Clozapine-induced Myocarditis: Pathophysiologic Mechanisms and Implications for Therapeutic Approaches

Article ID: e110222201050 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Clozapine, a superior treatment for treatment-resistant schizophrenia can cause potentially life-threatening myocarditis and dilated cardiomyopathy. While the occurrence of this condition is well known, its molecular mechanisms are unclear and may be multifactorial. Putative mechanisms warrant an in-depth review not only from the perspective of toxicity but also for understanding the molecular mechanisms of the adverse cardiac effects of clozapine and the development of novel therapeutic approaches. Clozapine-induced cardiac toxicity encompasses a diverse set of pathways, including (i) immune modulation and proinflammatory processes encompassing an IgEmediated (type I hypersensitivity) response and perhaps a cytokine release syndrome (ii) catecholaminergic activation (iii) induction of free radicals and oxidative stress (iv) activation of cardiomyocyte cell death pathways, including apoptosis, ischemia through impairment in coronary blood flow via changes in endothelial production of NO and vasoconstriction induced by norepinephrine as well as other factors released from cardiac mast cells. (v) In addition, an extensive examination of the effects of clozapine on non-cardiac cellular proteins demonstrates that clozapine can impair enzymes involved in cellular metabolism, such as pyruvate kinase, mitochondrial malate dehydrogenase, and other proteins, including α-enolase, triosephosphate isomerase and cofilin, which might explain clozapine-induced reductions in myocardial energy generation for cell viability as well as contractile function. Pharmacologic antagonism of these cellular protein effects may lead to the development of strategies to antagonize the cardiac damage induced by clozapine

Keywords: Clozapine, myocarditis, apoptosis, oxidative stress, proteomics, mitochondrial malate dehydrogenase, pyruvate ki-nase.

[1]
Remington, G.; Addington, D.; Honer, W.; Ismail, Z.; Raedler, T.; Teehan, M. Guidelines for the pharmacotherapy of schizophrenia in adults. Can. J. Psychiatry, 2017, 62(9), 604-616.
[http://dx.doi.org/10.1177/0706743717720448] [PMID: 28703015]
[2]
Kane, J.M.; Marder, S.R.; Schooler, N.R.; Wirshing, W.C.; Umbricht, D.; Baker, R.W.; Wirshing, D.A.; Safferman, A.; Ganguli, R.; McMeniman, M.; Borenstein, M. Clozapine and haloperidol in moderately refractory schizophrenia: A 6-month randomized and double-blind comparison. Arch. Gen. Psychiatry, 2001, 58(10), 965-972.
[http://dx.doi.org/10.1001/archpsyc.58.10.965] [PMID: 11576036]
[3]
Kane, J.; Honigfeld, G.; Singer, J.; Meltzer, H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry, 1988, 45(9), 789-796.
[http://dx.doi.org/10.1001/archpsyc.1988.01800330013001] [PMID: 3046553]
[4]
Chakos, M.; Lieberman, J.; Hoffman, E.; Bradford, D.; Sheitman, B. Effectiveness of second-generation antipsychotics in patients with treatment-resistant schizophrenia: A review and meta-analysis of randomized trials. Am. J. Psychiatry, 2001, 158(4), 518-526.
[http://dx.doi.org/10.1176/appi.ajp.158.4.518] [PMID: 11282684]
[5]
Bachmann, C.J.; Aagaard, L.; Bernardo, M.; Brandt, L.; Cartabia, M.; Clavenna, A.; Coma Fusté, A.; Furu, K.; Garuoliené, K.; Hoffmann, F.; Hollingworth, S.; Huybrechts, K.F.; Kalverdijk, L.J.; Kawakami, K.; Kieler, H.; Kinoshita, T.; López, S.C.; Machado-Alba, J.E.; Machado-Duque, M.E.; Mahesri, M.; Nishtala, P.S.; Piovani, D.; Reutfors, J.; Saastamoinen, L.K.; Sato, I.; Schuiling-Veninga, C.C.M.; Shyu, Y.C.; Siskind, D.; Skurtveit, S.; Verdoux, H.; Wang, L.J.; Zara Yahni, C.; Zoëga, H.; Taylor, D. International trends in clozapine use: A study in 17 countries. Acta Psychiatr. Scand., 2017, 136(1), 37-51.
[http://dx.doi.org/10.1111/acps.12742] [PMID: 28502099]
[6]
Verdoux, H.; Quiles, C.; Bachmann, C.J.; Siskind, D. Prescriber and institutional barriers and facilitators of clozapine use: A systematic review. Schizophr. Res., 2018, 201, 10-19.
[http://dx.doi.org/10.1016/j.schres.2018.05.046] [PMID: 29880453]
[7]
Warnez, S.; Alessi-Severini, S. Clozapine: A review of clinical practice guidelines and prescribing trends. BMC Psychiatry, 2014, 14, 102.
