Efficacy of Regenerative Medicine for Alveolar Cleft Reconstruction: A Systematic Review and Meta-analysis

Page: [446 - 465] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Objective: The objective of this study is to analyze the efficacy and complications of regenerative medicine compared to autogenous bone graft for alveolar cleft reconstruction.

Method: Electronic search was done through PubMed, Scopus, Embase and Cochrane databases for the studies published until May 2021. No limitations were considered for the type of the included studies. The risk of bias (ROB) of the studies was assessed using the Cochrane Collaborations and NIH quality assessment tool. Meta-analyses were performed to assess the difference in the amount of bone formation and rate of complications. Grading of Recommendations, Assessment, Development and Evaluation (GRADE) was used for analyzing the level of the evidence.

Results: Among a total of 42 included studies, 21 studies used growth factors, 16 studies delivered cells, and five studies used biomaterials for bone regeneration of the alveolar cleft. Results showed no significant difference in the amount of bone formation between bone morphogenic protein-2 and iliac graft treated patients after six months (P = 0.44) and 12 months (P = 0.17) follow-up. Besides, higher swelling (OR=9.46, P < 0.01) and less infection (OR=0.19, P = 0.01) were observed in BMP treated patients. Using stem cells can reduce the post-treatment pain (OR=0.04, P = 0.01), but it has no significant impact on other complications (P > 0.05). Using tissue engineering methods reduced the operation time (SD=1.06, P < 0.01). GRADE assessment showed that results regarding the amount of bone formation volume after six and 12 months have low level of evidence.

Conclusion: Tissue engineering methods can provide a comparable amount of bone formation to the autogenous graft and reduce some of the complications, operation time and hospitalization duration.

Keywords: Alveolar cleft, bone regeneration, tissue engineering, stem cells, growth factor, biomaterials.

Graphical Abstract

[1]
Bennun RD, Harfin JF, Sándor GK, Genecov D. Clef lip and palate management, A comprehensive atlas. New Jersey, USA: Wiley Black-well 2016.
[2]
Worley ML, Patel KG, Kilpatrick LA. Cleft lip and palate. Clin Perinatol 2018; 45(4): 661-78.
[http://dx.doi.org/10.1016/j.clp.2018.07.006] [PMID: 30396411]
[3]
Cho-Lee G-Y, García-Díez E-M, Nunes R-A, Martí-Pagès C, Sieira-Gil R, Rivera-Baró A. Review of secondary alveolar cleft repair. Ann Maxillofac Surg 2013; 3(1): 46-50.
[http://dx.doi.org/10.4103/2231-0746.110083] [PMID: 23662259]
[4]
Yates D, Allareddy V, Caplin J, Yadav S, Markiewicz MR. An overview of timeline of interventions in the continuum of cleft lip and pal-ate care. Oral Maxillofac Surg Clin North Am 2020; 32(2): 177-86.
[http://dx.doi.org/10.1016/j.coms.2020.01.001] [PMID: 32115348]
[5]
Khojasteh A, Kheiri L, Motamedian SR, Nadjmi N. Regenerative medicine in the treatment of alveolar cleft defect: A systematic review of the literature. J Craniomaxillofac Surg 2015; 43(8): 1608-13.
[http://dx.doi.org/10.1016/j.jcms.2015.06.041] [PMID: 26302939]
[6]
Kamal M, Ziyab AH, Bartella A, et al. Volumetric comparison of autogenous bone and tissue-engineered bone replacement materials in alveolar cleft repair: A systematic review and meta-analysis. Br J Oral Maxillofac Surg 2018; 56(6): 453-62.
[http://dx.doi.org/10.1016/j.bjoms.2018.05.007] [PMID: 29859781]
[7]
Wu C, Pan W, Feng C, et al. Grafting materials for alveolar cleft reconstruction: A systematic review and best-evidence synthesis. Int J Oral Maxillofac Implants 2018; 47(3): 345-56.
