Recent Advances in Organoselenium Catalysis

Page: [393 - 413] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Organoselenium chemistry has developed as an important tool in the field of synthetic and medicinal chemistry. Various organoselenium reagents have been developed and used successfully to achieve different organic transformations such as selenocyclizations, oxyselenenylations, selenoxide eliminations, etc. Additionally, organoselenium reagents' potential is not limited to their use as stoichiometric reagents, but they have been successfully used as organocatalysts in a number of synthetic transformations. Various organic and inorganic oxidants have been identified as terminal oxidants to regenerate the active catalytic species. In this review article, the recent progress of organoselenium reagents in catalysis is being highlighted along with their asymmetric variants.

Keywords: Organoselenium, catalyst, selenocyclization, selenoxide elimination, lactonization, oxidation.

Graphical Abstract

[1]
Wirth, T. Organoselenium chemistry: Modern developments in organic synthesis; Springer: Berlin, 2000.
[http://dx.doi.org/10.1007/3-540-48171-0]
[2]
Wirth, T. Organoselenium Chemistry: Synthesis and Reactions; Wiley-VCH: Weinheim, 2011.
[http://dx.doi.org/10.1002/9783527641949]
[3]
Bhujan, B.J.; Mugesh, G. Biological and biochemical aspects of selenium compounds.Organoselenium Chemistry: Synthesis and Reactions; Wirth, T., Ed.; Wiley-VCH: Weinheim, 2011, pp. 361-396.
[4]
Patai, S.; Rappoport, Z. The Chemistry of Organic Selenium and Tellurium Compounds; Wiley, 2012, p. 3.
[5]
Bhuyan, B.J.; Lamani, D.S.; Mugesh, G.; Wirth, T. Current Research on Mimics and Models of Selenium Containing Antioxidants.Handbook of Chalcogen Chemistry; Devillanova, F.A.; Mont, W.W., Eds.; RSC, 2013, Vol. 2, pp. 25-46.
[6]
Singh, F.V.; Wirth, T. Patai Series: Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons: New York, 2012, Vol. 3, p. 303.
[7]
Jain, V.K.; Priyadarsini, K.I. Organoselenium compounds in biology and medicine: synthesis, biological and therapeutic treatments.The Royal Society of Chemistry; , 2018.
[8]
Singh, F.V.; Wirth, T. Synthesis of Organoselenium compounds with potential biological activities. Prganoselenium compounds in biology and medicine: synthesis, biological and therapeutic treatments; The Royal Society of Chemistry, 2018, pp. 77-121.
[9]
Wirth, T. Small organoselenium compounds: More than just glutathione peroxidase mimics. Angew. Chem. Int. Ed., 2015, 54, 10074-10076.
[http://dx.doi.org/10.1002/anie.201505056] [PMID: 26192066]
[10]
Singh, F.V.; Wirth, T. selenium compounds as ligands and catalystsorganoselenium Chemistry: Synthesis and Reactions; Wirth, T., Ed.; Wiley-VCH: Weinheim, 2011, pp. 321-360.
[http://dx.doi.org/10.1002/9783527641949.ch8]
[11]
Mondal, S.; Mugesh, G. Novel thyroid hormone analogues, enzyme inhibitors and mimetics, and their action. Mol. Cell. Endocrinol., 2017, 458, 91-104.
[http://dx.doi.org/10.1016/j.mce.2017.04.006] [PMID: 28408161]
[12]
Wohler, F.; Siemens, C. Ueber das Selenmercaptan. Ann. Chem., 1847, 61, 360-362.
[http://dx.doi.org/10.1002/jlac.18470610313]
[13]
Jones, D.N.; Mundy, D.; Whitehouse, R.D. Steroidal selenoxides diastereoisomeric at selenium; syn-elimination, absolute configuration, and optical rotatory dispersion characteristics. J. Chem. Soc. Chem. Commun., 1970, 86-87.
[http://dx.doi.org/10.1039/c29700000086]
[14]
Walter, R.; Roy, J. Selenomethionine, a potential catalytic antioxidant in biological systems. J. Org. Chem., 1971, 36(17), 2561-2563.
[http://dx.doi.org/10.1021/jo00816a045] [PMID: 5133874]
[15]
Sharpless, K.B.; Lauer, R.F. Mild procedure for the conversion of epoxides to allylic alcohols. First organoselenium reagent. J. Am. Chem. Soc., 1973, 95, 2697-2699.
[http://dx.doi.org/10.1021/ja00789a055]
[16]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6285.
[http://dx.doi.org/10.1021/cr0406559] [PMID: 15584701]
[17]
Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem. Soc. Rev., 2000, 29, 347-357.
[http://dx.doi.org/10.1039/a908114c]
[18]
Nogueira, C.W.; Meotti, F.C.; Curte, E.; Pilissão, C.; Zeni, G.; Rocha, J.B.T. Investigations into the potential neurotoxicity induced by diselenides in mice and rats. Toxicology, 2003, 183(1-3), 29-37.
