Substrate-dependent Inhibition of Hypericin on Human Carboxylesterase 2: Implications for Herb-drug Combination

Page: [38 - 44] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Hypericin is the main active ingredient of St. John’s wort, a Chinese herb commonly used for treating depression. Previous studies shown that hypericin can strongly inhibit human cytochrome P450 (CYP) enzyme activities; however, its potential interactions that inhibit human carboxylesterases 2 (hCE2) are unclear. Purpose: This study aimed to investigate the inhibitory effect of hypericin on hCE2.

Methods: The inhibition mechanism of hypericin on hCE2 was studied by using N-(2-butyl-1,3-dioxo-2,3-dihydro- 1H-phenalen-6-yl)-2-chloroacetamide (NCEN). The type of inhibition of hypericin on hCE2 and the corresponding inhibition constant (Ki) value were determined. The inhibition of hypericin on hCE2 in living cells was discussed. The risk of herb-drug interactions (HDI) of hypericin in vivo was predicted by estimating the area under the drug concentration-time curve (AUC) in the presence or absence of hypericin. To understand the inhibition mechanism of hypericin on the activity of hCE2 in-depth, molecular docking was performed.

Results: The half-maximal inhibitory concentration (IC50) values of hypericin against the hydrolysis of NCEN and irinotecan (CPT-11) were calculated to be 26.59 μM and 112.8 μM, respectively. Hypericin inhibited the hydrolysis of NCEN and CPT-11. Their Ki values were estimated as 10.53 μM and 81.77 μM, respectively. Moreover, hypericin distinctly suppressed hCE2 activity in living cells. In addition, the AUC of hCE2 metabolic drugs with metabolic sites similar to NCEN was estimated to increase by up to 5 % in the presence of hypericin. More importantly, the exposure of CPT-11 in the intestinal epithelium was predicted to increase by 2 % - 69 % following the oral coadministration of hypericin. Further, molecular simulations indicated that hypericin could strongly interact with ASP98, PHE307, and ARG355 to form four hydrogen bonds within hCE2.

Conclusion: These findings regarding the combination of hypericin-containing herbs and drugs metabolized by hCE2 are of considerable clinical significance.

Keywords: Hypericin, hCE2, NCEN, CPT-11, inhibition, HDI.

