Synthesis of Pyrimidine Hybrids Based on 4H-Pyran and 4H-Chromene Privileged Structures

Page: [993 - 998] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

A combinatorial library of pyrimidine hybrids based on 4H-chromene and 4H-pyran privileged structures has been developed by reacting phenyl isothiocyanate with chromene derivatives 1a-j and pyranopyrazoles 2a-f in refluxing dry pyridine, respectively. Thus, the target pyrimidine hybrids 3a-j and 4a-f were obtained in good yields with a simple reaction strategy.

Keywords: Privileged structures, 4H-pyrans, chromene, pyrimidine hybrids, medicinal chemistry, 4H-chromene.

Graphical Abstract

[1]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.L.; Lotti, V.J.; Cerino, D.J.; Chen, T.B.; Kling, P.J.; Kunkel, K.A.; Springer, J.P.; Hirshfield, J. J. Med. Chem., 1988, 31(12), 2235.
[2]
Brahmachari, G. Green Synthetic Approaches for Biologically Relevant Heterocycles, 2015.
[3]
Pratap, R.; Ram, V.J. Chem. Rev., 2014, 114, 10476.
[4]
Nasr, M.N.; Gineinah, M.M. Arch. Pharm. Pharm. Med. Chem., 2002, 335, 289.
[5]
Feurer, A.; Luithle, J.; Wirtz, S.; Koenig, G.; Stasch, J.; Stahl, E.; Schreiber, R.; Wunder, F.; Lang, D. WO 2004009589, 2004, 140, 146157.
[6]
Ismail, Z.H.; Aly, G.M.; El-Degwi, M.S.; Heiba, H.I.; Ghorab, M.M. Egypt. J. Biotechnol., 2003, 13, 73.
[7]
Abdelrazek, F.M.; Metz, P.; Metwally, N.H.; El-Mahrouky, S.F. Arch. Pharm. Chem. Life Sci., 2006, 339, 456.
[8]
Abdelrazek, F.M.; Metz, P.; Kataeva, O.; Jaeger, A.; El-Mahrouky, S.F. Arch. Pharm. Chem. Life Sci., 2007, 340, 543.
[9]
Kuo, S.C.; Huang, L.J.; Nakamura, H. J. Med. Chem., 1984, 27, 539.
[10]
Zaki, M.E.A.; Soliman, H.A.; Hiekal, O.A.; Rashad, A.E. Z. Naturforsch., 2006, 61C, 1.
[11]
Ahluwalia, V.K.; Dahiya, A.; Grag, V. Indian J. Chem., 1997, 36B, 88.
[12]
Nadia, M.R.; Nahed, Y.K.; Fahmyb, A.; El-Sayeda, A.A.F. Pharma. Chem., 2010, 2, 400.
[13]
Wang, J.L.; Liu, D.; Zheng, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Proc. Natl. Acad. Sci. USA, 2000, 97, 7124.
[14]
Foloppe, N.; Fisher, L.M.; Howes, R.; Potter, A.; Robertson, A.G.S.; Surgenor, A.E. Bioorg. Med. Chem., 2006, 14, 4792.
[15]
Om, P.; Rajesh, K.; Ravi, K.; Prikshit, T.; Kuhad, R.C. Eur. J. Med. Chem., 2007, 42, 868.
[16]
Klein, E.; DeBonis, S.; Thiede, B.; Skoufias, D.A.; Kozielskib, F.; Lebeaua, L. Bioorg. Med. Chem., 2007, 15(19), 6474.
[17]
Dalkara, S.; Karakurt, A. Curr. Top. Med. Chem., 2012, 12, 1033.
[18]
Nasr, M.N.; Gineinah, M.M. Arch. Pharm. (Weinheim), 2002, 335, 289.
[19]
Bhat, A.R.; Dongra, R.S.; Selokar, R.S. Int. J. Pharm. Bio. Sci., 2014, 5, 422.
[20]
Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Eur. J. Med. Chem., 2017, 132, 108.
[21]
Gangjee, A.; Vidwans, A.; Elzein, E.; McGuire, J.J.; Queener, S.F.; Kisliuk, R.L. J. Med. Chem., 2001, 44, 1993.
[22]