[http://dx.doi.org/10.1016/j.ijom.2017.08.003] [PMID: 28863859]
[8]
Enemark H, Jensen J, Bosch C. Mandibular bone graft material for reconstruction of alveolar cleft defects: Long-term results. Cleft Palate Craniofac J 2001; 38(2): 155-63.
[http://dx.doi.org/10.1597/1545-1569_2001_038_0155_mbgmfr_2.0.co_2] [PMID: 11294543]
[9]
Liang F, Leland H, Jedrzejewski B, et al. Alternatives to autologous bone graft in alveolar cleft reconstruction: The state of alveolar tissue engineering. J Craniofac Surg 2018; 29(3): 584-93.
[http://dx.doi.org/10.1097/SCS.0000000000004300] [PMID: 29461365]
[10]
Rawashdeh MA, Telfah H. Secondary alveolar bone grafting: The dilemma of donor site selection and morbidity. Br J Oral Maxillofac Surg 2008; 46(8): 665-70.
[http://dx.doi.org/10.1016/j.bjoms.2008.07.184] [PMID: 18760515]
[11]
Ciccocioppo R, Cantore A, Chaimov D, Orlando G. Regenerative medicine: The red planet for clinicians. Intern Emerg Med 2019; 14(6): 911-21.
[http://dx.doi.org/10.1007/s11739-019-02126-z] [PMID: 31203564]
[12]
Trohatou O, Roubelakis MG. Mesenchymal stem/stromal cells in regenerative medicine: Past, present, and future. Cell Reprogram 2017; 19(4): 217-24.
[http://dx.doi.org/10.1089/cell.2016.0062] [PMID: 28520465]
[13]
Safari S, Mahdian A, Motamedian SR. Applications of stem cells in orthodontics and dentofacial orthopedics: Current trends and future perspectives. World J Stem Cells 2018; 10(6): 66-77.
[http://dx.doi.org/10.4252/wjsc.v10.i6.66] [PMID: 29988866]
[14]
Martin V, Bettencourt A. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties. Mater Sci Eng C 2018; 82: 363-71.
[http://dx.doi.org/10.1016/j.msec.2017.04.038] [PMID: 29025670]
[15]
Bakhshandeh B, Zarrintaj P, Oftadeh MO, et al. Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 2017; 33(2): 144-72.
[http://dx.doi.org/10.1080/02648725.2018.1430464] [PMID: 29385962]
[16]
Hsu EL, Stock SR. Growth factors, carrier materials, and bone repair. Handb Exp Pharmacol 2020; 262: 121-56.
[http://dx.doi.org/10.1007/164_2020_371] [PMID: 32562058]
[17]
Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J Stem Cells 2015; 7(3): 657-68.
[http://dx.doi.org/10.4252/wjsc.v7.i3.657] [PMID: 25914772]
[18]
Xiao WL, Jia KN, Yu G, Zhao N. Outcomes of bone morphogenetic protein-2 and iliac cancellous bone transplantation on alveolar cleft bone grafting: A meta-analysis. J Plast Reconstr Aesthet Surg 2020; 73(6): 1135-42.
[http://dx.doi.org/10.1016/j.bjps.2020.01.011] [PMID: 32151557]
[19]
da Rosa WLO, da Silva TM, Galarça AD, Piva E, da Silva AF. Efficacy of rhBMP-2 in cleft lip and palate defects: Systematic review and meta-analysis. Calcif Tissue Int 2019; 104(2): 115-29.
[http://dx.doi.org/10.1007/s00223-018-0486-1] [PMID: 30367200]
[20]
Uribe F, Alister JP, Zaror C, Olate S, Fariña R. Alveolar cleft reconstruction using morphogenetic protein (rhBMP-2): A systematic review and meta-analysis. Cleft Palate Craniofac J 2020; 57(5): 589-98.
[http://dx.doi.org/10.1177/1055665619886142] [PMID: 31698953]
[21]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst Rev 2021; 10(1): 89.
