Prediction of Variable-Length B-Cell Epitopes for Antipeptide Paratopes Using the Program HAPTIC

Page: [328 - 339] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: B-cell epitope prediction for antipeptide antibody responses enables peptide-based vaccine design and related translational applications. This entails estimating epitopeparatope binding free-energy changes from antigen sequence; but attempts to do so assuming uniform epitope length (e.g., of hexapeptide sequences, each spanning a typical paratope diameter when fully extended) have neglected empirically established variation in epitope length.

Objective: This work aimed to develop a sequence-based physicochemical approach to variablelength B-cell epitope prediction for antipeptide paratopes recognizing flexibly disordered targets.

Methods: Said approach was developed by analogy between epitope-paratope binding and protein folding modeled as polymer collapse, treating paratope structure implicitly. Epitope-paratope binding was thus conceptually resolved into processes of epitope compaction, collapse and contact, with epitope collapse presenting the main entropic barrier limiting epitope length among nonpolyproline sequences. The resulting algorithm was implemented as a computer program, namely the Heuristic Affinity Prediction Tool for Immune Complexes (HAPTIC), which is freely accessible via an online interface (http://badong.freeshell.org/haptic.htm). This was used in conjunction with published data on representative known peptide immunogens.

Results: HAPTIC predicted immunodominant epitope sequences with lengths limited by penalties for both compaction and collapse, consistent with known paratope-bound structures of flexibly disordered epitopes. In most cases, the predicted association constant was greater than its experimentally determined counterpart but below the predicted upper bound for affinity maturation in vivo.

Conclusion: HAPTIC provides a physicochemically plausible means for estimating the affinity of antipeptide paratopes for sterically accessible and flexibly disordered peptidic antigen sequences by explicitly considering candidate B-cell epitopes of variable length.

Keywords: Epitopes, paratopes, peptide antigens, antipeptide antibodies, B-cell epitope prediction, binding free-energy changes, conformational disorder, polymer collapse.