[http://dx.doi.org/10.1186/1471-244X-14-102] [PMID: 24708834]
[8]
Ronaldson, K.J. Cardiovascular disease in clozapine-treated patients: Evidence, mechanisms and management. CNS Drugs, 2017, 31(9), 777-795.
[http://dx.doi.org/10.1007/s40263-017-0461-9] [PMID: 28808933]
[9]
Khan, A.A.; Ashraf, A.; Baker, D.; Al-Omary, M.S.; Savage, L.; Ekmejian, A.; Singh, R.S.H.; Brienesse, S.; Majeed, T.; Gordon, T.; Drinkwater, V.; Collins, N.J. Clozapine and incidence of myocarditis and sudden death - Long term Australian experience. Int. J. Cardiol., 2017, 238, 136-139.
[http://dx.doi.org/10.1016/j.ijcard.2017.03.013] [PMID: 28343762]
[10]
Higgins, J.M.; San, C.; Lagnado, G.; Chua, D.; Mihic, T. Incidence and management of clozapine-induced myocarditis in a large tertiary hospital. Can. J. Psychiatry, 2019, 64(8), 561-567.
[http://dx.doi.org/10.1177/0706743718816058] [PMID: 30599763]
[11]
Rohde, C.; Polcwiartek, C.; Kragholm, K.; Ebdrup, B.H.; Siskind, D.; Nielsen, J. Adverse cardiac events in out-patients initiating clozapine treatment: A nationwide register-based study. Acta Psychiatr. Scand., 2018, 137(1), 47-53.
[http://dx.doi.org/10.1111/acps.12827] [PMID: 29064084]
[12]
Alawami, M.; Wasywich, C.; Cicovic, A.; Kenedi, C. A systematic review of clozapine induced cardiomyopathy. Int. J. Cardiol., 2014, 176(2), 315-320.
[http://dx.doi.org/10.1016/j.ijcard.2014.07.103] [PMID: 25131906]
[13]
Bellissima, B.L.; Tingle, M.D. Cicović A.; Alawami, M.; Kenedi, C. A systematic review of clozapine-induced myocarditis. Int. J. Cardiol., 2018, 259, 122-129.
[http://dx.doi.org/10.1016/j.ijcard.2017.12.102] [PMID: 29579587]
[14]
Tan, L.H.; Suetani, S.; Clark, S.; Wilson, D. Late onset myocarditis with clozapine use. Aust. N. Z. J. Psychiatry, 2015, 49(3), 295.
[http://dx.doi.org/10.1177/0004867414557162] [PMID: 25348700]
[15]
Jaholkowski, P.; Niewiadomska, J.; Wciorka, J.; Kowalski, M.; Switaj, P. Clozapine-induced myocarditis during co-administration of valproate: A case report. Zapalenie Mies. sercowego indukowane klozapina w trakcie leczenia pochodnymi kwasu walproinowego opis przypadku, 2019, 53, 997-1002.
[http://dx.doi.org/10.12740/PP/105121]
[16]
Ronaldson, K.J.; Fitzgerald, P.B.; Taylor, A.J.; Topliss, D.J.; Wolfe, R.; McNeil, J.J. Rapid clozapine dose titration and concomitant sodium valproate increase the risk of myocarditis with clozapine: A case-control study. Schizophr. Res., 2012, 141(2-3), 173-178.
[http://dx.doi.org/10.1016/j.schres.2012.08.018] [PMID: 23010488]
[17]
Youssef, D.L.; Narayanan, P.; Gill, N. Incidence and risk factors for clozapine-induced myocarditis and cardiomyopathy at a regional mental health service in Australia. Australas. Psychiatry, 2016, 24(2), 176-180.
[http://dx.doi.org/10.1177/1039856215604480] [PMID: 26400457]
[18]
Anıl Yağcıoğlu, A.E.; Ertuğrul, A.; Karakaşlı A.A.; Ağaoğlu, E.; Ak, S.; Karahan, S.; Yazıcı M.K. A comparative study of detection of myocarditis induced by clozapine: With and without cardiac monitoring. Psychiatry Res., 2019, 279, 90-97.
[http://dx.doi.org/10.1016/j.psychres.2019.07.008] [PMID: 31362146]
[19]
Haas, S.J.; Hill, R.; Krum, H.; Liew, D.; Tonkin, A.; Demos, L.; Stephan, K.; McNeil, J. Clozapine-associated myocarditis: A review of 116 cases of suspected myocarditis associated with the use of clozapine in Australia during 1993-2003. Drug Saf., 2007, 30(1), 47-57.
