąbiński, A.; Pietruczuk, M. Evaluation of the relationship between leptin, resistin, adiponectin and natural regulatory T cells in relapsing-remitting multiple sclerosis. Neurol. Neurochir. Pol., 2012, 46(1), 22-28.
[http://dx.doi.org/10.5114/ninp.2012.27211] [PMID: 22426759]
[103]
Signoriello, E.; Mallardo, M.; Nigro, E.; Polito, R.; Casertano, S.; Di Pietro, A.; Coletta, M.; Monaco, M.L.; Rossi, F.; Lus, G.; Daniele, A. Adiponectin in cerebrospinal fluid from patients affected by multiple sclerosis is correlated with the progression and severity of disease. Mol. Neurobiol., 2021, 58(6), 2663-2670.
[http://dx.doi.org/10.1007/s12035-021-02287-z] [PMID: 33486671]
[104]
Nyirenda, M.H.; Fadda, G.; Healy, L.M.; Mexhitaj, I.; Poliquin-Lasnier, L.; Hanwell, H.; Saveriano, A.W.; Rozenberg, A.; Li, R.; Moore, C.S.; Belabani, C.; Johnson, T.; O’Mahony, J.; Arnold, D.L.; Yeh, E.A.; Marrie, R.A.; Dunn, S.; Banwell, B.; Bar, O. Amit, Pro-inflammatory adiponectin in pediatric-onset multiple sclerosis. Mult. Scler. J., 2021, 1, e1352458521989090.
[105]
Cheng, X.; Folco, E.J.; Shimizu, K.; Libby, P. Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells. J. Biol. Chem., 2012, 287(44), 36896-36904.
[http://dx.doi.org/10.1074/jbc.M112.409516] [PMID: 22948153]
[106]
Fayad, R.; Pini, M.; Sennello, J.A.; Cabay, R.J.; Chan, L.; Xu, A.; Fantuzzi, G. Adiponectin deficiency protects mice from chemically in-duced colonic inflammation. Gastroenterology, 2007, 132(2), 601-614.
[http://dx.doi.org/10.1053/j.gastro.2006.11.026] [PMID: 17258715]
[107]
Signoriello, E.; Lus, G.; Polito, R.; Casertano, S.; Scudiero, O.; Coletta, M.; Monaco, M.L.; Rossi, F.; Nigro, E.; Daniele, A. Adiponectin profile at baseline is correlated to progression and severity of multiple sclerosis. Eur. J. Neurol., 2019, 26(2), 348-355.
[http://dx.doi.org/10.1111/ene.13822] [PMID: 30300462]
[108]
Kvistad, S.S.; Myhr, K-M.; Holmøy, T.; Benth, J.Š.; Wergeland, S.; Beiske, A.G.; Bjerve, K.S.; Hovdal, H.; Midgard, R.; Sagen, J.V.; Torkildsen, Ø. Serum levels of leptin and adiponectin are not associated with disease activity or treatment response in multiple sclerosis. J. Neuroimmunol., 2018, 323, 73-77.
[http://dx.doi.org/10.1016/j.jneuroim.2018.07.011] [PMID: 30196837]
[109]
Gholamreza, D.; Sara, H.; Nima, R. Immunopathogenesis of ankylosing spondylitis: An updated review. Acta Med. Iran., 2018, 56(4), 214-225.
[110]
Beecham, A.H.; Patsopoulos, N.A.; Xifara, D.K.; Davis, M.F.; Kemppinen, A.; Cotsapas, C.; Shah, T.S.; Spencer, C.; Booth, D.; Goris, A.; Oturai, A.; Saarela, J.; Fontaine, B.; Hemmer, B.; Martin, C.; Zipp, F.; D’Alfonso, S.; Martinelli-Boneschi, F.; Taylor, B.; Harbo, H.F.; Kockum, I.; Hillert, J.; Olsson, T.; Ban, M.; Oksenberg, J.R.; Hintzen, R.; Barcellos, L.F.; Agliardi, C.; Alfredsson, L.; Alizadeh, M.; An-derson, C.; Andrews, R.; Søndergaard, H.B.; Baker, A.; Band, G.; Baranzini, S.E.; Barizzone, N.; Barrett, J.; Bellenguez, C.; Bergamaschi, L.; Bernardinelli, L.; Berthele, A.; Biberacher, V.; Binder, T.M.; Blackburn, H.; Bomfim, I.L.; Brambilla, P.; Broadley, S.; Brochet, B.; Brundin, L.; Buck, D.; Butzkueven, H.; Caillier, S.J.; Camu, W.; Carpentier, W.; Cavalla, P.; Celius, E.G.; Coman, I.; Comi, G.; Corrado, L.; Cosemans, L.; Cournu-Rebeix, I.; Cree, B.A.; Cusi, D.; Damotte, V.; Defer, G.; Delgado, S.R.; Deloukas, P.; di