[http://dx.doi.org/10.1186/s13643-021-01626-4] [PMID: 33781348]
[22]
Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928.
[http://dx.doi.org/10.1136/bmj.d5928] [PMID: 22008217]
[23]
Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016; 355: i4919.
[http://dx.doi.org/10.1136/bmj.i4919] [PMID: 27733354]
[24]
Higgins JPT. T J, Chandler J, et al Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. Chichester, UK: John Wiley & Sons 2019.
[http://dx.doi.org/10.1002/9781119536604]
[25]
Lee KC, Costandi JJ, Carrao V, Eisig SB, Perrino MA. Autogenous iliac crest versus rhBMP-2 for alveolar cleft grafting: A 14-year single-institution experience. J Oral Maxillofac Surg 2021; 79(2): 431-40.
[http://dx.doi.org/10.1016/j.joms.2020.10.025] [PMID: 33189650]
[26]
Leal CR, de Carvalho RM, Ozawa TO, et al. Outcomes of alveolar graft with Rhbmp-2 in CLP: Influence of cleft type and width, canine eruption, and surgeon. Cleft Palate Craniofac J 2019; 56(3): 383-9.
[http://dx.doi.org/10.1177/1055665618780981] [PMID: 29924638]
[27]
Trujillo RL, Kadioglu O, Currier GF, Smith KS, Yetkiner E. Volumetric cleft changes in treatment with bone morphogenic protein/β-Tricalcium phosphate versus grafts from the iliac crest or symphysis. J Oral Maxillofac Surg 2018; 76(9): 1991-7.
[http://dx.doi.org/10.1016/j.joms.2018.03.009] [PMID: 29654774]
[28]
Hammoudeh JA, Fahradyan A, Gould DJ, et al. A comparative analysis of recombinant human bone morphogenetic protein-2 with a de-mineralized bone matrix versus iliac crest bone graft for secondary alveolar bone grafts in patients with cleft lip and palate: Review of 501 cases. Plast Reconstr Surg 2017; 140(2): 318e-25e.
[http://dx.doi.org/10.1097/PRS.0000000000003519] [PMID: 28746285]
[29]
Liang F, Yen SL, Imahiyerobo T, et al. Three-dimensional cone beam computed tomography volumetric outcomes of rhBMP-2/demineralized bone matrix versus iliac crest bone graft for alveolar cleft reconstruction. Plast Reconstr Surg 2017; 140(4): 767-74.
[http://dx.doi.org/10.1097/PRS.0000000000003686] [PMID: 28953728]
[30]
Neovius E, Lemberger M, Docherty Skogh AC, Hilborn J, Engstrand T. Alveolar bone healing accompanied by severe swelling in cleft children treated with bone morphogenetic protein-2 delivered by hydrogel. J Plast Reconstr Aesthet Surg 2013; 66(1): 37-42.
[http://dx.doi.org/10.1016/j.bjps.2012.08.015] [PMID: 22980542]
[31]
Francis CS, Mobin SSN, Lypka MA, et al. rhBMP-2 with a demineralized bone matrix scaffold versus autologous iliac crest bone graft for alveolar cleft reconstruction. Plast Reconstr Surg 2013; 131(5): 1107-15.
[http://dx.doi.org/10.1097/PRS.0b013e3182865dfb] [PMID: 23385986]
[32]
Canan LW Jr, da Silva Freitas R, Alonso N, Tanikawa DY, Rocha DL, Coelho JC. Human bone morphogenetic protein-2 use for maxillary reconstruction in cleft lip and palate patients. J Craniofac Surg 2012; 23(6): 1627-33.
[http://dx.doi.org/10.1097/SCS.0b013e31825c75ba] [PMID: 23147291]
[33]
Alonso N, Tanikawa DY, Freitas Rda S, Canan L Jr, Ozawa TO, Rocha DL. Evaluation of maxillary alveolar reconstruction using a resorb-able collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients. Tissue Eng Part C Methods 2010; 16(5): 1183-9.