[http://dx.doi.org/10.2165/00002018-200730010-00005] [PMID: 17194170]
[20]
Kilian, J.G.; Kerr, K.; Lawrence, C.; Celermajer, D.S. Myocarditis and cardiomyopathy associated with clozapine. Lancet, 1999, 354(9193), 1841-1845.
[http://dx.doi.org/10.1016/S0140-6736(99)10385-4] [PMID: 10584719]
[21]
Ronaldson, K.J.; Taylor, A.J.; Fitzgerald, P.B.; Topliss, D.J.; Elsik, M.; McNeil, J.J. Diagnostic characteristics of clozapine-induced myocarditis identified by an analysis of 38 cases and 47 controls. J. Clin. Psychiatry, 2010, 71(8), 976-981.
[http://dx.doi.org/10.4088/JCP.09m05024yel] [PMID: 20361910]
[22]
Katta, N.; Balla, S.; Aggarwal, K. Clozapine-induced hypersensitivity myocarditis presenting as sudden cardiac death. Autops. Case Rep., 2016, 6(4), 9-13.
[http://dx.doi.org/10.4322/acr.2016.054] [PMID: 28210568]
[23]
Pieroni, M.; Cavallaro, R.; Chimenti, C.; Smeraldi, E.; Frustaci, A. Clozapine-induced hypersensitivity myocarditis. Chest, 2004, 126(5), 1703-1705.
[http://dx.doi.org/10.1378/chest.126.5.1703] [PMID: 15539749]
[24]
Ronaldson, K.J.; Fitzgerald, P.B.; Taylor, A.J.; Topliss, D.J.; McNeil, J.J. A new monitoring protocol for clozapine-induced myocarditis based on an analysis of 75 cases and 94 controls. Aust. N. Z. J. Psychiatry, 2011, 45(6), 458-465.
[http://dx.doi.org/10.3109/00048674.2011.572852] [PMID: 21524186]
[25]
Marone, G.; de Crescenzo, G.; Adt, M.; Patella, V.; Arbustini, E.; Genovese, A. Immunological characterization and functional importance of human heart mast cells. Immunopharmacology, 1995, 31(1), 1-18.
[http://dx.doi.org/10.1016/0162-3109(95)00037-3] [PMID: 8655285]
[26]
Afanasyeva, M.; Wang, Y.; Kaya, Z.; Park, S.; Zilliox, M.J.; Schofield, B.H.; Hill, S.L.; Rose, N.R. Experimental autoimmune myocarditis in A/J mice is an interleukin-4-dependent disease with a Th2 phenotype. Am. J. Pathol., 2001, 159(1), 193-203.
[http://dx.doi.org/10.1016/S0002-9440(10)61685-9] [PMID: 11438466]
[27]
Pollmächer, T.; Hinze-Selch, D.; Mullington, J. Effects of clozapine on plasma cytokine and soluble cytokine receptor levels. J. Clin. Psychopharmacol., 1996, 16(5), 403-409.
[http://dx.doi.org/10.1097/00004714-199610000-00011] [PMID: 8889915]
[28]
Abdel-Wahab, B.A.; Metwally, M.E. Clozapine-Induced Cardiotoxicity: Role of Oxidative Stress, Tumour Necrosis Factor Alpha and NF-κβ. Cardiovasc. Toxicol., 2015, 15(4), 355-365.
[http://dx.doi.org/10.1007/s12012-014-9304-9] [PMID: 25539628]
[29]
Abdel-Wahab, B.A.; Metwally, M.E. Clozapine-induced cardiotoxicity in rats: Involvement of tumour necrosis factor alpha, NF-κβ and caspase-3. Toxicol. Rep., 2014, 1, 1213-1223.
[http://dx.doi.org/10.1016/j.toxrep.2014.11.012] [PMID: 28962331]
[30]
Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; Go, W.Y.; Eldjerou, L.; Gardner, R.A.; Frey, N.; Curran, K.J.; Peggs, K.; Pasquini, M.; DiPersio, J.F.; van den Brink, M.R.M.; Komanduri, K.V.; Grupp, S.A.; Neelapu, S.S. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant., 2019, 25(4), 625-638.
[http://dx.doi.org/10.1016/j.bbmt.2018.12.758] [PMID: 30592986]
[31]
Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med., 2020, 383(23), 2255-2273.
[http://dx.doi.org/10.1056/NEJMra2026131] [PMID: 33264547]
[32]
Cheng, A.; Ahmed, M.; Shuaib, W. Intravenous immunoglobulin and methylprednisolone for clozapine-associated perimyocarditis. Am. J. Ther., 2019, 26(4), e485-e486.
