Interaction of Synthetic Pyrethroid Insecticide Deltamethrin with Human Alpha-2-Macroglobulin: Spectroscopic and Molecular Docking Studies

Page: [284 - 292] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Deltamethrin (DLM) is a commercial insecticide of the synthetic pyrethroid family that is used to control disease-causing insects and vectors. When humans are exposed to the fumes or aerosols of DLM, it enters the body via cuticular absorption and reacts with proteins and other biomolecules.

Objective: Alpha-2-macroglobulin (α2M) is a serum proteinase inhibitor that also carries out receptor- mediated endocytosis of extracellular substances. This study was done to decipher the structural and functional alterations of α2M by DLM.

Methods: Various spectroscopic techniques, including UV absorption and fluorescence spectroscopy, binding studies, and molecular docking, were used to characterize the interaction of DLM with α2M. The affinity constant was calculated from the Stern-Volmer equation using fluorescence data.

Results: The UV-Vis and fluorescence spectral studies indicated the formation of a complex between α2M and DLM. Thermodynamically, the interaction was found to be spontaneous with ΔG = -4.23 kcal/mol. CD spectra suggested a change in the secondary structure of the protein from β to α helical content with increasing concentration of DLM. The molecular docking study by Autodock Vina established the interaction of DLM with Glu-926, Ala-1103, Ala-1108, Val-1116, Asn-1159, Glu-1220, Leu-1261, Thr-1272, Ile-1390, Pro-1391, Lys-1393, Val-1396, Lys-1397, Thr-1408, Glu-1409, Val-1410, Ser-1411, Ser-1412, and Asn-1413 with an improved docking score of -6.191 kcal/mol. The binding was carried out in the vicinity of the receptor-binding domain at the C-terminal of α2M.

Conclusion: The decrease in the functional activity and structural changes of protein after binding with DLM has a significant effect on human α2M. The information may be useful for exploring the role of DLM in a clinical chemistry laboratory.

Keywords: Synthetic pyrethroids, deltamethrin, insecticide, alpha-2-macroglobulin, anti-proteinase, molecular docking.

