Therapeutic Integrity of Microbiome-based Medicines in Neurodegenerative
Disorders
Page: [2014 - 2018] Pages: 5
* (Excluding Mailing and Handling)
[1]
Sharon, G.; Sampson, T.R.; Geschwind, D.H.; Mazmanian, S.K. The central nervous system and the gut microbiome. Cell, 2016, 167, 915-932. [http://dx.doi.org/10.1016/j.cell.2016.10.027]
Divyashri, G.; Krishna, G. Muralidhara; Prapulla, S.G. Probiotic attributes, antioxidant, anti-inflammatory and neuromodulatory effects of Enterococcus faecium CFR 3003: in vitro and in vivo evidence. J. Med. Microbiol., 2015, 64(12), 1527-1540. [http://dx.doi.org/10.1099/jmm.0.000184]
[4]
Athari Nik Azm, S.; Djazayeri, A.; Safa, M.; Azami, K.; Ahmadvand, B.; Sabbaghziarani, F.; Sharifzadeh, M.; Vafa, M. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats. Appl. Physiol. Nutr. Metab., 2018, 43(7), 718-726. [http://dx.doi.org/10.1139/apnm-2017-0648]
[5]
Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K.D.; Frisoni, G.; Neher, J.J.; Fåk, F.; Jucker, M.; Lasser, T.; Bolmont, T. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep., 2017, 7(1), 41802. [http://dx.doi.org/10.1038/srep41802] [PMID: 28176819]
[6]
Sampson, T.R. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, 167(6), 1469-1480. [http://dx.doi.org/10.1016/j.cell.2016.11.018]
[7]
Keshavarzian, A.; Engen, P.; Bonvegna, S.; Cilia, R. The gut microbiome in Parkinson’s disease: A culprit or a bystander?Prog Brain Res; , 2020, p. 252, 357-450. [http://dx.doi.org/10.1016/bs.pbr.2020.01.004]
[8]
Wasser, C.I.; Mercieca, E.C.; Kong, G.; Hannan, A.J.; McKeown, S.J.; Glikmann-Johnston, Y.; Stout, J.C. Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance and clinical outcomes. Brain Commun., 2020, 2(2), fcaa110. [http://dx.doi.org/10.1093/braincomms/fcaa110]
[9]
Blacher, E.; Bashiardes, S.; Shapiro, H.; Rothschild, D.; Mor, U.; Dori-Bachash, M.; Kleimeyer, C.; Moresi, C.; Harnik, Y.; Zur, M.; Zaba-ri, M.; Brik, R.B.; Kviatcovsky, D.; Zmora, N.; Cohen, Y.; Bar, N.; Levi, I.; Amar, N.; Mehlman, T.; Brandis, A.; Biton, I.; Kuperman, Y.; Tsoory, M.; Alfahel, L.; Harmelin, A.; Schwartz, M.; Israelson, A.; Arike, L.; Johansson, M.E.V.; Hansson, G.C.; Gotkine, M.; Segal, E.; Elinav, E. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature, 2019, 572(7770), 474-480. [http://dx.doi.org/10.1038/s41586-019-1443-5] [PMID: 31330533]
[10]
Duscha, A. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell, 2020, 180(6), 1067-1080. [http://dx.doi.org/10.1016/j.cell.2020.02.035]
Garber, K. First microbiome-based drug clears phase III, in clinical trial turnaround. Nat. Rev. Drug Discov., 2020, 19(10), 655-656. [http://dx.doi.org/10.1038/d41573-020-00163-4]
[18]
Ahmed, S.; Busetti, A.; Fotiadou, P.; Vincy Jose, N.; Reid, S.; Georgieva, M.; Brown, S.; Dunbar, H.; Beurket-Ascencio, G.; Delday, M.I.; Ettorre, A.; Mulder, I.E. In vitro characterization of gut microbiota-derived bacterial strains with neuroprotective properties. Front. Cell. Neurosci., 2019, 13, 402. [http://dx.doi.org/10.3389/fncel.2019.00402] [PMID: 31619962]
[19]
Richard, P.; Kozlowski, L.; Guillorit, H.; Garnier, P.; McKnight, N.C.; Danchin, A.; Manière, X. Queuine, a bacterial-derived hypermodi-fied nucleobase, shows protection in in vitro models of neurodegeneration. PLoS One, 2021, 16(8), e0253216. [http://dx.doi.org/10.1371/journal.pone.0253216]
[20]
Chinna, M.A.; Milev, R. The safety, efficacy, and tolerability of microbial ecosystem therapeutic-2 in people with major depression and/or generalized anxiety disorder: protocol for a phase 1, open-label study. JMIR Res. Protoc., 2020, 9(6), e17223-e17223. [http://dx.doi.org/10.2196/17223]
[21]
Akbari, E.; Asemi, Z.; Daneshvar Kakhaki, R.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci., 2016, 8(256) [http://dx.doi.org/10.3389/fnagi.2016.00256]
[22]
Tamtaji, O.R.; Heidari-Soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr., 2019, 38(6), 2569-2575. [http://dx.doi.org/10.1016/j.clnu.2018.11.034]
[23]
Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra, E.O.T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; Vasquez, E.C. Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxid. Med. Cell. Longev., 2020, 13(2638703) [http://dx.doi.org/10.1155/2020/2638703]
[24]
Barichella, M.; Pacchetti, C.; Bolliri, C.; Cassani, E.; Iorio, L.; Pusani, C.; Pinelli, G.; Privitera, G.; Cesari, I.; Faierman, S.A.; Caccialanza, R.; Pezzoli, G.; Cereda, E. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: An RCT. Neurology, 2016, 87(12), 1274-1280. [http://dx.doi.org/ 10.1212/WNL.0000000000003127]
[25]
Borzabadi, S.; Oryan, S.; Eidi, A.; Aghadavod, E.; Daneshvar Kakhaki, R.; Tamtaji, O.R.; Taghizadeh, M.; Asemi, Z. The effects of probi-otic supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson’s disease: A randomized, double-blind, placebocontrolled trial. Arch. Iran Med., 2018, 21(7), 289-295. [PMID: 30041526]
[26]
Tamtaji, O.R.; Taghizadeh, M.; Daneshvar Kakhaki, R.; Kouchaki, E.; Bahmani, F.; Borzabadi, S.; Oryan, S.; Mafi, A.; Asemi, Z. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2019, 38(3), 1031-1035. [http://dx.doi.org/10.1016/j.clnu.2018.05.018]