Sapio, A.; Dilthey, A.T.; Donnelly, P.; Dubois, B.; Duddy, M.; Edkins, S.; Elovaara, I.; Esposito, F.; Evangelou, N.; Fiddes, B.; Field, J.; Franke, A.; Freeman, C.; Frohlich, I.Y.; Galimberti, D.; Gieger, C.; Gourraud, P.A.; Graetz, C.; Graham, A.; Grummel, V.; Guaschino, C.; Hadjixenofontos, A.; Ha-konarson, H.; Halfpenny, C.; Hall, G.; Hall, P.; Hamsten, A.; Harley, J.; Harrower, T.; Hawkins, C.; Hellenthal, G.; Hillier, C.; Hobart, J.; Hoshi, M.; Hunt, S.E.; Jagodic, M. Jelčić I.; Jochim, A.; Kendall, B.; Kermode, A.; Kilpatrick, T.; Koivisto, K.; Konidari, I.; Korn, T.; Kronsbein, H.; Langford, C.; Larsson, M.; Lathrop, M.; Lebrun-Frenay, C.; Lechner-Scott, J.; Lee, M.H.; Leone, M.A.; Leppä, V.; Libera-tore, G.; Lie, B.A.; Lill, C.M.; Lindén, M.; Link, J.; Luessi, F.; Lycke, J.; Macciardi, F.; Männistö, S.; Manrique, C.P.; Martin, R.; Marti-nelli, V.; Mason, D.; Mazibrada, G.; McCabe, C.; Mero, I.L.; Mescheriakova, J.; Moutsianas, L.; Myhr, K.M.; Nagels, G.; Nicholas, R.; Nilsson, P.; Piehl, F.; Pirinen, M.; Price, S.E.; Quach, H.; Reunanen, M.; Robberecht, W.; Robertson, N.P.; Rodegher, M.; Rog, D.; Salvetti, M.; Schnetz-Boutaud, N.C.; Sellebjerg, F.; Selter, R.C.; Schaefer, C.; Shaunak, S.; Shen, L.; Shields, S.; Siffrin, V.; Slee, M.; Sorensen, P.S.; Sorosina, M.; Sospedra, M.; Spurkland, A.; Strange, A.; Sundqvist, E.; Thijs, V.; Thorpe, J.; Ticca, A.; Tienari, P.; van Duijn, C.; Visser, E.M.; Vucic, S.; Westerlind, H.; Wiley, J.S.; Wilkins, A.; Wilson, J.F.; Winkelmann, J.; Zajicek, J.; Zindler, E.; Haines, J.L.; Peri-cak-Vance, M.A.; Ivinson, A.J.; Stewart, G.; Hafler, D.; Hauser, S.L.; Compston, A.; McVean, G.; De Jager, P.; Sawcer, S.J.; McCauley, J.L. International Multiple Sclerosis Genetics Consortium (IMSGC)Wellcome Trust Case Control Consortium 2 (WTCCC2); International IBD Genetics Consortium (IIBDGC). Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet., 2013, 45(11), 1353-1360.
[http://dx.doi.org/10.1038/ng.2770] [PMID: 24076602]
[111]
Visscher, P.M.; Brown, M.A.; McCarthy, M.I.; Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet., 2012, 90(1), 7-24.
[http://dx.doi.org/10.1016/j.ajhg.2011.11.029] [PMID: 22243964]
[112]
Albert, P.R. What is a functional genetic polymorphism? Defining classes of functionality. J. Psychiatry Neurosci., 2011, 36(6), 363-365.
[http://dx.doi.org/10.1503/jpn.110137] [PMID: 22011561]
[113]
Farh, K.K-H.; Marson, A.; Zhu, J.; Kleinewietfeld, M.; Housley, W.J.; Beik, S.; Shoresh, N.; Whitton, H.; Ryan, R.J.H.; Shishkin, A.A.; Hatan, M.; Carrasco-Alfonso, M.J.; Mayer, D.; Luckey, C.J.; Patsopoulos, N.A.; De Jager, P.L.; Kuchroo, V.K.; Epstein, C.B.; Daly, M.J.; Hafler, D.A.; Bernstein, B.E. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature, 2015, 518(7539), 337-343.
[http://dx.doi.org/10.1038/nature13835] [PMID: 25363779]
[114]
Iwamoto, J.; Takeda, T.; Sato, Y.; Matsumoto, H. Serum leptin concentration positively correlates with body weight and total fat mass in postmenopausal Japanese women with osteoarthritis of the knee. Arthritis (Egypt), 2011, 2011, 580632.
[http://dx.doi.org/10.1155/2011/580632] [PMID: 22046520]
[115]
Vadacca, M.; Margiotta, D.P.E.; Navarini, L.; Afeltra, A. Leptin in immuno-rheumatological diseases. Cell. Mol. Immunol., 2011, 8(3), 203-212.
[http://dx.doi.org/10.1038/cmi.2010.75] [PMID: 21399656]
[116]
Zabeau, L.; Peelman, F.; Tavernier, J. Leptin: From structural insights to the design of antagonists. Life Sci., 2015, 140, 49-56.
[http://dx.doi.org/10.1016/j.lfs.2015.04.015] [PMID: 25998027]
[117]
Wauman, J.; Zabeau, L.; Tavernier, J. The leptin receptor complex: Heavier than expected? Front. Endocrinol. (Lausanne), 2017, 8, 30.