Graphical Abstract

[1]
Metcalf, R.L. Insect Control. Ullmann’s Encyclopedia of Industrial Chemistry.Wiley-VCH: Weinheim, 2014.
[2]
Ujihara, K. The history of extensive structural modifications of pyrethroids. J. Pestic. Sci., 2019, 44(4), 215-224.
[http://dx.doi.org/10.1584/jpestics.D19-102] [PMID: 31777441]
[3]
Bradberry, S.M.; Cage, S.A.; Proudfoot, A.T.; Vale, J.A.; Allister, J. Poisoning due to pyrethroids. Toxicol. Rev., 2005, 24(2), 93-106.
[http://dx.doi.org/10.2165/00139709-200524020-00003] [PMID: 16180929]
[4]
Laws, E.R. Jr. Handbook of Pesticide Toxicology, General Principles. Academic Press, Inc.: NY, 1990.
[5]
Eads, D.A.; Biggins, D.E.; Bowser, J.; McAllister, J.C.; Griebel, R.L.; Childers, E.; Livieri, T.M.; Painter, C.; Krank, L.S.; Bly, K. Resistance to deltamethrin in prairie dog (Cynomys ludovicianus) fleas in the field and in the laboratory. J. Wildl. Dis., 2018, 54(4), 745-754.
[http://dx.doi.org/10.7589/2017-10-250] [PMID: 29723100]
[6]
Deltamethrin. Pesticide Tolerance. Fed. Regist, 2004, 69(207), 62602-62615.
[7]
Bouwman, H.; Sereda, B.; Meinhardt, H.M. Simultaneous presence of DDT and pyrethroid residues in human breast milk from a malaria endemic area in South Africa. Environ. Pollut., 2006, 144(3), 902-917.
[http://dx.doi.org/10.1016/j.envpol.2006.02.002] [PMID: 16564119]
[8]
Zhu, F.; Wigginton, J.; Romero, A.; Ferguson, K.; Potter, M.F.; Haynes, K.F.; Palli, S.R. Widespread distribution of knockdown resistance mutations in the bed bud, Cimex lectulariuss populations in the United States. Arch. Insect Biochem. Physiol., 2010, 73(4), 245-257.
[PMID: 20301216]
[9]
The Pesticide Manual: A World Compendium.Published by The British Crop Protection Council, 1987.
[10]
Chemistry of Plant Protection 4: Synthetic Pyrethroid Insecticides: Structures and Properties. Springer-Verlag: Berlin, Heidelberg, New York, 1990.
[11]
The Pyrethroid Insecticides. Taylor and Francis: London, Philadelphia, 1985.
[12]
Environmental Health Criteria 97 - Deltamethrin. International Programme on Chemical Safety, World Health Organization: Geneva, Switzerland, 1990, pp. 1-133.
[13]
Eells, J.T.; Bandettini, P.A.; Holman, P.A.; Propp, J.M. Pyrethroid insecticide-induced alterations in mammalian synaptic membrane potential. J. Pharmacol. Exp. Ther., 1992, 262(3), 1173-1181.
[PMID: 1527722]
[14]
Joy, R.M. Pyrethrins and pyrethroid insecticides. Pesticides and neurological diseases. CRC Press: Boca Raton, FL, 1994, pp. 292-312.
[15]
Burr, S.A.; Ray, D.E. Structure-activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels. Toxicol. Sci., 2004, 77(2), 341-346.
[http://dx.doi.org/10.1093/toxsci/kfh027] [PMID: 14657519]
[16]
Ray, D.E.; Fry, J.R. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol. Ther., 2006, 111(1), 174-193.
[http://dx.doi.org/10.1016/j.pharmthera.2005.10.003] [PMID: 16324748]
[17]
Lu, Q.; Sun, Y.; Ares, I.; Anadón, A.; Martínez, M.; Martínez-Larrañaga, M.R.; Yuan, Z.; Wang, X.; Martínez, M.A. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ. Res., 2019, 170, 260-281.
[http://dx.doi.org/10.1016/j.envres.2018.12.045] [PMID: 30599291]
[18]
Jia, Z.Z.; Zhang, J.W.; Zhou, D.; Xu, D.Q.; Feng, X.Z. Deltamethrin exposure induces oxidative stress and affects meiotic maturation in mouse oocyte. Chemosphere, 2019, 223, 704-713.
[http://dx.doi.org/10.1016/j.chemosphere.2019.02.092] [PMID: 30802836]
[19]
Soderlund, D.M.; Clark, J.M.; Sheets, L.P.; Mullin, L.S.; Piccirillo, V.J.; Sargent, D.; Stevens, J.T.; Weiner, M.L. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology, 2002, 171(1), 3-59.
[http://dx.doi.org/10.1016/S0300-483X(01)00569-8] [PMID: 11812616]
[20]
He, F.; Wang, S.; Liu, L.; Chen, S.; Zhang, Z.; Sun, J. Clinical manifestations and diagnosis of acute pyrethroid poisoning. Arch. Toxicol., 1989, 63(1), 54-58.