[http://dx.doi.org/10.1089/ten.tec.2009.0824] [PMID: 20163243]
[34]
Balaji SM. Use of recombinant human Bone Morphogenetic Protein (rhBMP-2) in reconstruction of maxillary alveolar clefts. J Maxillofac Oral Surg 2009; 8(3): 211-7.
[http://dx.doi.org/10.1007/s12663-009-0052-5] [PMID: 23139510]
[35]
Fallucco MA, Carstens MH. Primary reconstruction of alveolar clefts using recombinant human bone morphogenic protein-2: Clinical and radiographic outcomes. J Craniofac Surg 2009; 20(Suppl. 2): 1759-64.
[http://dx.doi.org/10.1097/SCS.0b013e3181b5d08e] [PMID: 19816345]
[36]
Dickinson BP, Ashley RK, Wasson KL, et al. Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects. Plast Reconstr Surg 2008; 121(1): 209-17.
[http://dx.doi.org/10.1097/01.prs.0000293870.64781.12] [PMID: 18176223]
[37]
Chin M, Ng T, Tom WK, Carstens M. Repair of alveolar clefts with recombinant human bone morphogenetic protein (rhBMP-2) in pa-tients with clefts. J Craniofac Surg 2005; 16(5): 778-89.
[http://dx.doi.org/10.1097/01.scs.0000166802.49021.01] [PMID: 16192856]
[38]
Herford AS, Boyne PJ, Rawson R, Williams RP. Bone morphogenetic protein-induced repair of the premaxillary cleft. J Oral Maxillofac Surg 2007; 65(11): 2136-41.
[http://dx.doi.org/10.1016/j.joms.2007.06.670] [PMID: 17954305]
[39]
Ayoub A, Gillgrass T. The clinical application of recombinant human bone morphogenetic protein 7 for reconstruction of alveolar cleft: 10 years’ follow-up. J Oral Maxillofac Surg 2019; 77(3): 571-81.
[http://dx.doi.org/10.1016/j.joms.2018.08.031] [PMID: 30273547]
[40]
Bezerra BT, Pinho JNA, Figueiredo FED, Brandão JRMCB, Ayres LCG, da Silva LCF. Autogenous bone graft versus bovine bone graft in association with platelet-rich plasma for the reconstruction of alveolar clefts: A pilot study. Cleft Palate Craniofac J 2019; 56(1): 134-40.
[http://dx.doi.org/10.1177/1055665618770194] [PMID: 29649372]
[41]
Alnajjar A, Alkhoury I, Burhan AS, Alkhouli M. The efficacy of xenograft polymerized with platelet rich fibrin versus autogenous graft during the secondary alveolar bone grafting of alveolar clefts: A randomized controlled clinical trial. Int J Dent Oral Sci 2020; 7(11): 886-91.
[42]
Blume O, Back M, Born T, Donkiewicz P. Reconstruction of a unilateral alveolar cleft using a customized allogenic bone block and subse-quent dental implant placement in an adult patient. J Oral Maxillofac Surg 2019; 77(10): 2127.e1-2127.e11.
[http://dx.doi.org/10.1016/j.joms.2019.05.021] [PMID: 31276656]
[43]
Natarajan DM, Rao KDB. Improving gingival zenith in a unilateral cleft patient using Platelet-Rich Fibrin (PRF). J Oral Biol Craniofac Res 2018; 8(3): 182-7.
[http://dx.doi.org/10.1016/j.jobcr.2017.04.006] [PMID: 30191105]
[44]
de Ruiter A, Janssen N, van Es R, et al. Micro-structured beta-tricalcium phosphate for repair of the alveolar cleft in cleft lip and palate patients: A pilot study. Cleft Palate Craniofac J 2015; 52(3): 336-40.