[http://dx.doi.org/10.1097/MJT.0000000000000751] [PMID: 29659374]
[33]
Lacaze, P.; Ronaldson, K.J.; Zhang, E.J.; Alfirevic, A.; Shah, H.; Newman, L.; Strahl, M.; Smith, M.; Bousman, C.; Francis, B.; Morris, A.P.; Wilson, T.; Rossello, F.; Powell, D.; Vasic, V.; Sebra, R.; McNeil, J.J.; Pirmohamed, M. Genetic associations with clozapine-induced myocarditis in patients with schizophrenia. Transl. Psychiatry, 2020, 10(1), 37.
[http://dx.doi.org/10.1038/s41398-020-0722-0] [PMID: 32066683]
[34]
Breier, A.; Buchanan, R.W.; Waltrip, R.W., II; Listwak, S.; Holmes, C.; Goldstein, D.S. The effect of clozapine on plasma norepinephrine: Relationship to clinical efficacy. Neuropsychopharmacology, 1994, 10(1), 1-7.
[http://dx.doi.org/10.1038/npp.1994.1] [PMID: 8179790]
[35]
Green, A.I.; Alam, M.Y.; Sobieraj, J.T.; Pappalardo, K.M.; Waternaux, C.; Salzman, C.; Schatzberg, A.F.; Schildkraut, J.J. Clozapine response and plasma catecholamines and their metabolites. Psychiatry Res., 1993, 46(2), 139-149.
[http://dx.doi.org/10.1016/0165-1781(93)90016-A] [PMID: 8483973]
[36]
Elman, I.; Goldstein, D.S.; Eisenhofer, G.; Folio, J.; Malhotra, A.K.; Adler, C.M.; Pickar, D.; Breier, A. Mechanism of peripheral noradrenergic stimulation by clozapine. Neuropsychopharmacology, 1999, 20(1), 29-34.
[http://dx.doi.org/10.1016/S0893-133X(98)00047-5] [PMID: 9885782]
[37]
Haft, J.I. Cardiovascular injury induced by sympathetic catecholamines. Prog. Cardiovasc. Dis., 1974, 17(1), 73-86.
[http://dx.doi.org/10.1016/0033-0620(74)90039-5] [PMID: 4599470]
[38]
Wang, J.F.; Min, J.Y.; Hampton, T.G.; Amende, I.; Yan, X.; Malek, S.; Abelmann, W.H.; Green, A.I.; Zeind, J.; Morgan, J.P. Clozapine-induced myocarditis: Role of catecholamines in a murine model. Eur. J. Pharmacol., 2008, 592(1-3), 123-127.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.088] [PMID: 18627770]
[39]
Abdel-Wahab, B.A.; Metwally, M.E.; El-khawanki, M.M.; Hashim, A.M. Protective effect of captopril against clozapine-induced myocarditis in rats: Role of oxidative stress, proinflammatory cytokines and DNA damage. Chem. Biol. Interact., 2014, 216, 43-52.
[http://dx.doi.org/10.1016/j.cbi.2014.03.012] [PMID: 24709159]
[40]
Nair, G.M.; Skaria, D.S.; James, T.; Kanthlal, S.K. Clozapine disrupts endothelial nitric oxide signaling and antioxidant system for its cardiovascular complications. Drug Res. (Stuttg.), 2019, 69(12), 695-698.
[http://dx.doi.org/10.1055/a-0991-7684] [PMID: 31499544]
[41]
Schrör, K. Prostaglandin D2 (PGD2)--a potent coronary vasoconstrictor agent in the guinea pig isolated heart. Naunyn Schmiedebergs Arch. Pharmacol., 1978, 302(1), 61-62.
[http://dx.doi.org/10.1007/BF00586598] [PMID: 652054]
[42]
Uhlig, S.; Göggel, R.; Engel, S. Mechanisms of platelet-activating factor (PAF)-mediated responses in the lung. Pharmacol. Rep., 2005, 57(Suppl.), 206-221.
[PMID: 16415501]
[43]
Williams, D.P.; O’Donnell, C.J.L.; Maggs, J.L.; Leeder, J.S.; Uetrecht, J.; Pirmohamed, M.; Park, B.K. Bioactivation of clozapine by murine cardiac tissue in vivo and in vitro. Chem. Res. Toxicol., 2003, 16(10), 1359-1364.
[http://dx.doi.org/10.1021/tx034035z] [PMID: 14565776]
[44]
Rostagno, C.; Di Norscia, G.; Placidi, G.F.; Gensini, G.F. Beta-blocker and angiotensin-converting enzyme inhibitor may limit certain cardiac adverse effects of clozapine. Gen. Hosp. Psychiatry, 2008, 30(3), 280-283.
[http://dx.doi.org/10.1016/j.genhosppsych.2007.09.003] [PMID: 18433662]
[45]
Kim, H.K.; Han, J. Mitochondria-Targeted Antioxidants for the Treatment of Cardiovascular Disorders BT - Mitochondrial Dynamics in Cardiovascular Medicine. In: Springer International Publishing; Santulli, G., Ed.; Cham, 2017; pp. 621-646.