[http://dx.doi.org/10.1016/S0300-483X(02)00423-7] [PMID: 12504340]
[19]
Behne, D.; Kyriakopoulos, A.; Meinhold, H.; Köhrle, J. Identification of type I iodothyronine 5¢-deiodinase as a selenoenzyme. Biochem. Biophys. Res. Commun., 1990, 173(3), 1143-1149.
[http://dx.doi.org/10.1016/S0006-291X(05)80905-2] [PMID: 2268318]
[20]
Tamura, T.; Stadtman, T.C. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc. Natl. Acad. Sci. USA, 1996, 93(3), 1006-1011.
[http://dx.doi.org/10.1073/pnas.93.3.1006] [PMID: 8577704]
[21]
Wirth, T. Chiral selenium compounds in organic synthesis. Tetrahedron, 1999, 55, 1-28.
[http://dx.doi.org/10.1016/S0040-4020(98)00946-6]
[22]
Wirth, T. Organoselenium Chemistry in Stereoselective Reactions. Angew. Chem.2000, 112, 3890-3900. Angew. Chem. Int. Ed., 2000, 39, 3740-3749.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3740::AIDANIE3740>3.0.CO;2-N] [PMID: 11091451]
[23]
Guillena, G.; Ramon, D.J. Enantioselective α-heterofunctionalisation of carbonyl compounds: organocatalysis is the simplest approach. Tetrahedron Asymmetry, 2006, 17, 1465-1492.
[http://dx.doi.org/10.1016/j.tetasy.2006.05.020]
[24]
Gabriele, E.; Singh, F.V.; Freudendahl, D.M.; Wirth, T. Selenenylations of alkenes with styrene nucleophiles. Tetrahedron, 2012, 68, 10573-10576.
[http://dx.doi.org/10.1016/j.tet.2012.08.034]
[25]
Singh, F.V.; Stefani, H.A. Ultrasound-assisted synthesis of symmetrical biaryls by palladium-catalyzed detelluration of 1, 2-diarylditellanes. Tetrahedron Lett., 2010, 51, 863-867.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.028]
[26]
Shahzad, S.A.; Wirth, T. Fast synthesis of benzofluorenes by selenium-mediated carbocyclizations. Angew. Chem. Int. Ed. Engl., 2009, 48(14), 2588-2591.
[http://dx.doi.org/10.1002/anie.200806148] [PMID: 19241429]
[27]
Freudendahl, D.M.; Shahzad, S.A.; Wirth, T. Recent advances in organoselenium chemistry. Eur. J. Org. Chem., 2009, 1649-1664.
[http://dx.doi.org/10.1002/ejoc.200801171]
[28]
Mukherjee, A.J.; Zade, S.S.; Singh, H.B.; Sunoj, R.B. Organoselenium chemistry: Role of intramolecular interactions. Chem. Rev., 2010, 110(7), 4357-4416.
[http://dx.doi.org/10.1021/cr900352j] [PMID: 20384363]
[29]
Wilkins, L.C.; Günther, B.A.R.; Walther, M.; Lawson, J.R.; Wirth, T.; Melen, R.L. Contrasting frustrated lewis pair reactivity with selenium and boron based lewis acids. Angew. Chem. Int. Ed. Engl., 2016, 55(37), 11292-11295.
[http://dx.doi.org/10.1002/anie.201605239] [PMID: 27484052]
[30]
Waskow, B.; Mano, R.A.; Giacomini, R.X.; Oliveira, D.H.; Schumacher, R.F.; Wilhelm, E.A.; Luchese, C.; Savegnago, L.; Jacob, R.G. Synthesis and Beckmann rearrangement of novel (Z)-2-organylselanyl ketoximes: Promising agents against grapevine anthracnose infection. Tetrahedron Lett., 2016, 57, 5575-5580.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.078]
[31]
Reich, H.J.; Hondal, R.J. Why nature chose selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[32]
Santi, C.; Santoro, S.; Battistelli, B. Organoselenium compounds as catalysts in nature and laboratory. Curr. Org. Chem., 2010, 14, 2442-2462.
[http://dx.doi.org/10.2174/138527210793358231]
[33]
Freudendahl, D.M.; Santoro, S.; Shahzad, S.A.; Santi, C.; Wirth, T. Green chemistry with selenium reagents: development of efficient catalytic reactions. Angew. Chem., 2009, 121, 8559-8562.
[http://dx.doi.org/10.1002/anie.200903893] [PMID: 19802863]
[34]
Singh, F.V.; Wirth, T. Selenium Reagents as Catalysts. Catal. Sci. Technol., 2019, 9, 1073-1091.
[http://dx.doi.org/10.1039/C8CY02274G]
[35]
Crich, D.; Neelamkavil, S.; Sartillo-Piscil, F. Efficient conversion of vicinal diols to alkenes by treatment of the corresponding dimesylates with a catalytic, minimally fluorous, recoverable diaryl diselenide and sodium borohydride. Org. Lett., 2000, 2(25), 4029-4031.
