Current Analytical Chemistry

Author(s): Shibam Das and Rohit Bhatia*

DOI: 10.2174/1573411018666220210122902

Electrochemical Lateral Flow Immunoassay Technology has Revealed Diverse Trends as Point of Care Devices in Diagnosis

Page: [766 - 768] Pages: 3

  • * (Excluding Mailing and Handling)

[1]
Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem., 2016, 60(1), 111-120.
[2]
Boisen, M.L.; Oottamasathien, D.; Jones, A.B.; Millett, M.M.; Nelson, D.S.; Bornholdt, Z.A.; Fusco, M.L.; Abelson, D.M.; Oda, S.; Hart-nett, J.N.; Rowland, M.M.; Heinrich, M.L.; Akdag, M.; Goba, A.; Momoh, M.; Fullah, M.; Baimba, F.; Gbakie, M.; Safa, S.; Fonnie, R.; Kanneh, L.; Cross, R.W.; Geisbert, J.B.; Geisbert, T.W.; Kulakosky, P.C.; Grant, D.S.; Shaffer, J.G.; Schieffelin, J.S.; Wilson, R.B.; Saphire, E.O.; Branco, L.M.; Garry, R.F.; Khan, S.H.; Pitts, K.R. Viral Hemorrhagic Fever Consortium. Development of prototype filovirus recombinant antigen immunoassays. J. Infect. Dis., 2015, 212(Suppl. 2), S359-S367.
[http://dx.doi.org/10.1093/infdis/jiv353] [PMID: 26232440]
[3]
Nielsen, K.; Yu, W.L.; Kelly, L.; Bermudez, R.; Renteria, T.; Dajer, A.; Gutierrez, E.; Williams, J.; Algire, J.; de Eschaide, S.T. Develop-ment of a lateral flow assay for rapid detection of bovine antibody to Anaplasma marginale. J. Immunoassay Immunochem., 2008, 29(1), 10-18.
[http://dx.doi.org/10.1080/15321810701734693] [PMID: 18080877]
[4]
Rohrman, B.A.; Leautaud, V.; Molyneux, E.; Richards-Kortum, R.R. A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One, 2012, 7(9), e45611.
[http://dx.doi.org/10.1371/journal.pone.0045611] [PMID: 23029134]
[5]
Connelly, J.T.; Nugen, S.R.; Borejsza-Wysocki, W.; Durst, R.A.; Montagna, R.A.; Baeumner, A.J. Human pathogenic Cryptosporidium species bioanalytical detection method with single oocyst detection capability. Anal. Bioanal. Chem., 2008, 391(2), 487-495.
[http://dx.doi.org/10.1007/s00216-008-1967-2] [PMID: 18311563]
[6]
Office of NIH History. A timeline of pregnancy testing., 2015. Available from: https://history.nih.gov/exhibits/thinblueline/introduction.html%5Cnfiles/3010/introduction.html
[7]
Workman, S.; Wells, S.K.; Pau, C.P.; Owen, S.M.; Dong, X.F.; LaBorde, R.; Granade, T.C. Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT). J. Virol. Methods, 2009, 160(1-2), 14-21.
[http://dx.doi.org/10.1016/j.jviromet.2009.04.003] [PMID: 19482361]
[8]
Butler, S.A.; Khanlian, S.A.; Cole, L.A. Detection of early pregnancy forms of human chorionic gonadotropin by home pregnancy test devices. Clin. Chem., 2001, 47(12), 2131-2136.
[http://dx.doi.org/10.1093/clinchem/47.12.2131] [PMID: 11719477]
[9]
Rama, E.C.; Costa-García, A. Screen-printed electrochemical immunosensors for the detection of cancer and cardiovascular biomarkers. Electroanalysis, 2016, 28(8), 1700-1715.
[http://dx.doi.org/10.1002/elan.201600126]
[10]