[46]
Moreland, R.S.; Bohr, D.F. Adrenergic control of coronary arteries. Fed. Proc., 1984, 43(14), 2857-2861.
[PMID: 6386528]
[47]
Triggiani, M.; Patella, V.; Staiano, R.I.; Granata, F.; Marone, G. Allergy and the cardiovascular system. Clin. Exp. Immunol., 2008, 153(Suppl. 1), 7-11.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03714.x] [PMID: 18721322]
[48]
Vanhoutte, P.M.; Tang, E.H.C. Endothelium-dependent contractions: When a good guy turns bad! J. Physiol., 2008, 586(22), 5295-5304.
[http://dx.doi.org/10.1113/jphysiol.2008.161430] [PMID: 18818246]
[49]
Del Re, D.P.; Amgalan, D.; Linkermann, A.; Liu, Q.; Kitsis, R.N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev., 2019, 99(4), 1765-1817.
[http://dx.doi.org/10.1152/physrev.00022.2018] [PMID: 31364924]
[50]
Murch, S.; Tran, N.; Liew, D.; Petrakis, M.; Prior, D.; Castle, D. Echocardiographic monitoring for clozapine cardiac toxicity: Lessons from real-world experience. Australas. Psychiatry, 2013, 21(3), 258-261.
[http://dx.doi.org/10.1177/1039856213475684] [PMID: 23439546]
[51]
Curto, M.; Comparelli, A.; Ciavarella, G.M.; Gasperoni, C.; Lionetto, L.; Corigliano, V.; Uccellini, A.; Mancinelli, I.; Ferracuti, S.; Girardi, P.; Baldessarini, R.J. Impairment of left ventricular function early in treatment with clozapine: A preliminary study. Int. Clin. Psychopharmacol., 2015, 30(5), 282-289.
[http://dx.doi.org/10.1097/YIC.0000000000000085] [PMID: 26049674]
[52]
Rabkin, S.W.; Kong, J.Y. Lovastatin-induced cardiac toxicity involves both oncotic and apoptotic cell death with the apoptotic component blunted by both caspase-2 and caspase-3 inhibitors. Toxicol. Appl. Pharmacol., 2003, 193(3), 346-355.
[http://dx.doi.org/10.1016/j.taap.2003.08.009] [PMID: 14678744]
[53]
Rabkin, S. Apoptosis in human acute myocardial infarction: The rationale for clinical trials of apoptosis inhibition in acute myocardial infarction. Sch. Res. Exch., 2009, 1-10.
[http://dx.doi.org/10.3814/2009/979318]
[54]
Elmorsy, E.; Al-Ghafari, A.; Aggour, A.M.; Khan, R.; Amer, S. The role of oxidative stress in antipsychotics induced ovarian toxicity. Toxicol. In Vitro, 2017, 44, 190-195.
[http://dx.doi.org/10.1016/j.tiv.2017.07.008] [PMID: 28712880]
[55]
Goto, A.; Mouri, A.; Nagai, T.; Yoshimi, A.; Ukigai, M.; Tsubai, T.; Hida, H.; Ozaki, N.; Noda, Y. Involvement of the histamine H4 receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells. Toxicol. Appl. Pharmacol., 2016, 306, 8-16.
[http://dx.doi.org/10.1016/j.taap.2016.06.028] [PMID: 27368152]
[56]
Huang, C-H.; Fu, S-H.; Hsu, S.; Huang, Y-Y.; Chen, S-T.; Hsu, B.R-S. High-fat diet aggravates islet beta-cell toxicity in mice treated with clozapine. Chang Gung Med. J., 2012, 35(4), 318-322.
[PMID: 22913858]
[57]
Elmorsy, E.; Elzalabany, L.M.; Elsheikha, H.M.; Smith, P.A. Adverse effects of antipsychotics on micro-vascular endothelial cells of the human blood-brain barrier. Brain Res., 2014, 1583, 255-268.
[http://dx.doi.org/10.1016/j.brainres.2014.08.011] [PMID: 25139421]
[58]
Fehsel, K.; Loeffler, S.; Krieger, K.; Henning, U.; Agelink, M.; Kolb-Bachofen, V.; Klimke, A. Clozapine induces oxidative stress and proapoptotic gene expression in neutrophils of schizophrenic patients. J. Clin. Psychopharmacol., 2005, 25(5), 419-426.
[http://dx.doi.org/10.1097/01.jcp.0000177668.42640.fe] [PMID: 16160616]
[59]
Zeng, Z.; Wang, X.; Bhardwaj, S.K.; Zhou, X.; Little, P.J.; Quirion, R.; Srivastava, L.K.; Zheng, W. The atypical antipsychotic agent, clozapine, protects against corticosterone-induced death of PC12 cells by regulating the Akt/FoxO3a signaling pathway. Mol. Neurobiol., 2017, 54(5), 3395-3406.