[http://dx.doi.org/10.1007/BF00334635] [PMID: 2742502]
[21]
Borth, W. Alpha 2-macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J., 1992, 6(15), 3345-3353.
[http://dx.doi.org/10.1096/fasebj.6.15.1281457] [PMID: 1281457]
[22]
Matthijs, G.; Devriendt, K.; Cassiman, J.J.; Van den Berghe, H.; Marynen, P. Structure of the human alpha-2 macroglobulin gene and its promotor. Biochem. Biophys. Res. Commun., 1992, 184(2), 596-603.
[http://dx.doi.org/10.1016/0006-291X(92)90631-T] [PMID: 1374237]
[23]
Sottrup-Jensen, L. Alpha-macroglobulins: structure, shape, and mechanism of proteinase complex formation. J. Biol. Chem., 1989, 264(20), 11539-11542.
[http://dx.doi.org/10.1016/S0021-9258(18)80094-1] [PMID: 2473064]
[24]
Sottrup-Jensen, L. A2-macroglobulin and related thiol ester plasma proteins. In: The Plasma Proteins; Putnam, F., Ed.; New York, 1987; 5, pp. 191-291.
[25]
Barrett, A.J. A2-Macroglobulin. In: Methods in Enzymotogy; Lorand, L., Ed.; New York, 1981; 80, pp. 737-754.
[26]
Sottrup-Jensen, L.; Stepanik, T.M.; Kristensen, T.; Wierzbicki, D.M.; Jones, C.M.; Lønblad, P.B.; Magnusson, S.; Petersen, T.E. Primary structure of human alpha 2-macroglobulin. V. The complete structure. J. Biol. Chem., 1984, 259(13), 8318-8327.
[http://dx.doi.org/10.1016/S0021-9258(17)39730-2] [PMID: 6203908]
[27]
Jenner, L.; Husted, L.; Thirup, S.; Sottrup-Jensen, L.; Nyborg, J. Crystal structure of the receptor-binding domain of alpha 2-macroglobulin. Structure, 1998, 6(5), 595-604.
[http://dx.doi.org/10.1016/S0969-2126(98)00061-6] [PMID: 9634697]
[28]
Moestrup, S.K.; Kaltoft, K.; Petersen, C.M.; Pedersen, S.; Gliemann, J.; Christensen, E.I. Immunocytochemical identification of the human alpha 2-macroglobulin receptor in monocytes and fibroblasts: Monoclonal antibodies define the receptor as a monocyte differentiation antigen. Exp. Cell Res., 1990, 190(2), 195-203.
[http://dx.doi.org/10.1016/0014-4827(90)90185-D] [PMID: 2209723]
[29]
Li, J.; Liu, X.; Ren, C.; Li, J.; Sheng, F.; Hu, Z. In vitro study on the interaction between thiophanate methyl and human serum albumin. J. Photochem. Photobiol. B, 2009, 94(3), 158-163.
[http://dx.doi.org/10.1016/j.jphotobiol.2008.10.001] [PMID: 19121585]
[30]
Silva, D.; Cortez, C.M.; Cunha-Bastos, J.; Louro, S.R.W. Methyl parathion interaction with human and bovine serum albumin. Toxicol. Lett., 2004, 147(1), 53-61.
[http://dx.doi.org/10.1016/j.toxlet.2003.10.014] [PMID: 14700528]
[31]
Sultatos, L.G.; Basker, K.M.; Shao, M.; Murphy, S.D. The interaction of the phosphorothioate insecticides chlorpyrifos and parathion and their oxygen analogues with bovine serum albumin. Mol. Pharmacol., 1984, 26(1), 99-104.
[PMID: 6205248]
[32]
Zhang, G.; Wang, Y.; Zhang, H.; Tang, S.; Tao, W. Human serum albumin interaction with paraquat studied using spectroscopic methods. Pestic. Biochem. Physiol., 2007, 87, 23-29.
[http://dx.doi.org/10.1016/j.pestbp.2006.05.003]
[33]
Dixit, S.; Zia, M.K.; Siddiqui, T.; Ahsan, H.; Khan, F.H. Interaction of human alpha-2-macroglobulin with pesticide aldicarb using spectroscopy and molecular docking. Protein Pept. Lett., 2020, 27(12), 1-10.
[PMID: 32957873]
[34]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[35]
Rehman, A.A.; Sarwar, T.; Arif, H.; Ali, S.S.; Ahsan, H.; Tabish, M.; Khan, F.H. Spectroscopic and thermodynamic studies on ferulic acid-alpha-2-macroglobulin interaction. J. Mol. Struct., 2017, 1144, 254-259.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.034]
[36]
Jahanban-Esfahlan, A.; Davaran, S.; Moosavi-Movahedi, A.; Dastmalchi, S. Investigating the interaction of juglone (5-hydroxy-1, 4-naphthoquinone) with serum albumins using spectroscopic and in silico methods. J. Iran. Chem. Soc., 2017, 14, 1527-1540.
[http://dx.doi.org/10.1007/s13738-017-1094-0]
[37]