[http://dx.doi.org/10.1597/13-260] [PMID: 24919123]
[45]
Shirani G, Abbasi AJ, Mohebbi SZ, Moharrami M. Comparison between autogenous iliac bone and freeze-dried bone allograft for repair of alveolar clefts in the presence of plasma rich in growth factors: A randomized clinical trial. J Craniomaxillofac Surg 2017; 45(10): 1698-703.
[http://dx.doi.org/10.1016/j.jcms.2017.08.001] [PMID: 28870647]
[46]
Graillon N, Degardin N, Foletti JM, Seiler M, Alessandrini M, Gallucci A. Bioactive glass 45S5 ceramic for alveolar cleft reconstruction, about 58 cases. J Craniomaxillofac Surg 2018; 46(10): 1772-6.
[http://dx.doi.org/10.1016/j.jcms.2018.07.016] [PMID: 30082167]
[47]
Lazarou SA, Contodimos GB, Gkegkes ID. Correction of alveolar cleft with calcium-based bone substitutes. J Craniofac Surg 2011; 22(3): 854-7.
[http://dx.doi.org/10.1097/SCS.0b013e31820f7f19] [PMID: 21558929]
[48]
Madrid JR, Gomez V, Mendoza B. Demineralized bone matrix for alveolar cleft management. Craniomaxillofac Trauma Reconstr 2014; 7(4): 251-7.
[http://dx.doi.org/10.1055/s-0034-1375173] [PMID: 25383144]
[49]
Benlidayi ME, Tatli U, Kurkcu M, Uzel A, Oztunc H. Comparison of bovine-derived hydroxyapatite and autogenous bone for secondary alveolar bone grafting in patients with alveolar clefts. J Oral Maxillofac Surg 2012; 70(1): e95-e102.
[http://dx.doi.org/10.1016/j.joms.2011.08.041] [PMID: 22182665]
[50]
Otto S, Kleye C, Burian E, Ehrenfeld M, Cornelius CP. Custom-milled individual allogeneic bone grafts for alveolar cleft osteoplasty-A technical note. J Craniomaxillofac Surg 2017; 45(12): 1955-61.
[http://dx.doi.org/10.1016/j.jcms.2017.09.011] [PMID: 29066039]
[51]
Gimbel M, Ashley RK, Sisodia M, et al. Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix. J Craniofac Surg 2007; 18(4): 895-901.
[http://dx.doi.org/10.1097/scs.0b013e3180a771af] [PMID: 17667684]
[52]
Behnia H, Khojasteh A, Soleimani M, et al. Secondary repair of alveolar clefts using human mesenchymal stem cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108(2): e1-6.
[http://dx.doi.org/10.1016/j.tripleo.2009.03.040] [PMID: 19615638]
[53]
Khalifa ME, Gomaa NE. Dental arch expansion after alveolar cleft repair using autogenous bone marrow derived mesenchymal stem cells versus autogenous chin bone graft. Egypt Dent J 2018; 64(1): 107-18.
[http://dx.doi.org/10.21608/edj.2017.77062]
[54]
Ahn G, Lee J-S, Yun W-S, Shim J-H, Lee U-L. Cleft alveolus reconstruction using a three-dimensional printed bioresorbable scaffold with human bone marrow cells. J Craniofac Surg 2018; 29(7): 1880-3.
[http://dx.doi.org/10.1097/SCS.0000000000004747] [PMID: 30028404]
[55]
Bajestan MN, Rajan A, Edwards SP, et al. Stem cell therapy for reconstruction of alveolar cleft and trauma defects in adults: A randomized controlled, clinical trial. Clin Implant Dent Relat Res 2017; 19(5): 793-801.
[http://dx.doi.org/10.1111/cid.12506] [PMID: 28656723]
[56]
Mossaad A, Badry TE, Abdelrahaman M, et al. Alveolar cleft reconstruction using different grafting techniques. Open Access Maced J Med Sci 2019; 7(8): 1369-73.