[http://dx.doi.org/10.3389/fendo.2017.00030] [PMID: 28270795]
[118]
Abella, V.; Scotece, M.; Conde, J.; Pino, J.; Gonzalez-Gay, M.A.; Gómez-Reino, J.J.; Mera, A.; Lago, F.; Gómez, R.; Gualillo, O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol., 2017, 13(2), 100-109.
[http://dx.doi.org/10.1038/nrrheum.2016.209] [PMID: 28053336]
[119]
Matoba, K.; Muramatsu, R.; Yamashita, T. Leptin sustains spontaneous remyelination in the adult central nervous system. Sci. Rep., 2017, 7(1), 40397.
[http://dx.doi.org/10.1038/srep40397] [PMID: 28091609]
[120]
Tang, C-H.; Lu, D-Y.; Yang, R-S.; Tsai, H-Y.; Kao, M-C.; Fu, W-M.; Chen, Y-F. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia. J. Immunol., 2007, 179(2), 1292-1302.
[http://dx.doi.org/10.4049/jimmunol.179.2.1292] [PMID: 17617622]
[121]
Martín-Romero, C.; Santos-Alvarez, J.; Goberna, R.; Sánchez-Margalet, V. Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell. Immunol., 2000, 199(1), 15-24.
[http://dx.doi.org/10.1006/cimm.1999.1594] [PMID: 10675271]
[122]
Zarkesh-Esfahani, H.; Pockley, G.; Metcalfe, R.A.; Bidlingmaier, M.; Wu, Z.; Ajami, A.; Weetman, A.P.; Strasburger, C.J.; Ross, R.J. High-dose leptin activates human leukocytes via receptor expression on monocytes. J. Immunol., 2001, 167(8), 4593-4599.
[http://dx.doi.org/10.4049/jimmunol.167.8.4593] [PMID: 11591788]
[123]
Busso, N.; So, A.; Chobaz-Péclat, V.; Morard, C.; Martinez-Soria, E.; Talabot-Ayer, D.; Gabay, C. Leptin signaling deficiency impairs humoral and cellular immune responses and attenuates experimental arthritis. J. Immunol., 2002, 168(2), 875-882.
[http://dx.doi.org/10.4049/jimmunol.168.2.875] [PMID: 11777985]
[124]
Forny-Germano, L.; De Felice, F.G.; Vieira, M.N.D.N. The role of leptin and adiponectin in obesity-associated cognitive decline and Alz-heimer’s disease. Front. Neurosci., 2019, 12, 1027.
[http://dx.doi.org/10.3389/fnins.2018.01027] [PMID: 30692905]
[125]
Banks, W.A.; Farr, S.A.; Salameh, T.S.; Niehoff, M.L.; Rhea, E.M.; Morley, J.E.; Hanson, A.J.; Hansen, K.M.; Craft, S. Triglycerides cross the blood-brain barrier and induce central leptin and insulin receptor resistance. Int. J. Obes., 2018, 42(3), 391-397.
[http://dx.doi.org/10.1038/ijo.2017.231] [PMID: 28990588]
[126]
Banks, W.A.; Coon, A.B.; Robinson, S.M.; Moinuddin, A.; Shultz, J.M.; Nakaoke, R.; Morley, J.E. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes, 2004, 53(5), 1253-1260.
[http://dx.doi.org/10.2337/diabetes.53.5.1253] [PMID: 15111494]
[127]
Ramos-Lobo, A.M.; Donato, J., Jr The role of leptin in health and disease. Temperature, 2017, 4(3), 258-291.
[http://dx.doi.org/10.1080/23328940.2017.1327003] [PMID: 28944270]
[128]
Tsiotra, P.C.; Boutati, E.; Dimitriadis, G.; Raptis, S.A. High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells. BioMed Res. Int., 2013, 2013, 487081.
[http://dx.doi.org/10.1155/2013/487081] [PMID: 23484124]
[129]
Pinteaux, E.; Inoue, W.; Schmidt, L.; Molina-Holgado, F.; Rothwell, N.J.; Luheshi, G.N. Leptin induces interleukin-1γ release from rat microglial cells through a caspase 1 independent mechanism. J. Neurochem., 2007, 102(3), 826-833.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04559.x] [PMID: 17419800]
[130]
Koga, S.; Kojima, A.; Ishikawa, C.; Kuwabara, S.; Arai, K.; Yoshiyama, Y. Effects of diet-induced obesity and voluntary exercise in a tauopathy mouse model: Implications of persistent hyperleptinemia and enhanced astrocytic leptin receptor expression. Neurobiol. Dis., 2014, 71, 180-192.
[http://dx.doi.org/10.1016/j.nbd.2014.08.015] [PMID: 25132556]
[131]
Hosoi, T.; Okuma, Y.; Nomura, Y. Expression of leptin receptors and induction of IL-1β transcript in glial cells. Biochem. Biophys. Res. Commun., 2000, 273(1), 312-315.