Graphical Abstract

[1]
Van Regenmortel, M.H. What is a B-cell epitope? Methods Mol. Biol., 2009, 524, 3-20.
[http://dx.doi.org/10.1007/978-1-59745-450-6_1] [PMID: 19377933]
[2]
Sela-Culang, I.; Kunik, V.; Ofran, Y. The structural basis of antibody-antigen recognition. Front. Immunol., 2013, 4, 302.
[http://dx.doi.org/10.3389/fimmu.2013.00302] [PMID: 24115948]
[3]
Caoili, S.E. Hybrid methods for B-cell epitope prediction. Methods Mol. Biol., 2014, 1184, 245-283.
[http://dx.doi.org/10.1007/978-1-4939-1115-8_14] [PMID: 25048129]
[4]
Vita, R.; Overton, J.A.; Greenbaum, J.A.; Ponomarenko, J.; Clark, J.D.; Cantrell, J.R.; Wheeler, D.K.; Gabbard, J.L.; Hix, D.; Sette, A.; Peters, B. The immune epitope database (IEDB) 3.0. Nucleic Acids Res., 2015, 43(Database issue), D405-D412.
[http://dx.doi.org/10.1093/nar/gku938] [PMID: 25300482]
[5]
Gao, J.; Kurgan, L. Computational prediction of B cell epitopes from antigen sequences. Methods Mol. Biol., 2014, 1184, 197-215.
[http://dx.doi.org/10.1007/978-1-4939-1115-8_11] [PMID: 25048126]
[6]
Caoili, S.E. Antibodies, synthetic peptides and related constructs for planetary health based on green chemistry in the Anthropocene. Future Sci. OA, 2018, 4(3), FSO275.
[http://dx.doi.org/10.4155/fsoa-2017-0101] [PMID: 29568564]
[7]
Caoili, S.E. An integrative structure-based framework for predicting biological effects mediated by antipeptide antibodies. J. Immunol. Methods, 2015, 427, 19-29.
[http://dx.doi.org/10.1016/j.jim.2015.09.002] [PMID: 26410103]
[8]
MacRaild, C.A.; Richards, J.S.; Anders, R.F.; Norton, R.S. Antibody recognition of disordered antigens. Structure, 2016, 24(1), 148-157.
[http://dx.doi.org/10.1016/j.str.2015.10.028] [PMID: 26712277]
[9]
Caoili, S.E.C. Beyond B-cell epitopes: Curating positive data on antipeptide paratope binding to support peptide-based vaccine design. Protein Pept. Lett., 2021, 28(8), 953-962.
[http://dx.doi.org/10.2174/0929866528666210218215624] [PMID: 33602065]
[10]
Dill, K.A.; Stigter, D. Modeling protein stability as heteropolymer collapse. Adv. Protein Chem., 1995, 46, 59-104.
[http://dx.doi.org/10.1016/S0065-3233(08)60332-0] [PMID: 7771323]
[11]
Caoili, S.E. A structural-energetic basis for B-cell epitope prediction. Protein Pept. Lett., 2006, 13(7), 743-751.
[http://dx.doi.org/10.2174/092986606777790502] [PMID: 17018020]
[12]
Zhou, H.X.; Gilson, M.K. Theory of free energy and entropy in noncovalent binding. Chem. Rev., 2009, 109(9), 4092-4107.
[http://dx.doi.org/10.1021/cr800551w] [PMID: 19588959]
[13]
Novotný, J.; Handschumacher, M.; Haber, E.; Bruccoleri, R.E.; Carlson, W.B.; Fanning, D.W.; Smith, J.A.; Rose, G.D. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc. Natl. Acad. Sci. USA, 1986, 83(2), 226-230.
[http://dx.doi.org/10.1073/pnas.83.2.226] [PMID: 2417241]
[14]
Adzhubei, A.A.; Sternberg, M.J.; Makarov, A.A. Polyproline-II helix in proteins: structure and function. J. Mol. Biol., 2013, 425(12), 2100-2132.
[http://dx.doi.org/10.1016/j.jmb.2013.03.018] [PMID: 23507311]
[15]
Smyda, M.R.; Harvey, S.C. The entropic cost of polymer confinement. J. Phys. Chem. B, 2012, 116(35), 10928-10934.
[http://dx.doi.org/10.1021/jp302807r] [PMID: 22905742]
[16]
Hofmann, H.; Soranno, A.; Borgia, A.; Gast, K.; Nettels, D.; Schuler, B. Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proc. Natl. Acad. Sci. USA, 2012, 109(40), 16155-16160.
[http://dx.doi.org/10.1073/pnas.1207719109] [PMID: 22984159]
[17]
Wilkins, D.K.; Grimshaw, S.B.; Receveur, V.; Dobson, C.M.; Jones, J.A.; Smith, L.J. Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry, 1999, 38(50), 16424-16431.
[http://dx.doi.org/10.1021/bi991765q] [PMID: 10600103]
[18]
English, L.R.; Tilton, E.C.; Ricard, B.J.; Whitten, S.T. Intrinsic α helix propensities compact hydrodynamic radii in intrinsically disordered proteins. Proteins, 2017, 85(2), 296-311.
[http://dx.doi.org/10.1002/prot.25222] [PMID: 27936491]