[http://dx.doi.org/10.1021/ol0066532] [PMID: 11112635]
[36]
Carrera, I.; Brovetto, M.C.; Seoane, G.A. Selenium-catalyzed iodohydrin formation from alkenes. Tetrahedron Lett., 2006, 47, 7849-7852.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.024]
[37]
Tingoli, M.; Mazzella, M.; Panunzi, B.; Tuzi, A. Elemental iodine or diphenyl diselenide in the [Bis(trifluoroacetoxy)iodo]benzene‐Mediated conversion of alkynes into 1,2-diketones. Eur. J. Org. Chem., 2011, 2011, 399-404.
[http://dx.doi.org/10.1002/ejoc.201001232]
[38]
Curran, S.P.; Connon, S.J. Selenide ions as catalysts for homo- and crossed-Tishchenko reactions of expanded scope. Org. Lett., 2012, 14(4), 1074-1077.
[http://dx.doi.org/10.1021/ol203439g] [PMID: 22304722]
[39]
Breder, A.; Ortgies, S. Recent developments in sulfur- and selenium-catalyzed oxidative and isohypsic functionalization reactions of alkenes. Tetrahedron Lett., 2015, 56, 2843-2852.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.045]
[40]
Cresswell, A.J.; Eey, S.T-C.; Denmark, S.E. Catalytic, stereospecific syn-dichlorination of alkenes. Nat. Chem., 2014, 7(2), 146-152.
[http://dx.doi.org/10.1038/nchem.2141] [PMID: 25615668]
[41]
Luo, J.; Zhu, Z.; Liu, Y.; Zhao, X. Diaryl selenide catalyzed vicinal trifluoromethylthioamination of alkenes. Org. Lett., 2015, 17(14), 3620-3623.
[http://dx.doi.org/10.1021/acs.orglett.5b01727] [PMID: 26158564]
[42]
Wang, X.; Lu, S.; Yu, Z. Selenium‐catalyzed carbonylation of nitroarenes to symmetrical 1,3-diarylureas under atmospheric pressure. Adv. Synth. Catal., 2004, 346, 929-932.
[http://dx.doi.org/10.1002/adsc.200303244]
[43]
Wang, X.; Li, P.; Yuan, X.; Lu, S. Selenium-catalyzed carbonylation of nitroarenes to symmetrical 1,3-diarylureas under solvent-free conditions. J. Mol. Catal., 2006, 253, 261-264.
[44]
Gogoi, P.; Sharma, S.D.; Konwar, D. SeO2/H2O2/H2O-Dioxane: A New catalytic system for trans dihydroxylation of olefins. Lett. Org. Chem., 2007, 4, 249-252.
[http://dx.doi.org/10.2174/157017807781024273]
[45]
Tian, F.; Lu, S. Selective Reduction of α,β-Unsaturated carbonyl compounds with CO/H2O catalyzed by selenium under Atmospheric Pressure. Synlett, 2004, 1953-1956.
[46]
Gebhardt, C.; Priewisch, B.; Irran, E.; Rück-Braun, K. Oxidation of anilines with hydrogen peroxide and selenium dioxide as catalyst. Synthesis, 2008, 1889-1894.
[47]
Sonoda, N.; Yamamoto, G.; Natsukawa, K.; Kondo, K.; Murai, S. A new synthesis of heterocycles by the reaction of amino alcohols or amino thiols with carbon monoxide in the presence of selenium. Tetrahedron Lett., 1975, 24, 1969-1972.
[http://dx.doi.org/10.1016/S0040-4039(00)72336-7]
[48]
Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.; Temperini, A. Preparation of a new chiral non-racemic sulphur-containing diselenide and applications in asymmetric synthesis. Chemistry, 2002, 8, 1118-1124.
[http://dx.doi.org/10.1002/1521-3765(20020301)8:5<1118:AID-CHEM1118>3.0.CO;2-2] [PMID: 11891899]
[49]
Browne, D.M.; Niyomura, O.; Wirth, T. Catalytic use of selenium electrophiles in cyclizations. Org. Lett., 2007, 9(16), 3169-3171.
[http://dx.doi.org/10.1021/ol071223y] [PMID: 17608489]
[50]
Shahzad, S.A.; Venin, C.; Wirth, T. Diselenide- and disulfide-mediated synthesis of isocoumarins. Eur. J. Org. Chem., 2010, 3465-3472.
[http://dx.doi.org/10.1002/ejoc.201000308]
[51]
Singh, F.V.; Wirth, T. Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent iodine oxidants. Org. Lett., 2011, 13(24), 6504-6507.
[http://dx.doi.org/10.1021/ol202800k] [PMID: 22085140]
[52]
Alberto, E.E.; Braga, A.L.; Detty, M.R. Imidazolium-containing diselenides for catalytic oxidations with hydrogen peroxide and sodium bromide in aqueous solutions. Tetrahedron, 2012, 68, 10476-10481.
[http://dx.doi.org/10.1016/j.tet.2012.08.004]
[53]
Ortgies, S.; Rieger, R.; Rode, K.; Koszinowski, K.; Kind, J.; Thiele, C.M.; Rehbein, J.; Breder, A. Mechanistic and synthetic investigations on the dual selenium-B-acid/photoredox catalysis in the context of the aerobic dehydrogenative lactonization of alkenoic acids. ACS Catal., 2017, 7, 7578-7586.