[http://dx.doi.org/10.1006/bbrc.2000.2937] [PMID: 10873603]
[132]
Reis, B.S.; Lee, K.; Fanok, M.H.; Mascaraque, C.; Amoury, M.; Cohn, L.B.; Rogoz, A.; Dallner, O.S.; Moraes-Vieira, P.M.; Domingos, A.I.; Mucida, D. Leptin receptor signaling in T cells is required for Th17 differentiation. J. Immunol., 2015, 194(11), 5253-5260.
[http://dx.doi.org/10.4049/jimmunol.1402996] [PMID: 25917102]
[133]
Mattioli, B.; Straface, E.; Quaranta, M.G.; Giordani, L.; Viora, M. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J. Immunol., 2005, 174(11), 6820-6828.
[http://dx.doi.org/10.4049/jimmunol.174.11.6820] [PMID: 15905523]
[134]
Procaccini, C.; Pucino, V.; Mantzoros, C.S.; Matarese, G. Leptin in autoimmune diseases. Metabolism, 2015, 64(1), 92-104.
[http://dx.doi.org/10.1016/j.metabol.2014.10.014] [PMID: 25467840]
[135]
Kolić I.; Stojković L.; Dinčić E.; Jovanović I.; Stanković A.; Živković M. Expression of LEP, LEPR and PGC1A genes is altered in peripheral blood mononuclear cells of patients with relapsing-remitting multiple sclerosis. J. Neuroimmunol., 2020, 338, 577090.
[http://dx.doi.org/10.1016/j.jneuroim.2019.577090] [PMID: 31704454]
[136]
Abd Elhafeez, M.A.; Zamzam, D.A.; Fouad, M.M.; Elkhawas, H.M.; Abdel Rahman, H.A. Serum leptin and body mass index in a sample of Egyptian multiple sclerosis patients. Egypt. J. Neurol. Psychiat. Neurosurg., 2020, 56(1), e107.
[http://dx.doi.org/10.1186/s41983-020-00239-3]
[137]
Matarese, G.; Di Giacomo, A.; Sanna, V.; Lord, G.M.; Howard, J.K.; Di Tuoro, A.; Bloom, S.R.; Lechler, R.I.; Zappacosta, S.; Fontana, S. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J. Immunol., 2001, 166(10), 5909-5916.
[http://dx.doi.org/10.4049/jimmunol.166.10.5909] [PMID: 11342605]
[138]
Matarese, G.; Carrieri, P.B.; La Cava, A.; Perna, F.; Sanna, V.; De Rosa, V.; Aufiero, D.; Fontana, S.; Zappacosta, S. Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25+ regulatory T cells. Proc. Natl. Acad. Sci. USA, 2005, 102(14), 5150-5155.
[http://dx.doi.org/10.1073/pnas.0408995102] [PMID: 15788534]
[139]
Lanzillo, R.; Carbone, F.; Quarantelli, M.; Bruzzese, D.; Carotenuto, A.; De Rosa, V.; Colamatteo, A.; Micillo, T.; De Luca Picione, C.; Saccà, F.; De Rosa, A.; Moccia, M.; Brescia Morra, V.; Matarese, G. Immunometabolic profiling of patients with multiple sclerosis identi-fies new biomarkers to predict disease activity during treatment with interferon beta-1a. Clin. Immunol., 2017, 183, 249-253.
[http://dx.doi.org/10.1016/j.clim.2017.08.011] [PMID: 28823971]
[140]
Dashti, M.; Alroughani, R.; Jacob, S.; Al-Temaimi, R. Leptin rs7799039 polymorphism is associated with multiple sclerosis risk in Ku-wait. Mult. Scler. Relat. Disord., 2019, 36, 101409.
[http://dx.doi.org/10.1016/j.msard.2019.101409] [PMID: 31563075]
[141]
Kolić I.; Stojković L.; Stankovic, A.; Stefanović M.; Dinčić E.; Zivkovic, M. Association study of rs7799039, rs1137101 and rs8192678 gene variants with disease susceptibility/severity and corresponding LEP, LEPR and PGC1A gene expression in multiple scle-rosis. Gene, 2021, 774, 145422.
[http://dx.doi.org/10.1016/j.gene.2021.145422] [PMID: 33450350]
[142]
Harroud, A.; Manousaki, D.; Butler-Laporte, G.; Mitchell, R.E.; Davey Smith, G.; Richards, J.B.; Baranzini, S.E. The relative contributions of obesity, vitamin D, leptin, and adiponectin to multiple sclerosis risk: A Mendelian randomization mediation analysis. Mult. Scler., 2021, 27(13), 1994-2000.
[http://dx.doi.org/10.1177/1352458521995484] [PMID: 33605807]
[143]
Rey, L.K.; Wieczorek, S.; Akkad, D.A.; Linker, R.A.; Chan, A.; Hoffjan, S. Polymorphisms in genes encoding leptin, ghrelin and their receptors in German multiple sclerosis patients. Mol. Cell. Probes, 2011, 25(5-6), 255-259.
