[2]
Larson TA. Nanocomposite particles as theranostic agents for cancer PhD Dissertation. USA: University of Texas, Austin . 2012.
[16]
Jaque D, Maestro LM, Del Rosal B, Haro-Gonzalez P, Benayas A, Plaza J. Nanoparticles for photothermal therapies. Nanoscale 2014; 6(16): 9494-530.
[18]
Irshad S, Siddiqui B. Recent trends and development in targeted delivery of therapeutics through enzyme responsive intelligent nanoplat-form. Inter J Polym Mater Polym Biomater 2020; 71(6): 1-11.
[31]
Kanwal A, Sajjad S, Leghari SAK, Yousaf Z. Cascade electron transfer in ternary CuO/α-Fe2O3/γ-Al2O3 nanocomposite as an effective visible photocatalyst. J Phys Chem Solids 2020; 151, 109899.
[47]
Sell J. Photothermal investigations of solids and fluids. Elsevier Netherlands 2012.
[62]
Dinani HS, Pourmadadi M, Rashedi H, Yazdian F. Fabrication of nanomaterial-based biosensor for measurement of a microRNA involved in cancer. 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME); 26-27 Nov 2020; Tehran, Iran: IEEE.
[86]
Özge ÖÖ, Mesut K. Cancer diagnostics, imaging and treatment by nanoscale structures targeting. Biotechnol Acta 2019; 12(6): 12-24.
[97]
Mitra S, Maitra A. Inorganic nanoparticles for therapeutics, drug and gene delivery.In: Yashwant VP, Hieu TT, Eds.Advances in Nano-technology and Applications. Louisville, Kentucky, USA: C.E.N.T.E.R.A. 2009.
[100]
Mirrahimi M, Hosseini V, Kamrava SK, Attaran N, Beik J, Kooranifar S. S. Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated Fe2O3@ Au nanocomplex. Artificial cells, nanomedicine, and biotechnology 2018; 46(sup1): 241-53.
[106]
Tuchina ES, Kozina KV, Shelest NA, Kochubey VI, Tuchin VV, Eds. Iron oxide nanoparticles in different modifications for antimicrobial phototherapy. ; Proceedings Volume 8955, Colloidal Nanoparticles for Biomedical Applications IX; 89551P (2014) In: SPIE BiOS. United States 2014.
[109]
Stiegman AE, Park CD, Mileham M, Van de Burgt LJ, Kramer MP. Dynamics of Al/Fe2O3 MIC combustion from short single-pulse pho-tothermal initiation and time-resolved spectroscopy. Propellants Explos Pyrotech 2009; 34(4): 293-6.
[149]
Li S, Zhang R, Wang D, Feng L, Cui K. Synthesis of hollow maghemite Fe2O3 particles for magnetic field and pH-responsive drug delivery and lung cancer treatment. Ceram Int 2020; 47(6): 7457-64.
[154]
Islam MS. Development and Evaluation of Magnetic, Photocatalytic and Photothermal Nanoparticles and their Application to Cancer Therapy. PhD Dissertation Beijing: China Kagishima University 2012.
[157]
Nagel S. Theoretische und experimentelle Untersuchungen zum Magnetischen Drug Targeting. Greifswald: Ernst-Moritz-Arndt-Universität 2004.
[179]
Akhtar H, Yazdian F, Rashedi H. Kosmotropic and chaotropic effect of biocompatible Fe3O4 nanoparticles on egg white lysozyme; the key role of nanoparticle-protein corona formation. J Mol Struct 2021; 1253, 132016.
[186]
Sawant PD. Nano-theranostics–innovative synergy of therapeutics, diagnostics, prognosis and continuous moni-toring using multifunc-tional nanomaterials. BAOJ Nanotech 2016; 22(1): 008.
[196]
Viņas B,, Antonia M,, Estelrich I,, Latrās J. Magnetic nanoparticles: From diagnosis to therapy in: Recent Advancess in pharmaceutical sciences Viii. Muñoz-Torrero D Cajal Y, and Maria JL, Eds. Kerala India: Research Post 2018.
[214]
Di Martino A, Guselnikova AO, Kurtukov VV, Postnikov PS. Sedlarík V, Eds. Development of theranostic agents based on iron oxide-gadolinium-chitosan for controlled release of doxorubicin. 8th International Conference on Nanomaterials-Research & Application (NANOCON 2016).