[http://dx.doi.org/10.1021/acscatal.7b02729]
[54]
Leisering, S.; Riaño, I.; Depken, C.; Gross, L.J.; Weber, M.; Lentz, D.; Zimmer, R.; Stark, C.B.W.; Breder, A.; Christmann, M. Synthesis of (+)-Greek tobacco lactone via a diastereoablative epoxidation and a selenium-catalyzed oxidative cyclization. Org. Lett., 2017, 19(6), 1478-1481.
[http://dx.doi.org/10.1021/acs.orglett.7b00484] [PMID: 28257212]
[55]
Balkrishna, S.J.; Prasad, ChD.; Panini, P.; Detty, M.R.; Chopra, D.; Kumar, S. Isoselenazolones as catalysts for the activation of bromine: bromolactonization of alkenoic acids and oxidation of alcohols. J. Org. Chem., 2012, 77(21), 9541-9552.
[http://dx.doi.org/10.1021/jo301486c] [PMID: 23046286]
[56]
Krätzschmar, F.; Kaßel, M.; Delony, D.; Breder, A. Selenium catalyzed C(sp3)-H acyloxylation: Application in the expedient synthesis of isobenzofuranones. Chemistry, 2015, 21(19), 7030-7034.
[http://dx.doi.org/10.1002/chem.201406290] [PMID: 25808950]
[57]
Ortgies, S.; Breder, A. Selenium-catalyzed oxidative C(sp2)-H amination of alkenes exemplified in the expedient synthesis of Aza-Indoles. Org. Lett., 2015, 17(11), 2748-2751.
[http://dx.doi.org/10.1021/acs.orglett.5b01156] [PMID: 25997578]
[58]
Zhang, X.; Guo, R.; Zhao, X. Organoselenium-catalyzed synthesis of indoles through intramolecular C–H amination. Org. Chem. Front., 2015, 2, 1334-1337.
[http://dx.doi.org/10.1039/C5QO00179J]
[59]
Guo, R.; Huang, J.; Huang, H.; Zhao, X. Organoselenium-catalyzed synthesis of oxygen- and nitrogen-containing heterocycles. Org. Lett., 2016, 18(3), 504-507.
[http://dx.doi.org/10.1021/acs.orglett.5b03543] [PMID: 26794425]
[60]
Wu, X.; Yu, Z. Metal and phosgene-free synthesis of 1H-quinazoline-2,4-diones by selenium-catalyzed carbonylation of o-nitrobenzamides. Tetrahedron Lett., 2010, 51, 1500-1503.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.040]]
[61]
Umeda, R.; Mashino, T.; Nishiyama, Y. Synthesis of multisubstituted 1H-pyrrole: selenium-catalyzed reaction of γ-nitro substituted carbonyl compounds and carbon monoxide. Tetrahedron, 2014, 70, 4395-4399.
[http://dx.doi.org/10.1016/j.tet.2014.04.061]
[62]
Yu, L.; Ye, J.; Zhang, X.; Ding, Y.; Xu, Q. Recyclable (PhSe)2-catalyzed selective oxidation of isatin by H2O2: A practical and waste-free access to isatoic anhydride under mild and neutral conditions. Catal. Sci. Technol., 2015, 5, 4830-4838.
[http://dx.doi.org/10.1039/C5CY01030F]
[63]
Yu, L.; Chen, F.; Ding, Y. Organoselenium catalyzed oxidative ring expansion of methylenecyclopropanes with hydrogen peroxide. ChemCatChem, 2016, 8, 1033-1037.
[http://dx.doi.org/10.1002/cctc.201501309]
[64]
Nishibayashi, Y.; Singh, J.D.; Segawa, K.; Fukuzawa, S-I.; Uemura, S. Rhodium(I)-catalysed asymmetric hydrosilylation of ketones using new diferrocenyl dichalcogenides (R,S)-{[EC5H3CHMe (NMe2)]Fe(C5H5)}2(E = S, Se, Te), as chiral ligands. J. Chem. Soc. Chem. Commun., 1994, 1375-1376.
[http://dx.doi.org/10.1039/c39940001375]
[65]
Braga, A.L.; Lüdtke, D.S.; Vargas, F.; Braga, R.C. Catalytic applications of chiral organoselenium compounds in asymmetric synthesis. Synlett, 2006, 10, 1453-1466.
[66]
Wirth, T. Enantioselective alkylation of aldehydes catalyzed by new chiral diselenides. Tetrahedron Lett., 1995, 36, 7849-7852.
[http://dx.doi.org/10.1016/0040-4039(95)01668-8]
[67]
Wirth, T.; Kulicke, K.J.; Fragale, G. Chiral diselenides from benzylamines: catalysts in the diethylzinc addition to aldehydes. Helv. Chim. Acta, 1996, 79, 1957-1966.