[http://dx.doi.org/10.1016/j.mcp.2011.05.004] [PMID: 21664965]
[144]
Farrokhi, M.; Dabirzadeh, M.; Fadaee, E.; Beni, A.A.; Saadatpour, Z.; Rezaei, A.; Heidari, Z. Polymorphism in leptin and leptin receptor genes may modify leptin levels and represent risk factors for multiple sclerosis. Immunol. Invest., 2016, 45(4), 328-335.
[http://dx.doi.org/10.3109/08820139.2016.1157811] [PMID: 27105071]
[145]
Helfer, G.; Wu, Q-F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol., 2018, 238(2), R79-R94.
[http://dx.doi.org/10.1530/JOE-18-0174] [PMID: 29848608]
[146]
Zhao, L.; Yamaguchi, Y.; Sharif, S.; Du, X.Y.; Song, J.J.; Lee, D.M.; Recht, L.D.; Robinson, W.H.; Morser, J.; Leung, L.L. Chemerin158K protein is the dominant chemerin isoform in synovial and cerebrospinal fluids but not in plasma. J. Biol. Chem., 2011, 286(45), 39520-39527.
[http://dx.doi.org/10.1074/jbc.M111.258954] [PMID: 21930706]
[147]
De Henau, O.; Degroot, G-N.; Imbault, V.; Robert, V.; De Poorter, C.; Mcheik, S.; Galés, C.; Parmentier, M.; Springael, J-Y. Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2. PLoS One, 2016, 11(10), e0164179.
[http://dx.doi.org/10.1371/journal.pone.0164179] [PMID: 27716822]
[148]
Yoshimura, T.; Oppenheim, J.J. Chemokine-like receptor 1 (CMKLR1) and chemokine (C-C motif) receptor-like 2 (CCRL2); two multi-functional receptors with unusual properties. Exp. Cell Res., 2011, 317(5), 674-684.
[http://dx.doi.org/10.1016/j.yexcr.2010.10.023] [PMID: 21056554]
[149]
Herová, M.; Schmid, M.; Gemperle, C.; Hersberger, M. ChemR23, the receptor for chemerin and resolvin E1, is expressed and functional on M1 but not on M2 macrophages. J. Immunol., 2015, 194(5), 2330-2337.
[http://dx.doi.org/10.4049/jimmunol.1402166] [PMID: 25637017]
[150]
Skrzeczyńska-Moncznik, J.; Wawro, K.; Stefańska, A.; Oleszycka, E.; Kulig, P.; Zabel, B.A.; Sułkowski, M.; Kapińska-Mrowiecka, M.; Czubak-Macugowska, M.; Butcher, E.C.; Cichy, J. Potential role of chemerin in recruitment of plasmacytoid dendritic cells to diseased skin. Biochem. Biophys. Res. Commun., 2009, 380(2), 323-327.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.071] [PMID: 19168032]
[151]
Graham, K.L.; Zabel, B.A.; Loghavi, S.; Zuniga, L.A.; Ho, P.P.; Sobel, R.A.; Butcher, E.C. Chemokine-like receptor-1 expression by cen-tral nervous system-infiltrating leukocytes and involvement in a model of autoimmune demyelinating disease. J. Immunol., 2009, 183(10), 6717-6723.
[http://dx.doi.org/10.4049/jimmunol.0803435] [PMID: 19864606]
[152]
Graham, K.L.; Zhang, J.V.; Lewén, S.; Burke, T.M.; Dang, T.; Zoudilova, M.; Sobel, R.A.; Butcher, E.C.; Zabel, B.A. A novel CMKLR1 small molecule antagonist suppresses CNS autoimmune inflammatory disease. PLoS One, 2014, 9(12), e112925.
[http://dx.doi.org/10.1371/journal.pone.0112925] [PMID: 25437209]
[153]
Parolini, S.; Santoro, A.; Marcenaro, E.; Luini, W.; Massardi, L.; Facchetti, F.; Communi, D.; Parmentier, M.; Majorana, A.; Sironi, M.; Tabellini, G.; Moretta, A.; Sozzani, S. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood, 2007, 109(9), 3625-3632.
[http://dx.doi.org/10.1182/blood-2006-08-038844] [PMID: 17202316]
[154]
Acquarone, E.; Monacelli, F.; Borghi, R.; Nencioni, A.; Odetti, P. Resistin: A reappraisal. Mech. Ageing Dev., 2019, 178, 46-63.
[http://dx.doi.org/10.1016/j.mad.2019.01.004] [PMID: 30650338]
[155]
Aruna, B.; Islam, A.; Ghosh, S.; Singh, A.K.; Vijayalakshmi, M.; Ahmad, F.; Ehtesham, N.Z. Biophysical analyses of human resistin: Oligomer formation suggests novel biological function. Biochemistry, 2008, 47(47), 12457-12466.
[http://dx.doi.org/10.1021/bi801266k] [PMID: 18975914]
[156]
Lee, S.; Lee, H-C.; Kwon, Y-W.; Lee, S.E.; Cho, Y.; Kim, J.; Lee, S.; Kim, J-Y.; Lee, J.; Yang, H-M.; Mook-Jung, I.; Nam, K-Y.; Chung, J.; Lazar, M.A.; Kim, H-S. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of hu-man monocytes. Cell Metab., 2014, 19(3), 484-497.
