Soluble Diphtheria Toxin Variant, CRM 197 was Obtained in Escherichia coli at High Productivity Using SUMO Fusion and an Adjusted Expression Strategy

Page: [350 - 359] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: CRM197, a non-toxic diphtheria toxin variant, is widely used as a polysaccharide carrier in a variety of conjugate vaccines and also exhibits antitumor activity. CRM197 commercial production is limited due to the low yield of Corynebacterium diphtheriae C7 (197) tox-. Developing an efficient method for recombinant CRM197 production reduces production costs and is critical for expanding the application coverage of related medical products and basic research. Escherichia coli is a frequently used host for heterologous protein synthesis. However, the primary limitation of this system is the inclusion body formation and the low yield of active protein recovery.

Objective: As a result, we attempted to produce CRM197 in the soluble form in E. coli using a small ubiquitin-related modifier (SUMO) tag fusion and an expression strategy optimized for protein production.

Methods: CRM197 was expressed intracellularly in E. coli BL21 (DE3) with its N-terminus fused to a SUMO tag preceded by a histidine tag (HSCRM197). To improve the solubility of HSCRM197 in E. coli, a response surface method (RSM) experimental design was used based on three factors: expression temperature, inducer concentration, and sorbitol inclusion in the culture medium. Metal affinity chromatography was used to purify HSCRM197, and the SUMO tag was removed using the SUMO protease's catalytic domain. After adsorbing the SUMO tag on a Ni-NTA column, CRM197 was obtained. DNA degradation activity was determined for both HSCRM197 and CRM197.

Results: When HSCRM197 was expressed in E. coli under common expression conditions (37ºC, 1000 μM inducer), 15.4% of the protein was found in the cellular soluble fraction. However, when the RSM-derived expression conditions were used (30ºC, 510 μM inducer, and 200 mM sorbitol), the obtained HSCRM197 was almost completely soluble (96.5% solubility), and the system productivity was 32.67 μg ml-1 h-1. HSCRM197 and CRM197 both exhibited nuclease activity. However, the activity of CRM197 was greater than that of HSCRM197.

Conclusion: These findings established the utility of the method developed in this study to produce CRM197 for medical applications.

Keywords: CRM197, diphtheria toxin, recombinant, solubility, SUMO protease, SUMO tag.