[http://dx.doi.org/10.1002/hlca.19960790718]
[68]
Santi, C.; Wirth, T. Synthesis of non-racemic nitrogen-containing diselenides as efficient precursor catalysts in the diethylzinc addition to benzaldehyde. Tetrahedron Asymmetry, 1999, 10, 1019-1023.
[http://dx.doi.org/10.1016/S0957-4166(99)00090-7]
[69]
Bolm, C.; Kesselgruber, M.; Grenz, A.; Hermanns, N.; Hildebrand, J.P. A novel ferrocenyl diselenide for the catalytic asymmetric aryl transfer to aldehydes. New J. Chem., 2001, 25, 13-15.
[http://dx.doi.org/10.1039/b003237i]
[70]
Braga, A.L.; Rodrigues, O.E.D.; Paixão, M.W.; Appelt, H.R.; Silveira, C.C.; Bottega, D.P. One-Pot Synthesis of new chiral sulfides and selenides containing oxazolidines: Catalyst in the enantioselective addition of diethylzinc to benzaldehyde. Synthesis, 2002, 2338-2340.
[http://dx.doi.org/10.1055/s-2002-35225]
[71]
Braga, A.L.; Galetto, F.Z.; Rodrigues, O.E.D.; Silveira, C.C.; Paixão, M.W. Synthesis and application of chiral β-amino disulfides as ligands for the enantioselective addition of diethylzinc to aldehydes. Chirality, 2008, 20(7), 839-845.
[http://dx.doi.org/10.1002/chir.20554] [PMID: 18381737]
[72]
Schwab, R.S.; Soares, L.C.; Dornelles, L.; Rodrigues, O.E.D.; Paixão, M.; Godoi, M.; Braga, A.L. Chiral chalcogen peptides as ligands for the catalytic enantioselective aryl transfer reaction to aldehydes. Eur. J. Org. Chem., 2010, 3574-3578.
[http://dx.doi.org/10.1002/ejoc.201000237]
[73]
Braga, A.L.; Silva, S.J.N.; Lüdtke, D.S.; Drekener, R.L.; Silveira, C.C.; Rocha, J.B.T.; Wessjohann, L.A. Chiral diselenide ligands for the asymmetric copper-catalyzed conjugate addition of Grignard reagents to enones. Tetrahedron Lett., 2002, 43, 7329-7331.
[http://dx.doi.org/10.1016/S0040-4039(02)01713-6]
[74]
Shi, M.; Wang, C-J.; Zhang, W. Enantioselective conjugate addition of dialkylzinc and diphenylzinc to enones catalyzed by a chiral copper(I) binaphthylthiophosphoramide or binaphthylseleno-phosphoramide ligand system. Chemistry, 2004, 10(21), 5507-5516.
[http://dx.doi.org/10.1002/chem.200400254] [PMID: 15452861]
[75]
Hou, X.L.; Wu, X-W.; Dai, L-X.; Cao, B-X.; Sun, J.; Novel, N. S- and N,Se-planar chiral [2,2]paracyclophane ligands: Synthesis and application in Pd-catalyzed allylic alkylation. Chem. Commun. (Camb.), 2000, 1195-1196.
[http://dx.doi.org/10.1039/b002679o]
[76]
You, S-L.; Hou, X-L.; Dai, L-X. Synthesis of planar chiral selenide derivatives of ferrocenyl-oxazoline and their application in enantioselective palladium catalyzed allylic substitution reaction. Tetrahedron Asymmetry, 2000, 11, 1495-1500.
[http://dx.doi.org/10.1016/S0957-4166(00)00078-1]
[77]
Braga, A.L.; Lüdtke, D.S.; Sehnem, J.A.; Alberto, E.E. Modular chiral selenium-containing oxazolines: synthesis and application in the palladium-catalyzed asymmetric allylic alkylation. Tetrahedron, 2005, 61, 11664-11671.
[http://dx.doi.org/10.1016/j.tet.2005.09.044]
[78]
Braga, A.L.; Lüdtke, D.S.; Alberto, E.E. Chalcogen-containing oxazolines in the palladium-catalyzed asymmetric allylic alkylation. J. Braz. Chem. Soc., 2006, 17, 11-15.
[http://dx.doi.org/10.1590/S0103-50532006000100002]
[79]
Miyake, Y.; Nishibayashi, Y.; Uemura, S. Asymmetric Baeyer-Villiger oxidation of cyclic ketones using chiral organoselenium catalysts. Bull. Chem. Soc. Jpn., 2002, 75, 2233-2237.
[http://dx.doi.org/10.1246/bcsj.75.2233]
[80]
Schwab, R.S.; Galetto, F.Z.; Azeredo, J.B.; Braga, A.L.; Lüdtke, D.S.; Paixão, M.W. Organocatalytic asymmetric aldol reactions mediated by a cysteine-derived prolinamide. Tetrahedron Lett., 2008, 49, 5094-5097.
[http://dx.doi.org/10.1016/j.tetlet.2008.06.031]
[81]
Watanabe, S.; Hasebe, R.; Ouchi, J.; Nagasawa, H.; Kataoka, T. Enantioselective Darzens reaction using organoselenide.lithium hydroxide complexes. Tetrahedron Lett., 2010, 51, 5778-5780.