[http://dx.doi.org/10.1016/j.cmet.2014.01.013] [PMID: 24606903]
[157]
Daquinag, A.C.; Zhang, Y.; Amaya-Manzanares, F.; Simmons, P.J.; Kolonin, M.G. An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell, 2011, 9(1), 74-86.
[http://dx.doi.org/10.1016/j.stem.2011.05.017] [PMID: 21683670]
[158]
Tarkowski, A.; Bjersing, J.; Shestakov, A.; Bokarewa, M.I. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J. Cell. Mol. Med., 2010, 14(6B), 1419-1431.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00899.x] [PMID: 19754671]
[159]
Li, F-P.; He, J.; Li, Z-Z.; Luo, Z-F.; Yan, L.; Li, Y. Effects of resistin expression on glucose metabolism and hepatic insulin resistance. Endocrine, 2009, 35(2), 243-251.
[http://dx.doi.org/10.1007/s12020-009-9148-4] [PMID: 19184634]
[160]
Boström, E.A.; Tarkowski, A.; Bokarewa, M. Resistin is stored in neutrophil granules being released upon challenge with inflammatory stimuli. Biochim. Biophys. Acta, 2009, 1793(12), 1894-1900.
[http://dx.doi.org/10.1016/j.bbamcr.2009.09.008] [PMID: 19770005]
[161]
Silswal, N.; Singh, A.K.; Aruna, B.; Mukhopadhyay, S.; Ghosh, S.; Ehtesham, N.Z. Human resistin stimulates the pro-inflammatory cyto-kines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem. Biophys. Res. Commun., 2005, 334(4), 1092-1101.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.202] [PMID: 16039994]
[162]
Berghoff, M.; Hochberg, A.; Schmid, A.; Schlegel, J.; Karrasch, T.; Kaps, M.; Schäffler, A. Quantification and regulation of the adipokines resistin and progranulin in human cerebrospinal fluid. Eur. J. Clin. Invest., 2016, 46(1), 15-26.
[http://dx.doi.org/10.1111/eci.12558] [PMID: 26509463]
[163]
Dong, X-Q.; Yang, S-B.; Zhu, F-L.; Lv, Q-W.; Zhang, G-H.; Huang, H-B. Resistin is associated with mortality in patients with traumatic brain injury. Crit. Care, 2010, 14(5), R190.
[http://dx.doi.org/10.1186/cc9307] [PMID: 21029428]
[164]
Demirci, S. Aynalı A.; Demirci, K.; Demirci, S.; Arıdoğan, B.C. The serum levels of resistin and its relationship with other proinflamma-tory cytokines in patients with Alzheimer’s disease. Clin. Psychopharmacol. Neurosci., 2017, 15(1), 59-63.
[http://dx.doi.org/10.9758/cpn.2017.15.1.59] [PMID: 28138112]
[165]
Wysocka, M.B.; Pietraszek-Gremplewicz, K.; Nowak, D. The Role of apelin in cardiovascular diseases, obesity and cancer. Front. Physiol., 2018, 9, 557.
[http://dx.doi.org/10.3389/fphys.2018.00557] [PMID: 29875677]
[166]
Chapman, N.A.; Dupré, D.J.; Rainey, J.K. The apelin receptor: Physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochem. Cell Biol., 2014, 92(6), 431-440.
[http://dx.doi.org/10.1139/bcb-2014-0072] [PMID: 25275559]
[167]
Yu, X-H.; Tang, Z-B.; Liu, L-J.; Qian, H.; Tang, S-L.; Zhang, D-W.; Tian, G-P.; Tang, C-K. Apelin and its receptor APJ in cardiovascular diseases. Clin. Chim. Acta, 2014, 428, 1-8.
[http://dx.doi.org/10.1016/j.cca.2013.09.001] [PMID: 24055369]
[168]
Duan, J.; Cui, J.; Yang, Z.; Guo, C.; Cao, J.; Xi, M.; Weng, Y.; Yin, Y.; Wang, Y.; Wei, G.; Qiao, B.; Wen, A. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling. J. Neuroinflammation, 2019, 16(1), 24.
[http://dx.doi.org/10.1186/s12974-019-1406-7] [PMID: 30709405]
[169]
Izgüt-Uysal, V.N.; Gemici, B.; Birsen, I.; Acar, N.; Üstünel, I. The effect of apelin on the functions of peritoneal macrophages. Physiol. Res., 2017, 66(3), 489-496.
[http://dx.doi.org/10.33549/physiolres.933349] [PMID: 28248533]
[170]
Zhou, H.; Yang, R.; Wang, W.; Xu, F.; Xi, Y.; Brown, R.A.; Zhang, H.; Shi, L.; Zhu, D.; Gong, D-W. Fc-apelin fusion protein attenuates lipopolysaccharide-induced liver injury in mice. Sci. Rep., 2018, 8(1), e11428.
[http://dx.doi.org/10.1038/s41598-018-29491-7]
[171]
Akcılar, R.; Turgut, S.; Caner, V.; Akcılar, A.; Ayada, C.; Elmas, L.; Özcan, T.O. The effects of apelin treatment on a rat model of type 2 diabetes. Adv. Med. Sci., 2015, 60(1), 94-100.