Graphical Abstract

[1]
Bröker, M.; Costantino, P.; DeTora, L.; McIntosh, E.D.; Rappuoli, R. Biochemical and biological characteristics of cross-reacting material 197 CRM197, a non-toxic mutant of diphtheria toxin: Use as a conjugation protein in vaccines and other potential clinical applications. Biologicals, 2011, 39(4), 195-204.
[http://dx.doi.org/10.1016/j.biologicals.2011.05.004] [PMID: 21715186]
[2]
Shinefield, H.R. Overview of the development and current use of CRM(197) conjugate vaccines for pediatric use. Vaccine, 2010, 28(27), 4335-4339.
[http://dx.doi.org/10.1016/j.vaccine.2010.04.072] [PMID: 20452430]
[3]
Dateoka, S.; Ohnishi, Y.; Kakudo, K. Effects of CRM197, a specific inhibitor of HB-EGF, in oral cancer. Med. Mol. Morphol., 2012, 45(2), 91-97.
[http://dx.doi.org/10.1007/s00795-011-0543-6] [PMID: 22718294]
[4]
Yotsumoto, F.; Oki, E.; Tokunaga, E.; Maehara, Y.; Kuroki, M.; Miyamoto, S. HB-EGF orchestrates the complex signals involved in triple-negative and trastuzumab-resistant breast cancer. Int. J. Cancer, 2010, 127(11), 2707-2717.
[http://dx.doi.org/10.1002/ijc.25472] [PMID: 20499311]
[5]
Tang, X.H.; Deng, S.; Li, M.; Lu, M.S. The anti-tumor effect of cross-reacting material 197, an inhibitor of heparin-binding EGF-like growth factor, in human resistant ovarian cancer. Biochem. Biophys. Res. Commun., 2012, 422(4), 676-680.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.052] [PMID: 22609777]
[6]
Rappuoli, R. Isolation and characterization of Corynebacterium diphtheriae nontandem double lysogens hyperproducing CRM197. Appl. Environ. Microbiol., 1983, 46(3), 560-564.
[http://dx.doi.org/10.1128/aem.46.3.560-564.1983] [PMID: 6416165]
[7]
Miyaji, E.N.; Mazzantini, R.P.; Dias, W.O.; Nascimento, A.L.; Marcovistz, R.; Matos, D.S.; Raw, I.; Winter, N.; Gicquel, B.; Rappuoli, R.; Leite, L.C. Induction of neutralizing antibodies against diphtheria toxin by priming with recombinant Mycobacterium bovis BCG expressing CRM(197), a mutant diphtheria toxin. Infect. Immun., 2001, 69(2), 869-874.
[http://dx.doi.org/10.1128/IAI.69.2.869-874.2001] [PMID: 11159980]
[8]
Orr, N.; Galen, J.E.; Levine, M.M. Expression and immunogenicity of a mutant diphtheria toxin molecule, CRM(197), and its fragments in Salmonella typhi vaccine strain CVD 908-htrA. Infect. Immun., 1999, 67(8), 4290-4294.
[http://dx.doi.org/10.1128/IAI.67.8.4290-4294.1999] [PMID: 10417208]
[9]
Stefan, A.; Conti, M.; Rubboli, D.; Ravagli, L.; Presta, E.; Hochkoeppler, A. Overexpression and purification of the recombinant diphtheria toxin variant CRM197 in Escherichia coli. J. Biotechnol., 2011, 156(4), 245-252.
[http://dx.doi.org/10.1016/j.jbiotec.2011.08.024] [PMID: 21889551]
[10]
Mahamad, P.; Boonchird, C.; Panbangred, W. High level accumulation of soluble diphtheria toxin mutant (CRM197) with co-expression of chaperones in recombinant Escherichia coli. Appl. Microbiol. Biotechnol., 2016, 100(14), 6319-6330.
[http://dx.doi.org/10.1007/s00253-016-7453-4] [PMID: 27020286]
[11]
Prasad, S.; Khadatare, P.B.; Roy, I. Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol., 2011, 77(13), 4603-4609.
[http://dx.doi.org/10.1128/AEM.05259-11] [PMID: 21551288]
[12]
Dawn, A.; Deep, S. An improved strategy of TGFβ3 expression in Escherichia coli: Exploiting folding modulators for a switch from misfolded to folded form. Int. J. Biol. Macromol., 2021, 167, 787-795.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.212] [PMID: 33278443]
[13]
Bakhtiarvand, B.; Sadeghi, Z.; Tarahomjoo, S.; Yaghmaie, S. Chaperones promote remarkable solubilization of Salmonella enterica serovar enteritidis flagellin expressed in Escherichia coli. Protein Pept. Lett., 2020, 27(3), 210-218.
[http://dx.doi.org/10.2174/0929866526666190930103552] [PMID: 31566125]
[14]
Novagen. pET system manual, 11th ed.; , 2011.
[15]
Malakhov, M.P.; Mattern, M.R.; Malakhova, O.A.; Drinker, M.; Weeks, S.D.; Butt, T.R. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct. Funct. Genomics, 2004, 5(1-2), 75-86.
[http://dx.doi.org/10.1023/B:JSFG.0000029237.70316.52] [PMID: 15263846]
[16]
Zuo, X.; Mattern, M.R.; Tan, R.; Li, S.; Hall, J.; Sterner, D.E.; Shoo, J.; Tran, H.; Lim, P.; Sarafianos, S.G.; Kazi, L.; Navas-Martin, S.; Weiss, S.R.; Butt, T.R. Expression and purification of SARS coronavirus proteins using SUMO-fusions. Protein Expr. Purif., 2005, 42(1), 100-110.
[http://dx.doi.org/10.1016/j.pep.2005.02.004] [PMID: 15939295]
[17]
Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response surface methodology: Process and product optimization using designed experiments; John Wiley & Sons: New Jersey, USA, 2016.
[18]
Puigbò, P.; Guzmán, E.; Romeu, A.; Garcia-Vallvé, S. OPTIMIZER: A web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res., 2007, 35(Web Server issue)(Suppl. 2), W126-31.
[http://dx.doi.org/10.1093/nar/gkm219] [PMID: 17439967]
[19]
Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[20]
Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server issue)(Suppl. 2), W407-10.
[http://dx.doi.org/10.1093/nar/gkm290] [PMID: 17517781]
[21]
Ye, Y.; Godzik, A. Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics, 2003, 19(Suppl. 2), ii246-ii255.
[http://dx.doi.org/10.1093/bioinformatics/btg1086] [PMID: 14534198]
[22]
Lengeler, J.; Lin, E.C. Reversal of the mannitol-sorbitol diauxie in Escherichia coli. J. Bacteriol., 1972, 112(2), 840-848.
[http://dx.doi.org/10.1128/jb.112.2.840-848.1972] [PMID: 4563979]
[23]
Melo, E.P.; Estrela, N.; Lopes, C.; Matias, A.C.; Tavares, E.; Ochoa-Mendes, V. Compacting proteins: Pros and cons of osmolyte-induced folding. Curr. Protein Pept. Sci., 2010, 11(8), 744-751.
[http://dx.doi.org/10.2174/138920310794557727] [PMID: 21235509]
[24]
van den Bogaart, G.; Hermans, N.; Krasnikov, V.; Poolman, B. Protein mobility and diffusive barriers in Escherichia coli: Consequences of osmotic stress. Mol. Microbiol., 2007, 64(3), 858-871.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05705.x] [PMID: 17462029]
[25]
GE-Healthcare, Rapid and efficient purification and refolding of a (histidine)6-tagged recombinant protein produced in E. coli as inclusion bodies. Application note, 2007, 18-1134-37AC
[26]
Bruce, C.; Baldwin, R.L.; Lessnick, S.L.; Wisnieski, B.J. Diphtheria toxin and its ADP-ribosyltransferase-defective homologue CRM197 possess deoxyribonuclease activity. Proc. Natl. Acad. Sci. USA, 1990, 87(8), 2995-2998.
[http://dx.doi.org/10.1073/pnas.87.8.2995] [PMID: 2109323]
[27]
Fonda, I.; Kenig, M.; Gaberc-Porekar, V.; Pristovaek, P.; Menart, V. Attachment of histidine tags to recombinant tumor necrosis factor-alpha drastically changes its properties. Sci. World J., 2002, 2, 1312-1325.
[http://dx.doi.org/10.1100/tsw.2002.215] [PMID: 12805914]
[28]
Grönholm, J.; Vanhatupa, S.; Ungureanu, D.; Väliaho, J.; Laitinen, T.; Valjakka, J.; Silvennoinen, O. Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1. BMC Biochem., 2012, 13(1), 20.
[http://dx.doi.org/10.1186/1471-2091-13-20] [PMID: 23043228]