[http://dx.doi.org/10.1007/s12035-016-9904-4] [PMID: 27173157]
[60]
Walss-Bass, C.; Weintraub, S.T.; Hatch, J.; Mintz, J.; Chaudhuri, A.R. Clozapine causes oxidation of proteins involved in energy metabolism: A possible mechanism for antipsychotic-induced metabolic alterations. Int. J. Neuropsychopharmacol., 2008, 11(8), 1097-1104.
[http://dx.doi.org/10.1017/S1461145708008882] [PMID: 18466668]
[61]
Shi, Q.; Gibson, G.E. Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J. Neurochem., 2011, 118(3), 440-448.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07333.x] [PMID: 21623795]
[62]
Liu, Y.; Asnani, A.; Zou, L.; Bentley, V.L.; Yu, M.; Wang, Y.; Dellaire, G.; Sarkar, K.S.; Dai, M.; Chen, H.H. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci. Transl. Med., 2014, 6, 266ra170.
[http://dx.doi.org/10.1126/scitranslmed.3010189]
[63]
Sheeran, F.L.; Pepe, S. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure. Am. J. Physiol. Endocrinol. Metab., 2016, 311(2), E449-E460.
[http://dx.doi.org/10.1152/ajpendo.00127.2016] [PMID: 27406740]
[64]
Rees, M.L.; Subramaniam, J.; Li, Y.; Hamilton, D.J.; Frazier, O.H.; Taegtmeyer, H.A. PKM2 signature in the failing heart. Biochem. Biophys. Res. Commun., 2015, 459(3), 430-436.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.122] [PMID: 25735978]
[65]
Hauck, L.; Dadson, K.; Chauhan, S.; Grothe, D.; Billia, F. Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI. Cell Death Differ., 2021, 28(4), 1398-1417.
[http://dx.doi.org/10.1038/s41418-020-00669-9] [PMID: 33288902]
[66]
Martins-de-Souza, D.; Lebar, M.; Turck, C.W. Proteome analyses of cultured astrocytes treated with MK-801 and clozapine: Similarities with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci., 2011, 261(3), 217-228.
[http://dx.doi.org/10.1007/s00406-010-0166-2] [PMID: 21088845]
[67]
Magadum, A.; Singh, N.; Kurian, A.A.; Munir, I.; Mehmood, T.; Brown, K.; Sharkar, M.T.K.; Chepurko, E.; Sassi, Y.; Oh, J.G.; Lee, P.; Santos, C.X.C.; Gaziel-Sovran, A.; Zhang, G.; Cai, C.L.; Kho, C.; Mayr, M.; Shah, A.M.; Hajjar, R.J.; Zangi, L. Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration. Circulation, 2020, 141(15), 1249-1265.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.043067] [PMID: 32078387]
[68]
Sahoo, S.K.; Kim, D.H. Characterization of calumenin in mouse heart. BMB Rep., 2010, 43(3), 158-163.
[http://dx.doi.org/10.5483/BMBRep.2010.43.3.158] [PMID: 20356454]
[69]
Cotter, D.G.; Schugar, R.C.; Crawford, P.A. Ketone body metabolism and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol., 2013, 304(8), H1060-H1076.
[http://dx.doi.org/10.1152/ajpheart.00646.2012] [PMID: 23396451]
[70]
Lee, J.H.; Kwon, E.J.; Kim, D.H. Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes. Biochem. Biophys. Res. Commun., 2013, 439(3), 327-332.
[http://dx.doi.org/10.1016/j.bbrc.2013.08.087] [PMID: 24012670]
[71]
Zhao, M.; Cui, X-X.; Yu, M.; Wang, Y-L.; Long, J.; Zhao, Q. The relationship between miRNA378, calumenin and endoplasmic reticulum stress in suckling mouse myocardium with myocarditis caused by adriamycin. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih, 2016, 32(6), 555-557.
[http://dx.doi.org/10.13459/j.cnki.cjap.2016.06.015] [PMID: 29926626]
[72]
Schugar, R.C.; Moll, A.R.; André d’Avignon, D.; Weinheimer, C.J.; Kovacs, A.; Crawford, P.A. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol. Metab., 2014, 3(7), 754-769.
[http://dx.doi.org/10.1016/j.molmet.2014.07.010] [PMID: 25353003]
[73]
Baig, M.R.; Navaira, E.; Escamilla, M.A.; Raventos, H.; Walss-Bass, C. Clozapine treatment causes oxidation of proteins involved in energy metabolism in lymphoblastoid cells: A possible mechanism for antipsychotic-induced metabolic alterations. J. Psychiatr. Pract., 2010, 16(5), 325-333.