[http://dx.doi.org/10.1016/j.advms.2014.11.001] [PMID: 25625368]
[172]
Leeper, N.J.; Tedesco, M.M.; Kojima, Y.; Schultz, G.M.; Kundu, R.K.; Ashley, E.A.; Tsao, P.S.; Dalman, R.L.; Quertermous, T. Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation. Am. J. Physiol. Heart Circ. Physiol., 2009, 296(5), H1329-H1335.
[http://dx.doi.org/10.1152/ajpheart.01341.2008] [PMID: 19304942]
[173]
Shao, Z-Q.; Dou, S-S.; Zhu, J-G.; Wang, H-Q.; Wang, C-M.; Cheng, B-H.; Bai, B. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury. Neural Regen. Res., 2021, 16(6), 1044-1051.
[http://dx.doi.org/10.4103/1673-5374.300725] [PMID: 33269749]
[174]
Chu, H.; Yang, X.; Huang, C.; Gao, Z.; Tang, Y.; Dong, Q. Apelin-13 protects against ischemic blood-brain barrier damage through the effects of aquaporin-4. Cerebrovasc. Dis., 2017, 44(1-2), 10-25.
[http://dx.doi.org/10.1159/000460261] [PMID: 28402976]
[175]
Luo, H.; Xiang, Y.; Qu, X.; Liu, H.; Liu, C.; Li, G.; Han, L.; Qin, X. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway. Front. Pharmacol., 2019, 10, 395.
[http://dx.doi.org/10.3389/fphar.2019.00395] [PMID: 31040784]
[176]
Chen, P.; Wang, Y.; Chen, L.; Song, N.; Xie, J. Apelin-13 protects dopaminergic neurons against rotenone-induced neurotoxicity through the AMPK/mTOR/ULK-1 mediated autophagy activation. Int. J. Mol. Sci., 2020, 21(21), e8376.
[http://dx.doi.org/10.3390/ijms21218376] [PMID: 33171641]
[177]
Zhou, S.; Guo, X.; Chen, S.; Xu, Z.; Duan, W.; Zeng, B. Apelin-13 regulates LPS-induced N9 microglia polarization involving STAT3 signaling pathway. Neuropeptides, 2019, 76, 101938.
[http://dx.doi.org/10.1016/j.npep.2019.101938] [PMID: 31255353]
[178]
Ponath, G.; Ramanan, S.; Mubarak, M.; Housley, W.; Lee, S.; Sahinkaya, F.R.; Vortmeyer, A.; Raine, C.S.; Pitt, D. Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain, 2017, 140(2), 399-413.
[http://dx.doi.org/10.1093/brain/aww298] [PMID: 28007993]
[179]
Saddi-Rosa, P.; Oliveira, C.S.V.; Giuffrida, F.M.A.; Reis, A.F. Visfatin, glucose metabolism and vascular disease: A review of evidence. Diabetol. Metab. Syndr., 2010, 2(1), 21.
[http://dx.doi.org/10.1186/1758-5996-2-21] [PMID: 20346149]
[180]
Sun, Z.; Lei, H.; Zhang, Z. Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. Cytokine Growth Factor Rev., 2013, 24(5), 433-442.
[http://dx.doi.org/10.1016/j.cytogfr.2013.05.006] [PMID: 23787158]
[181]
Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol., 2015, 11(9), 535-546.
[http://dx.doi.org/10.1038/nrendo.2015.117] [PMID: 26215259]
[182]
Galli, U.; Colombo, G.; Travelli, C.; Tron, G.C.; Genazzani, A.A.; Grolla, A.A. Recent advances in NAMPT inhibitors: A novel immuno-therapic strategy. Front. Pharmacol., 2020, 11, 656.
[http://dx.doi.org/10.3389/fphar.2020.00656] [PMID: 32477131]
[183]
Romacho, T.; Valencia, I.; Ramos-González, M.; Vallejo, S.; López-Esteban, M.; Lorenzo, O.; Cannata, P.; Romero, A.; San Hipólito-Luengo, A.; Gómez-Cerezo, J.F.; Peiró, C.; Sánchez-Ferrer, C.F. Visfatin/eNampt induces endothelial dysfunction in vivo: A role for Toll-Like Receptor 4 and NLRP3 inflammasome. Sci. Rep., 2020, 10(1), 5386.
[http://dx.doi.org/10.1038/s41598-020-62190-w] [PMID: 32214150]
[184]
Samara, A.; Pfister, M.; Marie, B.; Visvikis-Siest, S. Visfatin, low-grade inflammation and body mass index (BMI). Clin. Endocrinol. (Oxf.), 2008, 69(4), 568-574.
[http://dx.doi.org/10.1111/j.1365-2265.2008.03205.x] [PMID: 18248642]
[185]
Dakroub, A.; Nasser, S.A.; Kobeissy, F.; Yassine, H.M.; Orekhov, A.; Sharifi-Rad, J.; Iratni, R.; El-Yazbi, A.F.; Eid, A.H. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases. J. Cell. Physiol., 2021, 236(9), 6282-6296.