[http://dx.doi.org/10.3889/oamjms.2019.236] [PMID: 31110587]
[57]
Stanko P, Mracna J, Stebel A, Usakova V, Smrekova M, Vojtassak J. Mesenchymal stem cells - a promising perspective in the orofacial cleft surgery. Bratisl Lek Listy 2013; 114(2): 50-2.
[http://dx.doi.org/10.4149/BLL_2013_012] [PMID: 23331197]
[58]
Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Atashi A. Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: A preliminary report. J Craniomaxillofac Surg 2012; 40(1): 2-7.
[http://dx.doi.org/10.1016/j.jcms.2011.02.003] [PMID: 21420310]
[59]
Garcia BA, Prada MR, Ávila-Portillo LM, Rojas HN, Gómez-Ortega V, Menze E. New technique for closure of alveolar cleft with umbilical cord stem cells. J Craniofac Surg 2019; 30(3): 663-6.
[http://dx.doi.org/10.1097/SCS.0000000000004967] [PMID: 30507877]
[60]
Tanikawa DYS, Pinheiro CCG, Almeida MCA, et al. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int 2020; 2020: 6234167.
[http://dx.doi.org/10.1155/2020/6234167]
[61]
Soliman H, Ismail H, Shouman O, Bahaaeldin A. EL-HADIDY MR. Stem cells assisted cancellous bone graft versus stem cells with de-mineralized bone matrix for alveolar cleft reconstruction. Clin Implant Dent Relat Res 2017; 19(5): 793-801.
[62]
Pradel W, Tausche E, Gollogly J, Lauer G. Spontaneous tooth eruption after alveolar cleft osteoplasty using tissue-engineered bone: A case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 105(4): 440-4.
[http://dx.doi.org/10.1016/j.tripleo.2007.07.042] [PMID: 18206405]
[63]
Du F, Wu H, Li H, et al. Bone marrow mononuclear cells combined with beta-tricalcium phosphate granules for alveolar cleft repair: A 12-month clinical study. Sci Rep 2017; 7(1): 13773-3.
[http://dx.doi.org/10.1038/s41598-017-12602-1] [PMID: 29062005]
[64]
Al-Ahmady HH, Abd Elazeem AF, Bellah Ahmed NE, et al. Combining autologous bone marrow mononuclear cells seeded on collagen sponge with Nano Hydroxyapatite, and platelet-rich fibrin: Reporting a novel strategy for alveolar cleft bone regeneration. J Craniomaxillofac Surg 2018; 46(9): 1593-600.
[http://dx.doi.org/10.1016/j.jcms.2018.05.049] [PMID: 30196860]
[65]
Hibi H, Yamada Y, Ueda M, Endo Y. Alveolar cleft osteoplasty using tissue-engineered osteogenic material. Int J Oral Maxillofac Surg 2006; 35(6): 551-5.
[http://dx.doi.org/10.1016/j.ijom.2005.12.007] [PMID: 16584868]
[66]
Pradel W, Lauer G. Tissue-engineered bone grafts for osteoplasty in patients with cleft alveolus. Ann Anat 2012; 194(6): 545-8.
[http://dx.doi.org/10.1016/j.aanat.2012.06.002] [PMID: 22776088]
[67]
Choi B-H, Zhu S-J, Kim B-Y, Huh J-Y, Lee S-H, Jung J-H. Effect of platelet-rich plasma (PRP) concentration on the viability and prolifera-tion of alveolar bone cells: An in vitro study. Int J Oral Maxillofac Surg 2005; 34(4): 420-4.
[http://dx.doi.org/10.1016/j.ijom.2004.10.018] [PMID: 16053853]
[68]
Choi HS, Choi HG, Kim SH, et al. Influence of the alveolar cleft type on preoperative estimation using 3D CT assessment for alveolar cleft. Arch Plast Surg 2012; 39(5): 477-82.
[http://dx.doi.org/10.5999/aps.2012.39.5.477] [PMID: 23094242]