[http://dx.doi.org/10.1097/01.pra.0000388627.36781.6a] [PMID: 20859109]
[74]
Díaz-Ramos, A. Roig-Borrellas, A.; García-Melero, A.; López-Alemany, R. α-Enolase, a multifunctional protein: Its role on pathophysiological situations. J. Biomed. Biotechnol., 2012, 2012, 156795.
[http://dx.doi.org/10.1155/2012/156795] [PMID: 23118496]
[75]
Yan, L.; Ge, H.; Li, H.; Lieber, S.C.; Natividad, F.; Resuello, R.R.G.; Kim, S.J.; Akeju, S.; Sun, A.; Loo, K.; Peppas, A.P.; Rossi, F.; Lewandowski, E.D.; Thomas, A.P.; Vatner, S.F.; Vatner, D.E. Gender-specific proteomic alterations in glycolytic and mitochondrial pathways in aging monkey hearts. J. Mol. Cell. Cardiol., 2004, 37(5), 921-929.
[http://dx.doi.org/10.1016/j.yjmcc.2004.06.012] [PMID: 15522269]
[76]
Phillips, D.; Ten Hove, M.; Schneider, J.E.; Wu, C.O.; Sebag-Montefiore, L.; Aponte, A.M.; Lygate, C.A.; Wallis, J.; Clarke, K.; Watkins, H.; Balaban, R.S.; Neubauer, S. Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity. J. Mol. Cell. Cardiol., 2010, 48(4), 582-590.
[http://dx.doi.org/10.1016/j.yjmcc.2009.10.033] [PMID: 19913546]
[77]
Orosz, F.; Oláh, J.; Ovádi, J. Triosephosphate isomerase deficiency: Facts and doubts. IUBMB Life, 2006, 58(12), 703-715.
[http://dx.doi.org/10.1080/15216540601115960] [PMID: 17424909]
[78]
Ationu, A.; Humphries, A. The feasibility of replacement therapy for inherited disorder of glycolysis: Triosephosphate isomerase deficiency (review). Int. J. Mol. Med., 1998, 2(6), 701-704.
[http://dx.doi.org/10.3892/ijmm.2.6.701] [PMID: 9850739]
[79]
Subramanian, K.; Gianni, D.; Balla, C.; Assenza, G.E.; Joshi, M.; Semigran, M.J.; Macgillivray, T.E.; Van Eyk, J.E.; Agnetti, G.; Paolocci, N.; Bamburg, J.R.; Agrawal, P.B.; Del Monte, F. Cofilin-2 phosphorylation and sequestration in myocardial aggregates: Novel pathogenetic mechanisms for idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol., 2015, 65(12), 1199-1214.
[http://dx.doi.org/10.1016/j.jacc.2015.01.031] [PMID: 25814227]
[80]
Camors, E.; Monceau, V.; Charlemagne, D. Annexins and Ca2+ handling in the heart. Cardiovasc. Res., 2005, 65(4), 793-802.
[http://dx.doi.org/10.1016/j.cardiores.2004.11.010] [PMID: 15721859]
[81]
Song, G.; Campos, B.; Wagoner, L.E.; Dedman, J.R.; Walsh, R.A. Altered cardiac annexin mRNA and protein levels in the left ventricle of patients with end-stage heart failure. J. Mol. Cell. Cardiol., 1998, 30(3), 443-451.
[http://dx.doi.org/10.1006/jmcc.1997.0608] [PMID: 9515022]
[82]
Ji, B.; La, Y.; Gao, L.; Zhu, H.; Tian, N.; Zhang, M.; Yang, Y.; Zhao, X.; Tang, R.; Ma, G.; Zhou, J.; Meng, J.; Ma, J.; Zhang, Z.; Li, H.; Feng, G.; Wang, Y.; He, L.; Wan, C. A comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications. J. Proteome Res., 2009, 8(7), 3633-3641.
[http://dx.doi.org/10.1021/pr800876z] [PMID: 19441803]
[83]
Dasika, S.K.; Vinnakota, K.C.; Beard, D.A. Characterization of the kinetics of cardiac cytosolic malate dehydrogenase and comparative analysis of cytosolic and mitochondrial isoforms. Biophys. J., 2015, 108(2), 420-430.
[http://dx.doi.org/10.1016/j.bpj.2014.11.3466] [PMID: 25606689]
[84]
Tran, D.H.; Wang, Z.V. Glucose metabolism in cardiac hypertrophy and heart failure. J. Am. Heart Assoc., 2019, 8(12), e012673.
[http://dx.doi.org/10.1161/JAHA.119.012673] [PMID: 31185774]
[85]
Hagihara, G.N.; Lobato, N.S.; Filgueira, F.P.; Akamine, E.H.; Aragão, D.S.; Casarini, D.E.; Carvalho, M.H.C.; Fortes, Z.B. Upregulation of ERK1/2-eNOS via AT2 receptors decreases the contractile response to angiotensin II in resistance mesenteric arteries from obese rats. PLoS One, 2014, 9(8), e106029.