[19]
Elam, W.A.; Schrank, T.P.; Campagnolo, A.J.; Hilser, V.J. Evolutionary conservation of the polyproline II conformation surrounding intrinsically disordered phosphorylation sites. Protein Sci., 2013, 22(4), 405-417.
[http://dx.doi.org/10.1002/pro.2217] [PMID: 23341186]
[20]
Rucker, A.L.; Pager, C.T.; Campbell, M.N.; Qualls, J.E.; Creamer, T.P. Host-guest scale of left-handed polyproline II helix formation. Proteins, 2003, 53(1), 68-75.
[http://dx.doi.org/10.1002/prot.10477] [PMID: 12945050]
[21]
Tomasso, M.E.; Tarver, M.J.; Devarajan, D.; Whitten, S.T. Hydrodynamic radii of intrinsically disordered proteins determined from experimental polyproline II propensities. PLOS Comput. Biol., 2016, 12(1), e1004686.
[http://dx.doi.org/10.1371/journal.pcbi.1004686] [PMID: 26727467]
[22]
Richards, F.M. The interpretation of protein structures: Total volume, group volume distributions and packing density. J. Mol. Biol., 1974, 82(1), 1-14.
[http://dx.doi.org/10.1016/0022-2836(74)90570-1] [PMID: 4818482]
[23]
Caoili, S.E. Immunization with peptide-protein conjugates: Impact on benchmarking B-cell epitope prediction for vaccine design. Protein Pept. Lett., 2010, 17(3), 386-398.
[http://dx.doi.org/10.2174/092986610790780288] [PMID: 19594433]
[24]
Swanson, J.; Audie, J. An unexpected way forward: Towards a more accurate and rigorous protein-protein binding affinity scoring function by eliminating terms from an already simple scoring function. J. Biomol. Struct. Dyn., 2018, 36(1), 83-97.
[http://dx.doi.org/10.1080/07391102.2016.1268974] [PMID: 27989231]
[25]
Schimmel, P.R.; Flory, P.J. Conformational energies and configurational statistics of copolypeptides containing L-proline. J. Mol. Biol., 1968, 34(1), 105-120.
[http://dx.doi.org/10.1016/0022-2836(68)90237-4] [PMID: 5760450]
[26]
Nakra, P.; Manivel, V.; Vishwakarma, R.A.; Rao, K.V. B cell responses to a peptide epitope. X. Epitope selection in a primary response is thermodynamically regulated. J. Immunol., 2000, 164(11), 5615-5625.
[http://dx.doi.org/10.4049/jimmunol.164.11.5615] [PMID: 10820236]
[27]
Caoili, S.E. On the meaning of affinity limits in B-cell epitope prediction for antipeptide antibody-mediated immunity. Adv. Bioinforma., 2012, 2012, 346765.
[http://dx.doi.org/10.1155/2012/346765] [PMID: 23209458]
[28]
Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res., 2019, 47(D1), D339-D343.
[http://dx.doi.org/10.1093/nar/gky1006] [PMID: 30357391]
[29]
Caoili, S.E. Benchmarking B-cell epitope prediction for the design of peptide-based vaccines: Problems and prospects. J. Biomed. Biotechnol., 2010, 2010, 910524.
[http://dx.doi.org/10.1155/2010/910524] [PMID: 20368996]
[30]
Kaur, M.; Chug, H.; Singh, H.; Chandra, S.; Mishra, M.; Sharma, M.; Bhatnagar, R. Identification and characterization of immunodominant B-cell epitope of the C-terminus of protective antigen of Bacillus anthracis. Mol. Immunol., 2009, 46(10), 2107-2115.
[http://dx.doi.org/10.1016/j.molimm.2008.12.031] [PMID: 19356802]
[31]
Subramanian, S.; Karande, A.A.; Adiga, P.R. Helix stabilization in the C-terminal peptide of chicken riboflavin carrier protein enhances immunogenicity and prolongs contraceptive potential as an epitope-based vaccine in female rats. Biochem. Biophys. Res. Commun., 2001, 287(1), 236-243.
[http://dx.doi.org/10.1006/bbrc.2001.5571] [PMID: 11549280]
[32]
Day, E.D.; Hashim, G.A.; Ireland, D.J.; Potter, N.T. Polyclonal antibodies to the encephalitogenic neighborhoods of myelin basic protein: Singular affinity populations neutralized by specific synthetic peptide probes. J. Neuroimmunol., 1986, 13(2), 143-158.
[http://dx.doi.org/10.1016/0165-5728(86)90061-5] [PMID: 2430996]
[33]
Tripathi, V.; Chitralekha, K.T.; Bakshi, A.R.; Tomar, D.; Deshmukh, R.A.; Baig, M.A.; Rao, D.N. Inducing systemic and mucosal immune responses to B-T construct of F1 antigen of Yersinia pestis in microsphere delivery. Vaccine, 2006, 24(16), 3279-3289.