Mokaberi, P.; Babayan-Mashhadi, F.; Reza Saberi, M.; Chamani, J. Analysis of the interaction behavior between nano-curcumin and two human serum proteins: combining spectroscopy and molecular stimulation to understand protein-protein interaction. J. Biomol. Struct. Dyn., 2020, 20, 1-20.
[http://dx.doi.org/10.1080/07391102.2020.1766570] [PMID: 32397834]
[38]
Biophysical and biochemical aspects of fluorescence spectroscopy. Plenum Press: New York, 1991, pp. 1-41.
[39]
Shakibapour, N.; Dehghani Sani, F.; Beigoli, S.; Sadeghian, H.; Chamani, J. Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: Binary and ternary approaches. J. Biomol. Struct. Dyn., 2019, 37(2), 359-371.
[http://dx.doi.org/10.1080/07391102.2018.1427629] [PMID: 29338579]
[40]
Sohrabi, T; Hosseinzadeh, M; Beigoli, S Journal of molecular liquids. Probing the binding of lomefloxacin to a calf thymus DNA-histone H1 complex by multi-spectroscopic and molecular modeling techniques. J. Mol. Liq., 2018, 256, 127-138.
[http://dx.doi.org/10.1016/j.molliq.2018.02.031]
[41]
Assaran Darban, R.; Shareghi, B.; Asoodeh, A.; Chamani, J. Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. J. Biomol. Struct. Dyn., 2017, 35(16), 3648-3662.
[http://dx.doi.org/10.1080/07391102.2016.1264892] [PMID: 27897084]
[42]
Lakowicz, J.R. Principles of Fluorescence Spectroscopy. Plenum: New York, USA, 1999, pp. 277-283.
[http://dx.doi.org/10.1007/978-1-4757-3061-6]
[43]
Li, D.; Hong, D.; Guo, H.; Chen, J.; Ji, B. Probing the influences of urea on the interaction of sinomenine with human serum albumin by steady-state fluorescence. J. Photochem. Photobiol. B, 2012, 117, 126-131.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.09.007] [PMID: 23110856]
[44]
Thomson, W.T. Agricultural Chemicals Book I: Insecticides. Thomson Publications: Fresno, CA, 1992.
[45]
Doi, H.; Kikuchi, H.; Murai, H.; Kawano, Y.; Shigeto, H.; Ohyagi, Y.; Kira, J. Motor neuron disorder simulating ALS induced by chronic inhalation of pyrethroid insecticides. Neurology, 2006, 67(10), 1894-1895.
[http://dx.doi.org/10.1212/01.wnl.0000244489.65670.9f] [PMID: 17130437]
[46]
Sethi, P.; Bruckner, J.V.; Mortuza, T.B.; Cummings, B.S.; Muralidhara, S.; White, C.A. Plasma protein and lipoprotein binding of Cis- and Trans-permethrin and deltamethrin in adult humans and rats. Drug Metab. Dispos., 2019, 47(9), 941-948.
[http://dx.doi.org/10.1124/dmd.118.085464] [PMID: 31248885]
[47]
Markus, V.; Teralı, K.; Dalmizrak, O.; Ozer, N. Assessment of the inhibitory activity of the pyrethroid pesticide deltamethrin against human placental glutathione transferase P1-1: A combined kinetic and docking study. Environ. Toxicol. Pharmacol., 2018, 61, 18-23.
[http://dx.doi.org/10.1016/j.etap.2018.05.013] [PMID: 29807309]
[48]
Tamura, A.; Sugimoto, K.; Sato, T.; Fujii, T. The effects of haematocrit, plasma protein concentration and temperature of drug-containing blood in-vitro on the concentrations of the drug in the plasma. J. Pharm. Pharmacol., 1990, 42(8), 577-580.
[http://dx.doi.org/10.1111/j.2042-7158.1990.tb07062.x] [PMID: 1981587]
[49]
Roufegarinejad, L.; Amarowicz, R.; Jahanban-Esfahlan, A. Characterizing the interaction between pyrogallol and human serum albumin by spectroscopic and molecular docking methods. J. Biomol. Struct. Dyn., 2019, 37(11), 2766-2775.
[http://dx.doi.org/10.1080/07391102.2018.1496854] [PMID: 30052121]
[50]
Jahanban-Esfahlan, A.; Panahi-Azar, V.; Sajedi, S. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking. Food Chem., 2016, 202, 426-431.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.026] [PMID: 26920314]
[51]
Jahanban-Esfahlan, A.; Panahi-Azar, V.; Sajedi, S. Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin. Biopolymers, 2015, 103(11), 638-645.
[http://dx.doi.org/10.1002/bip.22697] [PMID: 26139573]