[http://dx.doi.org/10.1371/journal.pone.0106029] [PMID: 25170617]
[86]
Mizukami, Y.; Iwamatsu, A.; Aki, T.; Kimura, M.; Nakamura, K.; Nao, T.; Okusa, T.; Matsuzaki, M.; Yoshida, K.; Kobayashi, S. ERK1/2 regulates intracellular ATP levels through α-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J. Biol. Chem., 2004, 279(48), 50120-50131.
[http://dx.doi.org/10.1074/jbc.M402299200] [PMID: 15459207]
[87]
Dieterich, S.; Bieligk, U.; Beulich, K.; Hasenfuss, G.; Prestle, J. Gene expression of antioxidative enzymes in the human heart: Increased expression of catalase in the end-stage failing heart. Circulation, 2000, 101(1), 33-39.
[http://dx.doi.org/10.1161/01.CIR.101.1.33] [PMID: 10618301]
[88]
Wei, L.; Taffet, G.E.; Khoury, D.S.; Bo, J.; Li, Y.; Yatani, A.; Delaughter, M.C.; Klevitsky, R.; Hewett, T.E.; Robbins, J.; Michael, L.H.; Schneider, M.D.; Entman, M.L.; Schwartz, R.J. Disruption of Rho signaling results in progressive atrioventricular conduction defects while ventricular function remains preserved. FASEB J., 2004, 18(7), 857-859.
[http://dx.doi.org/10.1096/fj.03-0664fje] [PMID: 15033930]
[89]
Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ., 2006, 13(9), 1423-1433.
[http://dx.doi.org/10.1038/sj.cdd.4401950] [PMID: 16676004]
[90]
Sequeira, V.; Nijenkamp, L.L.A.M.; Regan, J.A.; van der Velden, J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. Biochim. Biophys. Acta, 2014, 1838(2), 700-722.
[http://dx.doi.org/10.1016/j.bbamem.2013.07.011] [PMID: 23860255]
[91]
Bunnell, T.M.; Ervasti, J.M. Delayed embryonic development and impaired cell growth and survival in Actg1 null mice. Cytoskeleton (Hoboken), 2010, 67(9), 564-572.
[http://dx.doi.org/10.1002/cm.20467] [PMID: 20662086]
[92]
Balasubramanian, S.; Mani, S.K.; Kasiganesan, H.; Baicu, C.C.; Kuppuswamy, D. Hypertrophic stimulation increases β-actin dynamics in adult feline cardiomyocytes. PLoS One, 2010, 5(7), e11470.
[http://dx.doi.org/10.1371/journal.pone.0011470] [PMID: 20635003]
[93]
Cuvertino, S.; Stuart, H.M.; Chandler, K.E.; Roberts, N.A.; Armstrong, R.; Bernardini, L.; Bhaskar, S.; Callewaert, B.; Clayton-Smith, J.; Davalillo, C.H.; Deshpande, C.; Devriendt, K.; Digilio, M.C.; Dixit, A.; Edwards, M.; Friedman, J.M.; Gonzalez-Meneses, A.; Joss, S.; Kerr, B.; Lampe, A.K.; Langlois, S.; Lennon, R.; Loget, P.; Ma, D.Y.T.; McGowan, R.; Des Medt, M.; O’Sullivan, J.; Odent, S.; Parker, M.J.; Pebrel-Richard, C.; Petit, F.; Stark, Z.; Stockler-Ipsiroglu, S.; Tinschert, S.; Vasudevan, P.; Villa, O.; White, S.M.; Zahir, F.R.; Woolf, A.S.; Banka, S. ACTB loss-of-function mutations result in a pleiotropic developmental disorder. Am. J. Hum. Genet., 2017, 101(6), 1021-1033.
[http://dx.doi.org/10.1016/j.ajhg.2017.11.006] [PMID: 29220674]
[94]
Chen, S.; Wang, X.; Ye, X.; Ma, D.; Chen, C.; Cai, J.; Fu, Y.; Cheng, X.; Chen, Y.; Gong, X.; Jin, J. Identification of human UMP/CMP kinase 1 as doxorubicin binding target using protein microarray. SLAS Discov., 2017, 22(8), 1007-1015.
[http://dx.doi.org/10.1177/2472555217707704] [PMID: 28459633]
[95]
Drenth, J.P.H.; te Morsche, R.H.M.; Smink, R.; Bonifacino, J.S.; Jansen, J.B.M.J. Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat. Genet., 2003, 33(3), 345-347.
[http://dx.doi.org/10.1038/ng1104] [PMID: 12577059]