[http://dx.doi.org/10.1016/j.tetlet.2010.08.082]
[82]
Santi, C.; Tiecco, M.; Testaferri, L.; Tomassini, C.; Santoro, S.; Bizzoca, G. Diastereo and enantioselective synthesis of 1,2-diols promoted by electrophilic selenium reagents. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183, 956-960.
[http://dx.doi.org/10.1080/10426500801900881]
[83]
Santi, C.; Di Lorenzo, R.; Tidei, C.; Bagnoli, L.; Wirth, T. Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron, 2012, 68, 10530-10535.
[http://dx.doi.org/10.1016/j.tet.2012.08.078]
[84]
Wirth, T.; Häuptli, S.; Leuenberger, M. Catalytic asymmetric oxyselenenylation.elimination reactions using chiral selenium compounds. Tetrahedron Asymmetry, 1998, 9, 547-550.
[http://dx.doi.org/10.1016/S0957-4166(98)00031-7]
[85]
Niyomura, O.; Cox, M.; Wirth, T. Electrochemical Generation and Catalytic Use of Selenium Electrophiles. Synlett, 2006, 251-254.
[86]
Browne, D.M.; Niyomura, O.; Wirth, T. Catalytic Addition-Elimination Reactions Towards Butenolides. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183, 1026-1035.
[http://dx.doi.org/10.1080/10426500801901053]
[87]
Kawamata, Y.; Hashimoto, T.; Maruoka, K. A chiral electrophilic selenium catalyst for highly enantioselective oxidative cyclization. J. Am. Chem. Soc., 2016, 138(16), 5206-5209.
[http://dx.doi.org/10.1021/jacs.6b01462] [PMID: 27064419]
[88]
Liu, X.; An, R.; Zhang, X.; Luo, J.; Zhao, X. Enantioselective trifluoromethylthiolating lactonization catalyzed by an indane-based chiral sulfide. Angew. Chem. Int. Ed. Engl., 2016, 55(19), 5846-5850.
[http://dx.doi.org/10.1002/anie.201601713] [PMID: 27027644]
[89]
Sancineto, L.; Mangiavacchi, F.; Tidei, C.; Bagnoli, L.; Marini, F.; Gioiello, A.; Scianowski, J.; Santi, C. Selenium catalyzed oxacyclization of alkenoic acids and alkenols. Asian J. Org. Chem., 2017, 6, 988-992.
[http://dx.doi.org/10.1002/ajoc.201700193]
[90]
Nishiyori, R.; Maynard, J.R.J.; Shirakawa, S. Chiral bifunctional selenide catalysts for asymmetric Bromolactonization. Asian J. Org. Chem., 2020, 9, 192-196.
[http://dx.doi.org/10.1002/ajoc.201900688]
[91]
Chen, F.; Tan, C.K.; Yeung, Y-Y. C2-symmetric cyclic selenium-catalyzed enantioselective bromoaminocyclization. J. Am. Chem. Soc., 2013, 135(4), 1232-1235.
[http://dx.doi.org/10.1021/ja311202e] [PMID: 23312005]
[92]
Luo, J.; Liu, Y.; Zhao, X. Chiral selenide-catalyzed enantioselective construction of saturated trifluoromethylthiolated azaheterocycles. Org. Lett., 2017, 19(13), 3434-3437.
[http://dx.doi.org/10.1021/acs.orglett.7b01392] [PMID: 28632389]
[93]
Luo, J.; Cao, Q.; Cao, X.; Zhao, X. Selenide-catalyzed enantio-selective synthesis of trifluoromethylthiolated tetrahydrona-phthalenes by merging desymmetrization and trifluoromethyl-thiolation. Nat. Commun., 2018, 9(1), 527-535.
[http://dx.doi.org/10.1038/s41467-018-02955-0] [PMID: 29410415]
[94]
Tao, Z.; Gilbert, B.B.; Denmark, S.E. Catalytic, enantioselective syn-diamination of alkenes. J. Am. Chem. Soc., 2019, 141(48), 19161-19170.
[http://dx.doi.org/10.1021/jacs.9b11261] [PMID: 31742399]
[95]
van der Toorn, J.C.; Kemperman, G.; Sheldon, R.A.; Arends, I.W.C.E. Diphenyldiselenide-catalyzed selective oxidation of activated alcohols with tert-butyl hydroperoxide: New mechanistic insights. J. Org. Chem., 2009, 74(8), 3085-3089.
[http://dx.doi.org/10.1021/jo900059y] [PMID: 19323542]
[96]
Singh, P.; Singh, A.K. “Piano-Stool” Complexes of Ruthenium(II) designed with arenes and N[2-(Arylchalcogeno)ethyl]morpholines: Highly active catalysts for the oxidation of alcohols with N-methylmorpholine N-oxide, tert-Butyl hydroperoxide and sodium periodate and oxychloride. Eur. J. Inorg. Chem., 2010, 4187-4195.