[http://dx.doi.org/10.1016/j.vaccine.2006.01.031] [PMID: 16476510]
[34]
Mobini, R.; Magnusson, Y.; Wallukat, G.; Viguier, M.; Hjalmarson, A.; Hoebeke, J. Probing the immunological properties of the extracellular domains of the human β1-adrenoceptor. J. Autoimmun., 1999, 13(2), 179-186.
[http://dx.doi.org/10.1006/jaut.1999.0310] [PMID: 10479386]
[35]
Obeid, O.E.; Stanley, C.M.; Steward, M.W. Immunological analysis of the protective responses to the chimeric synthetic peptide representing T- and B-cell epitopes from the fusion protein of measles virus. Virus Res., 1996, 42(1-2), 173-180.
[http://dx.doi.org/10.1016/0168-1702(96)01311-1] [PMID: 8806185]
[36]
Thomas, B.E.; Manocha, M.; Haq, W.; Adak, T.; Pillai, C.R.; Rao, D.N. Modulation of the humoral response to repeat and non-repeat sequences of the circumsporozoite protein of Plasmodium vivax using novel adjuvant and delivery systems. Ann. Trop. Med. Parasitol., 2001, 95(5), 451-472.
[http://dx.doi.org/10.1080/00034983.2001.11813659] [PMID: 11487368]
[37]
Geylis, V.; Kourilov, V.; Meiner, Z.; Nennesmo, I.; Bogdanovic, N.; Steinitz, M. Human monoclonal antibodies against amyloid-beta from healthy adults. Neurobiol. Aging, 2005, 26(5), 597-606.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.06.008] [PMID: 15708434]
[38]
Chaba, B.; Kumar, P.; Haq, W.; Sabhnani, L.; Rao, D.N. Influence of immunoadjuvants and a promiscous T-cell determinant on the immunogenicity of RESA peptide antigen of P. falciparum. Int. J. Immunopharmacol., 1998, 20(6), 259-273.
[http://dx.doi.org/10.1016/S0192-0561(98)00021-6] [PMID: 9754674]
[39]
Chuang, G.Y.; Lai, Y.T.; Boyington, J.C.; Cheng, C.; Geng, H.; Narpala, S.; Rawi, R.; Schmidt, S.D.; Tsybovsky, Y.; Verardi, R.; Xu, K.; Yang, Y.; Zhang, B.; Chambers, M.; Changela, A.; Corrigan, A.R.; Kong, R.; Olia, A.S.; Ou, L.; Sarfo, E.K.; Wang, S.; Wu, W.; Doria-Rose, N.A.; McDermott, A.B.; Mascola, J.R.; Kwong, P.D. Development of a 3mut-apex-stabilized envelope trimer that expands HIV-1 neutralization breadth when used to boost fusion peptide-directed vaccine-elicited responses. J. Virol., 2020, 94(13), e00074-e20.
[http://dx.doi.org/10.1128/JVI.00074-20] [PMID: 32295908]
[40]
Sauter, M.; Strieker, M.; Kleist, C.; Wischnjow, A.; Daniel, V.; Altmann, A.; Haberkorn, U.; Mier, W. Improving antibody-based therapies by chemical engineering of antibodies with multimeric cell-penetrating peptides for elevated intracellular delivery. J. Control. Release, 2020, 322, 200-208.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.005] [PMID: 32184098]
[41]
Schneider, A.F.L.; Benz, L.S.; Lehmann, M.; Hackenberger, C.P.R. Cell-permeable nanobodies allow dual-color super-resolution microscopy in untransfected living cells. Angew. Chem. Int. Ed. Engl., 2021, 60(40), 22075-22080.
[http://dx.doi.org/10.1002/anie.202103068] [PMID: 34288299]
[42]
Kanampalliwar, A.M. Reverse vaccinology and its applications. Methods Mol. Biol., 2020, 2131, 1-16.
[http://dx.doi.org/10.1007/978-1-0716-0389-5_1] [PMID: 32162247]
[43]
Kumar, V.; Kancharla, S.; Kolli, P.; Jena, M. Reverse vaccinology approach towards the in-silico multiepitope vaccine development against SARS-CoV-2. F1000 Res., 2021, 10, 44.
[http://dx.doi.org/10.12688/f1000research.36371.1] [PMID: 33841800]
[44]
Hisham, Y.; Ashhab, Y.; Hwang, S.H.; Kim, D.E. Identification of highly conserved SARS-CoV-2 antigenic epitopes with wide coverage using reverse vaccinology approach. Viruses, 2021, 13(5), 1-16.
[http://dx.doi.org/10.3390/v13050787] [PMID: 33925069]
[45]
Caoili, S.E. Expressing redundancy among linear-epitope sequence data based on residue-level physicochemical similarity in the context of antigenic cross-reaction. Adv. Bioinforma., 2016, 2016, 1276594.
[http://dx.doi.org/10.1155/2016/1276594] [PMID: 27274725]