[http://dx.doi.org/10.1002/jcp.30345] [PMID: 33634486]
[186]
Tu, T.H.; Nam-Goong, I.S.; Lee, J.; Yang, S.; Kim, J.G. Visfatin triggers anorexia and body weight loss through regulating the inflammato-ry response in the hypothalamic microglia. Mediators Inflamm., 2017, 2017, 1958947.
[http://dx.doi.org/10.1155/2017/1958947] [PMID: 29362519]
[187]
Chen, C-X.; Huang, J.; Tu, G-Q.; Lu, J-T.; Xie, X.; Zhao, B.; Wu, M.; Shi, Q-J.; Fang, S-H.; Wei, E-Q.; Zhang, W-P.; Lu, Y-B. NAMPT inhibitor protects ischemic neuronal injury in rat brain via anti-neuroinflammation. Neuroscience, 2017, 356, 193-206.
[http://dx.doi.org/10.1016/j.neuroscience.2017.05.022] [PMID: 28528966]
[188]
Mirzaei, K.; Hossein-Nezhad, A.; Mokhtari, F.; Najmafshar, A.; Nikoo, M.K. Visfatin/NAMPT/PBCEF and cytokine concentration in mul-tiple sclerosis patients compared to healthy subjects. Eur. J. Inflamm., 2011, 9(1), 31-37.
[http://dx.doi.org/10.1177/1721727X1100900105]
[189]
Baranowska-Bik, A.; Uchman, D.; Litwiniuk, A.; Kalisz, M. Martyńska, L.; Baranowska, B.; Bik, W.; Kochanowski, J. Peripheral levels of selected adipokines in patients with newly diagnosed multiple sclerosis. Endokrynol. Pol., 2020, 71(2), 109-115.
[http://dx.doi.org/10.5603/EP.a2020.0008] [PMID: 32154570]
[190]
Natarajan, R.; Hagman, S.; Hämälainen, M.; Leppänen, T.; Dastidar, P.; Moilanen, E.; Elovaara, I. Adipsin is associated with multiple scle-rosis: A follow-up study of adipokines. Mult. Scler. Int., 2015, 2015, 371734.
[http://dx.doi.org/10.1155/2015/371734] [PMID: 26634156]
[191]
Wu, X.; Hutson, I.; Akk, A.M.; Mascharak, S.; Pham, C.T.N.; Hourcade, D.E.; Brown, R.; Atkinson, J.P.; Harris, C.A. Contribution of adipose-derived factor d/adipsin to complement alternative pathway activation: Lessons from lipodystrophy. J. Immunol., 2018, 200(8), 2786-2797.
[http://dx.doi.org/10.4049/jimmunol.1701668] [PMID: 29531168]
[192]
Ohtsuki, T.; Satoh, K.; Shimizu, T.; Ikeda, S.; Kikuchi, N.; Satoh, T.; Kurosawa, R.; Nogi, M.; Sunamura, S.; Yaoita, N.; Omura, J.; Aoki, T.; Tatebe, S.; Sugimura, K.; Takahashi, J.; Miyata, S.; Shimokawa, H. Identification of adipsin as a novel prognostic biomarker in pa-tients with coronary artery disease. J. Am. Heart Assoc., 2019, 8(23), e013716.
[http://dx.doi.org/10.1161/JAHA.119.013716] [PMID: 31752640]
[193]
Gonzalez-Garza, M.T.; Martinez, H.R.; Cruz-Vega, D.E.; Hernandez-Torre, M.; Moreno-Cuevas, J.E. Adipsin, MIP-1b, and IL-8 as CSF biomarker panels for ALS diagnosis. Dis. Markers, 2018, 2018, 3023826.
[http://dx.doi.org/10.1155/2018/3023826] [PMID: 30405855]
[194]
Hietaharju, A.; Kuusisto, H.; Nieminen, R.; Vuolteenaho, K.; Elovaara, I.; Moilanen, E. Elevated cerebrospinal fluid adiponectin and adip-sin levels in patients with multiple sclerosis: A Finnish co-twin study. Eur. J. Neurol., 2010, 17(2), 332-334.
[http://dx.doi.org/10.1111/j.1468-1331.2009.02701.x] [PMID: 19538214]
[195]
Watkins, L.M.; Neal, J.W.; Loveless, S.; Michailidou, I.; Ramaglia, V.; Rees, M.I.; Reynolds, R.; Robertson, N.P.; Morgan, B.P.; Howell, O.W. Complement is activated in progressive multiple sclerosis cortical grey matter lesions. J. Neuroinflammation, 2016, 13(1), 161.
[http://dx.doi.org/10.1186/s12974-016-0611-x] [PMID: 27333900]
[196]
Goetzl, E.J.; Schwartz, J.B.; Abner, E.L.; Jicha, G.A.; Kapogiannis, D. High complement levels in astrocyte-derived exosomes of Alz-heimer disease. Ann. Neurol., 2018, 83(3), 544-552.
[http://dx.doi.org/10.1002/ana.25172] [PMID: 29406582]