[http://dx.doi.org/10.1002/ejic.201000319]
[97]
Achibat, H.; Sancineto, L.; Palomba, M.; Abenante, L.; Sarro, M.T.; Khouili, M.; Santi, C. Explorative application of selenium catalysts in the oxidation of benzyl alcohol. Conference paper, 2015.
[http://dx.doi.org/10.3390/ecsoc-19-a009]
[98]
Choi, J-K.; Chang, Y-K.; Hong, S.Y. Catalytic oxidation of aldehydes to carboxylic acids with hydrogen peroxide as oxidant. Tetrahedron Lett., 1988, 29, 1967-1970.
[http://dx.doi.org/10.1016/S0040-4039(00)82091-2]
[99]
Brzaszcz, M.; Kloc, K.; Maposah, M.; Mlochowski, J. Selenium(IV) oxide catalyzed oxidation of aldehydes to carboxylic acids with hydrogen peroxide. Synth. Commun., 2000, 30, 4425-4434.
[http://dx.doi.org/10.1080/00397910008087069]
[100]
Wójtowicz, H. Brz?szcz, M.; Kloc, K.; Mlochowski, J. Selective oxidation of aromatic aldehydes to arenecarboxylic acids using ebselen-tert-butyl hydroperoxide catalytic system. Tetrahedron, 2001, 57, 9743-9748.
[http://dx.doi.org/10.1016/S0040-4020(01)00961-9]
[101]
Yu, L.; Bai, Z.; Zhang, X.; Zhang, X.; Ding, Y.; Xu, Q. Organoselenium-catalyzed selectivity-switchable oxidation of β-ionone. Catal. Sci. Technol., 2016, 6, 1804-1809.
[http://dx.doi.org/10.1039/C5CY01395J]
[102]
Zhang, X.; Ye, J.; Yu, L.; Shi, X.; Zhang, M.; Xu, Q.; Lautens, M. Organoselenium‐catalyzed Baeyer–Villiger oxidation of α,β-unsaturated ketones by hydrogen peroxide to access vinyl esters. Adv. Synth. Catal., 2015, 357, 955-960.
[http://dx.doi.org/10.1002/adsc.201400957]
[103]
Betzemeier, B.; Lhermitte, F.; Knochel, P. A Selenium catalyzed epoxidation in perfluorinated solvents with hydrogen peroxide. Synlett, 1999, 1999, 489-491.
[http://dx.doi.org/10.1055/s-1999-2630]
[104]
Goodman, M.A.; Detty, M.R. Selenoxides as catalysts for epoxidation and Baeyer-Villiger oxidation with hydrogen peroxide. Synlett, 2006, 2006, 1100-1104.
[http://dx.doi.org/10.1055/s-2006-939692]
[105]
García-Marín, H.; van der Toorn, J.C.; Mayoral, J.A.; García, J.I.; Arends, I.W.C.E. Glycerol-based solvents as green reaction media in epoxidations with hydrogen peroxide catalysed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide. Green Chem., 2009, 11, 1605-1609.
[http://dx.doi.org/10.1039/b913052g]
[106]
Santoro, S.; Santi, C.; Sabatini, M.; Testaferri, L.; Tiecco, M. Eco-friendly olefin dihydroxylation catalyzed by diphenyl diselenide. Adv. Synth. Catal., 2008, 350, 2881-2884.
[http://dx.doi.org/10.1002/adsc.200800571]
[107]
Yu, L.; Wang, J.; Chen, T.; Wang, Y.; Xu, Q. Recyclable 1,2-bis[3,5-bis(trifluoromethyl)phenyl]diselane catalyzed oxidation of cyclohexene with H2O2: A practical access to trans-1,2-cyclohexanediol. Appl. Organomet. Chem., 2014, 28, 652-656.
[http://dx.doi.org/10.1002/aoc.3175]
[108]
Wang, Y.; Yu, L.; Zhu, B.; Yu, L. Design and preparation of a polymer resin-supported organoselenium catalyst with industrial potential. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 10828-10833.
[http://dx.doi.org/10.1039/C6TA02566H]
[109]
Wang, T.; Jing, X.; Chen, C.; Yu, L. Organoselenium-catalyzed oxidative C═C bond cleavage: A relatively green oxidation of alkenes into carbonyl compounds with hydrogen peroxide. J. Org. Chem., 2017, 82(18), 9342-9349.
[http://dx.doi.org/10.1021/acs.joc.7b01245] [PMID: 28813150]
[110]
Liu, C.; Mao, J.; Zhang, X.; Yu, L. Selenium-doped Fe2O3-catalyzed oxidative scission of C═C bond. Catal. Commun., 2020, 133, 105828-105831.
[http://dx.doi.org/10.1016/j.catcom.2019.105828]
[111]
Tidei, C.; Piroddi, M.; Galli, F.; Santi, C. Oxidation of thiols promoted by PhSeZnCl. Tetrahedron Lett., 2012, 53, 232-234.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.025]
[112]
Yu, L.; Li, H.; Zhang, X.; Ye, J.; Liu, J.; Xu, Q.; Lautens, M. Organoselenium-catalyzed mild dehydration of aldoximes: An unexpected practical method for organonitrile synthesis. Org. Lett., 2014, 16(5), 1346-1349.