Zarenezhad, E.; Farjam, M.; Iraji, A. J. Mol. Struct., 2021, 1230, 129833.
[23]
Gao, X.; Cen, L.; Li, F.; Wen, R.; Yan, H.; Yao, H.; Zhu, S. Biochem. Biophys. Res. Commun., 2018, 505, 1.
[24]
Abdellatif, K.R.A.; Abdelall, E.K.A.; Abdelgawad, M.A.; Ahmed, R.R.; Bakr, R.B. Molecules, 2014, 19, 3297.
[25]
Hassan, G.S.; Kadry, H.H.; Abou-Seri, S.M.; Ali, M.M.; Mahmoud, A.E.E. Bioorg. Med. Chem., 2011, 19, 6808.
[26]
Rashad, A.E.; Mahmoud, A.E.; Ali, M.M. Eur. J. Med. Chem., 2011, 46, 1019.
[27]
Latif, E.A.; Abdel-fattah, S.; Gaffer, H.E.; Etman, H.A. Egypt. J. Chem., 2016, 3, 118.
[28]
Youseff, M.M.; Amin, M.A. Molecules, 2012, 17, 9652.
[29]
Atta, K.F.M.; Ibrahim, T.M.; Farahat, O.O.M.; Al-Shargabi, T.Q.; Marei, M.G.; Bekhit, A.A.; El, S.H. Future Med. Chem., 2017, 9, 1913.
[30]
Camargo, A.F.; Marangoni, M.A.; de Moraesa, P.A.; Nogara, P.A.; Afolabi, B.A.; Bencke, C.E.; Rocha, J.B.T.; Bonacorso, H.G.; Martins, M.A.P.; Zanatt, N. Synthesis, 2020, 52, 2347.
[31]
Aymn, R.E.; Samir, G.T.; Ahmed, H.I.; Dalia, A.A.; Mamadouh, A.M.; Said, H.F.; Farouk, A.M.M.E. Pharma Chem., 2014, 6, 88.
[32]
Gomha, S.M.; Ahmed, S.A.; Abdelhamid, A.O. Molecules, 2015, 20, 1357.
[33]
Thakur, S.; Bhatia, S.; Bansal, M.; Kaur, B. J. Appl. Chem, 2016, 5, 128.
[34]
Kumar, R.N.; Dev, G.J.; Ravikumar, N.; Swaroop, D.K.; Debanjan, B.; Bharath, G.; Narsaiah, B.; Jain, S.N.; Rao, A.G. Bioorg. Med. Chem. Lett., 2016, 12, 2927.
[35]
Sisa, M.; Pla, D.; Altuna, M.; Francesch, A.; Cuevas, C.; Albericio, F.; Alvarez, M. J. Med. Chem., 2009, 52, 6217.
[36]
Tolana, H. E. M.; El-Sayeda, W. A.; Tawfeka, N.; Abdel-Megeida, F. M. E.; Kutkat, O.M. 2019, 649.
[37]
Oyebamiji, A.K.; Fadare, O.A.; Semire, B. J. Chem. Res., 2020, 12, 7.
[38]
Sana, S.; Reddy, V.G.; Reddy, T.S.; Tokala, R.; Kumar, R.; Bhargava, S.K.; Shankaraiah, N. Bioorg. Chem., 2021, 110, 104765.
[39]
Huang, L.; Huang, R.; Pang, F.; Li, A.; Huang, G.; Zhou, X.; Li, Q.; Li, F.; Ma, X. RSC Advances, 2020, 10, 18008.
[40]
Wu, L.; Liu, Y.; Li, Y. Molecules, 2018, 23, 2330.
[41]
Kumar, D.; Khan, S.I.; Ponnana, P.; Rawat, D.S. New J. Chem., 2014, 38, 5087.
[42]
Kayamba, F.; Malimabe, T.; Ademola, I.K.; Pooe, O.J.; Kushwaha, N.D.; Mahlalela, M.; Zyl, R.L.; Gordon, M.; Mudau, P.T.; Zininga, T.; Shonhai, A.; Nyamori, V.O.; Karpoormath, R. Eur. J. Med. Chem., 2021, 217, 113330.
[43]
Manohar, S.; Rajesh, U.Ch.; Khan, S.I.; Tekwani, B.L.; Rawat, D.S. Med. Chem. Lett., 2012, 3, 555.
[44]
Manohar, S.; Taylor, S.P.V.D.; Kumar, D.; Poonan, P.; Wiesner, L.; Rawat, D. RSC Advances, 2015, 5, 28171.
[45]
Singh, K.; Kaur, H.; Smith, P.; de Kock, C.; Chibale, K.; Balzarini, J. J. Med. Chem., 2013, 57, 435.
[46]
Moshtaghi, Z. A.; Okhravi, S.; Moghani, D. Monatsh. Chem., 2016, 147, 1819.
[47]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Chem. Commun. (Camb.), 2003, 70.
[48]
Moshtaghi, Z. A.; Moghani, D. Synth. Commun., 2016, 46, 220.