Darain, F.; Park, S.U.; Shim, Y.B. Disposable amperometric immunosensor system for rabbit IgG using a conducting polymer modified screen-printed electrode. Biosens. Bioelectron., 2003, 18(5-6), 773-780.
[http://dx.doi.org/10.1016/S0956-5663(03)00004-6] [PMID: 12706591]
[11]
Yu, H.; Yan, F.; Dai, Z.; Ju, H. A disposable amperometric immunosensor for α-1-fetoprotein based on enzyme-labeled anti-body/chitosan-membrane-modified screen-printed carbon electrode. Anal. Biochem., 2004, 331(1), 98-105.
[http://dx.doi.org/10.1016/S0003-2697(04)00294-5] [PMID: 15246001]
[12]
Singh, A.T.; Lantigua, D.; Meka, A.; Taing, S.; Pandher, M.; Camci-Unal, G. Paper-based sensors: Emerging themes and applications. Sensors (Basel), 2018, 18(9), 2839.
[13]
Calabria, D.; Calabretta, M.M.; Zangheri, M.; Marchegiani, E.; Trozzi, I.; Guardigli, M.; Michelini, E.; Di Nardo, F.; Anfossi, L.; Baggiani, C.; Mirasoli, M. Recent advancements in enzyme-based lateral flow immunoassays. Sensors (Basel), 2021, 21(10), 3358.
[http://dx.doi.org/10.3390/s21103358] [PMID: 34065971]
[14]
Sinawang, P.D.; Rai, V.; Ionescu, R.E.; Marks, R.S. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens. Bioelectron., 2016, 77, 400-408.
[http://dx.doi.org/10.1016/j.bios.2015.09.048] [PMID: 26433352]
[15]
Peetz, D.; Schweigert, R.; Jachmann, N.; Post, F.; Schinzel, H.; Lackner, K.J. Method comparison of cardiac marker assays on PATHFAST, StratusCS, AxSYM, Immulite 2000, triage, elecsys and cardiac reader. Clin. Lab., 2006, 52(11-12), 605-614.
[PMID: 17175892]
[16]
Mueller, C.; Twerenbold, R.; Reichlin, T. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. Clin. Chem., 2019, 65(3), 490-491.
[http://dx.doi.org/10.1373/clinchem.2018.298638] [PMID: 30617128]
[17]
Dempsey, E.; Rathod, D. Disposable printed lateral flow electrochemical immunosensors for human cardiac troponin T. IEEE Sens. J., 2018, 18(5), 1828-1834.
[http://dx.doi.org/10.1109/JSEN.2018.2789436]
[18]
Du, D.; Wang, J.; Wang, L.; Lu, D.; Lin, Y. Integrated lateral flow test strip with electrochemical sensor for quantification of phosphory-lated cholinesterase: biomarker of exposure to organophosphorus agents. Anal. Chem., 2012, 84(3), 1380-1385.
[http://dx.doi.org/10.1021/ac202391w] [PMID: 22243414]
[19]
Montagnana, M.; Caputo, M.; Giavarina, D.; Lippi, G. Overview on self-monitoring of blood glucose. Clin. Chim. Acta, 2009, 402(1-2), 7-13.
[http://dx.doi.org/10.1016/j.cca.2009.01.002] [PMID: 19167374]
[20]
Zhu, X.; Sarwar, M.; Zhu, J.J.; Zhang, C.; Kaushik, A.; Li, C.Z. Using a glucose meter to quantitatively detect disease biomarkers through a universal nanozyme integrated lateral fluidic sensing platform. Biosens. Bioelectron., 2019, 126, 690-696.
[http://dx.doi.org/10.1016/j.bios.2018.11.033] [PMID: 30544082]
[21]
Zhu, X.; Shah, P.; Stoff, S.; Liu, H.; Li, C.Z. A paper electrode integrated lateral flow immunosensor for quantitative analysis of oxidative stress induced DNA damage. Analyst (Lond.), 2014, 139(11), 2850-2857.
[http://dx.doi.org/10.1039/C4AN00313F] [PMID: 24733353]