[http://dx.doi.org/10.1021/ol500075h] [PMID: 24564392]
[113]
Zhang, X.; Sun, J.; Ding, Y.; Yu, L. Dehydration of aldoximes using PhSe(O)OH as the pre-catalyst in air. Org. Lett., 2015, 17(23), 5840-5842.
[http://dx.doi.org/10.1021/acs.orglett.5b03011] [PMID: 26574922]
[114]
Jing, X.; Wang, T.; Ding, Y.; Yu, L. A scalable production of anisonitrile through organoselenium-catalyzed dehydration of anisaldoxime under solventless conditions. Appl. Catal., 2017, 541, 107-111.
[115]
Jing, X.; Yuan, D.; Yu, L. Green and practical oxidative deoximation of oximes to ketones or aldehydes with hydrogen peroxide/air by organoselenium catalysis. Adv. Synth. Catal., 2017, 359, 1194-1201.
[http://dx.doi.org/10.1002/adsc.201601353]
[116]
Jin, W.; Zheng, P.; Wong, W-T.; Law, G-L. Efficient selenium-catalyzed selective C(sp3)-H oxidation of benzylpyridines with molecular oxygen. Adv. Synth. Catal., 2017, 359, 1588-1593.
[http://dx.doi.org/10.1002/adsc.201601065]
[117]
Chen, C.; Cao, Z.; Zhang, X.; Li, Y.; Yu, L.; Jiang, X. Synergistic catalysis of Se and Cu for the activation of α-H of methyl ketones with molecular oxygen/alcohol to produce α-keto acetals. Chin. J. Chem., 2020, 38, 1045-1051.
[http://dx.doi.org/10.1002/cjoc.202000089]
[118]
Chen, J.; Ling, G.; Yu, Z.; Wu, S.; Zhao, X.; Wu, X.; Lu, S. N-Arylamides from selenium-catalyzed reactions of nitroaromatics and amides in the presence of carbon monoxide and mixed organic bases. Adv. Synth. Catal., 2004, 346, 1267-1270.
[http://dx.doi.org/10.1002/adsc.200404077]
[119]
Zhang, X.; Jing, H. A facile one-pot phosgene-free synthesis of naphthalen-1-ylcarbamates by selenium-catalyzed carbonylation of 1-nitronaphthalene with carbon monoxide. J. Mol. Catal. Chem., 2009, 302, 137-141.
[http://dx.doi.org/10.1016/j.molcata.2008.12.012]
[120]
Iwaoka, M.; Tomoda, S. Catalytic conversion of alkenes into allylic ethers and esters using diselenides having internal tertiary amines. J. Chem. Soc. Chem. Commun., 1992, 1165-1167.
[http://dx.doi.org/10.1039/c39920001165]
[121]
Ortgies, S.; Depken, C.; Breder, A. Oxidative allylic esterification of alkenes by cooperative selenium-catalysis using air as the sole oxidant. Org. Lett., 2016, 18(12), 2856-2859.
[http://dx.doi.org/10.1021/acs.orglett.6b01130] [PMID: 27257803]
[122]
Luo, J.; Liu, X.; Zhao, X. Development of chalcogenide catalysts towards trifluoromethylthiolation. Synlett, 2017, 28, 397-401.
[http://dx.doi.org/10.1055/s-0036-1588926]
[123]
Zhu, Z.; Luo, J.; Zhao, X. Combination of Lewis basic selenium catalysis and redox selenium chemistry: Synthesis of trifluoromethylthiolated tertiary alcohols with alkenes. Org. Lett., 2017, 19(18), 4940-4943.
[http://dx.doi.org/10.1021/acs.orglett.7b02406] [PMID: 28876949]
[124]
Tabor, J.R.; Obenschain, D.C.; Michael, F.E. Selenophosphoramide-catalyzed diamination and oxyamination of alkenes. Chem. Sci. (Camb.), 2019, 11(6), 1677-1682.
[http://dx.doi.org/10.1039/C9SC05335B] [PMID: 32206288]
[125]
Chu, S.; Cao, H.; Chen, T.; Shi, Y.; Yu, L. Selenium-doped carbon: An unexpected efficient solid acid catalyst for Beckmann rearrangement of ethyl 2-(2-aminothiazole-4-yl)-2-hydroxyiminoacetate. Catal. Commun., 2019, 129, 105730.
[http://dx.doi.org/10.1016/j.catcom.2019.105730]
[126]
Wang, X.; Wang, Q.; Xue, Y.; Sun, K.; Wu, L.; Zhang, B. An organoselenium-catalyzed N1- and N2-selective aza-Wacker reaction of alkenes with benzotriazoles. Chem. Commun. (Camb.), 2020, 56(32), 4436-4439.
[http://dx.doi.org/10.1039/D0CC01079K] [PMID: 32195484]