Graphical Abstract

[1]
Zhai, X.J.; Chen, F.; Chen, C.; Zhu, C.R.; Lu, Y.N. LC-MS/MS based studies on the anti-depressant effect of hypericin in the chronic unpredictable mild stress rat model. J. Ethnopharmacol., 2015, 169, 363-369.
[http://dx.doi.org/10.1016/j.jep.2015.04.053] [PMID: 25957811]
[2]
Mirmalek, S.A.; Azizi, M.A.; Jangholi, E.; Yadollah-Damavandi, S.; Javidi, M.A.; Parsa, Y.; Parsa, T.; Salimi-Tabatabaee, S.A.; Ghasemzadeh Kolagar, H.; Alizadeh-Navaei, R. Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum on the MCF-7 human breast cancer cell line. Cancer Cell Int., 2016, 16(1), 3.
[http://dx.doi.org/10.1186/s12935-016-0279-4] [PMID: 26865836]
[3]
Jacobson, J.M.; Feinman, L.; Liebes, L.; Ostrow, N.; Koslowski, V.; Tobia, A.; Cabana, B.E.; Lee, D.; Spritzler, J.; Prince, A.M. Pharmacokinetics, safety, and antiviral effects of hypericin, a derivative of St. John’s wort plant, in patients with chronic hepatitis C virus infection. Antimicrob. Agents Chemother., 2001, 45(2), 517-524.
[http://dx.doi.org/10.1128/AAC.45.2.517-524.2001] [PMID: 11158749]
[4]
Nafee, N.; Youssef, A.; El-Gowelli, H.; Asem, H.; Kandil, S. Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing. Int. J. Pharm., 2013, 454(1), 249-258.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.067] [PMID: 23834835]
[5]
Cole, C.D.; Liu, J.K.; Sheng, X.; Chin, S.S.; Schmidt, M.H.; Weiss, M.H.; Couldwell, W.T. Hypericin-mediated photodynamic therapy of pituitary tumors: preclinical study in a GH4C1 rat tumor model. J. Neurooncol., 2008, 87(3), 255-261.
[http://dx.doi.org/10.1007/s11060-007-9514-0] [PMID: 18228116]
[6]
Lin, S.; Lei, K.; Du, W.; Yang, L.; Shi, H.; Gao, Y.; Yin, P.; Liang, X.; Liu, J. Enhancement of oxaliplatin sensitivity in human colorectal cancer by hypericin mediated photodynamic therapy via ROS-related mechanism. Int. J. Biochem. Cell Biol., 2016, 71, 24-34.
[http://dx.doi.org/10.1016/j.biocel.2015.12.003] [PMID: 26673998]
[7]
Huntosova, V.; Novotova, M.; Nichtova, Z.; Balogova, L.; Maslanakova, M.; Petrovajova, D.; Stroffekova, K. Assessing light-independent effects of hypericin on cell viability, ultrastructure and metabolism in human glioma and endothelial cells. Toxicol. In Vitro, 2017, 40, 184-195.
[http://dx.doi.org/10.1016/j.tiv.2017.01.005] [PMID: 28087315]
[8]
Schipper, M.L.; Patel, M.R.; Gambhir, S.S. Evaluation of firefly luciferase bioluminescence mediated photodynamic toxicity in cancer cells. Mol. Imaging Biol., 2006, 8(4), 218-225.
[http://dx.doi.org/10.1007/s11307-006-0048-1] [PMID: 16791748]
[9]
Kubin, A.; Wierrani, F.; Burner, U.; Alth, G.; Grünberger, W. Hypericin--the facts about a controversial agent. Curr. Pharm. Des., 2005, 11(2), 233-253.
[http://dx.doi.org/10.2174/1381612053382287] [PMID: 15638760]
[10]
Slatter, J.G.; Su, P.; Sams, J.P.; Schaaf, L.J.; Wienkers, L.C. Bioactivation of the anticancer agent CPT-11 to SN-38 by human hepatic microsomal carboxylesterases and the in vitro assessment of potential drug interactions. Drug Metab. Dispos., 1997, 25(10), 1157-1164.
[PMID: 9321519]
[11]
Ait-Tihyaty, M.; Rachid, Z.; Larroque-Lombard, A.L.; Jean-Claude, B.J. ZRX1, the first EGFR inhibitor-capecitabine based combi-molecule, requires carboxylesterase-mediated hydrolysis for optimal activity. Invest. New Drugs, 2013, 31(6), 1409-1423.
[http://dx.doi.org/10.1007/s10637-013-0008-y] [PMID: 23959266]
[12]
Goda, R.; Nagai, D.; Akiyama, Y.; Nishikawa, K.; Ikemoto, I.; Aizawa, Y.; Nagata, K.; Yamazoe, Y. Detection of a new N-oxidized metabolite of flutamide, N-[4-nitro-3-(trifluoromethyl)phenyl]hy-droxylamine, in human liver microsomes and urine of prostate cancer patients. Drug Metab. Dispos., 2006, 34(5), 828-835.
[http://dx.doi.org/10.1124/dmd.105.008623] [PMID: 16507648]
[13]
Hatfield, M.J.; Tsurkan, L.; Garrett, M.; Shaver, T.M.; Hyatt, J.L.; Edwards, C.C.; Hicks, L.D.; Potter, P.M. Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11. Biochem. Pharmacol., 2011, 81(1), 24-31.
[http://dx.doi.org/10.1016/j.bcp.2010.09.001] [PMID: 20833148]
[14]
Williams, E.T.; Jones, K.O.; Ponsler, G.D.; Lowery, S.M.; Perkins, E.J.; Wrighton, S.A.; Ruterbories, K.J.; Kazui, M.; Farid, N.A. The biotransformation of prasugrel, a new thienopyridine prodrug, by the human carboxylesterases 1 and 2. Drug Metab. Dispos., 2008, 36(7), 1227-1232.
[http://dx.doi.org/10.1124/dmd.107.020248] [PMID: 18372401]
[15]
Fujita, K.; Kubota, Y.; Ishida, H.; Sasaki, Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J. Gastroenterol., 2015, 21(43), 12234-12248.
[http://dx.doi.org/10.3748/wjg.v21.i43.12234] [PMID: 26604633]
[16]
Cui, D.N.; Wang, X.; Chen, J.Q.; Lv, B.; Zhang, P.; Zhang, W.; Zhang, Z.J.; Xu, F.G. Quantitative evaluation of the compatibility effects of huangqin decoction on the treatment of irinotecan-induced gastrointestinal toxicity using untargeted metabolomics. Front. Pharmacol., 2017, 8, 211.
[http://dx.doi.org/10.3389/fphar.2017.00211] [PMID: 28484391]
[17]
Kobayashi, Y.; Fukami, T.; Shimizu, M.; Nakajima, M.; Yokoi, T. Contributions of arylacetamide deacetylase and carboxylesterase 2 to flutamide hydrolysis in human liver. Drug Metab. Dispos., 2012, 40(6), 1080-1084.
[http://dx.doi.org/10.1124/dmd.112.044537] [PMID: 22446520]
[18]
Ohbuchi, M.; Miyata, M.; Nagai, D.; Shimada, M.; Yoshinari, K.; Yamazoe, Y. Role of enzymatic N-hydroxylation and reduction in flutamide metabolite-induced liver toxicity. Drug Metab. Dispos., 2009, 37(1), 97-105.
[http://dx.doi.org/10.1124/dmd.108.021964] [PMID: 18832480]
[19]
Li, J.N.; Cao, Y.F.; He, R.R.; Ge, G.B.; Guo, B.; Wu, J.J. Evidence for shikonin acting as an active inhibitor of human carboxylesterases 2: Implications for herb-drug combination. Phytother. Res., 2018, 32(7), 1311-1319.
[http://dx.doi.org/10.1002/ptr.6062] [PMID: 29468758]
[20]
Bienert, S.; Waterhouse, A.; de Beer, T.A.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res., 2017, 45(D1), D313-D319.
[http://dx.doi.org/10.1093/nar/gkw1132] [PMID: 27899672]
[21]
Weng, Z.M.; Ge, G.B.; Dou, T.Y.; Wang, P.; Liu, P.K.; Tian, X.H.; Qiao, N.; Yu, Y.; Zou, L.W.; Zhou, Q.; Zhang, W.D.; Hou, J. Characterization and structure-activity relationship studies of flavonoids as inhibitors against human carboxylesterase 2. Bioorg. Chem., 2018, 77, 320-329.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.011] [PMID: 29421708]
[22]
Takimoto, C.H.; Morrison, G.; Harold, N.; Quinn, M.; Monahan, B.P.; Band, R.A.; Cottrell, J.; Guemei, A.; Llorens, V.; Hehman, H.; Ismail, A.S.; Flemming, D.; Gosky, D.M.; Hirota, H.; Berger, S.J.; Berger, N.A.; Chen, A.P.; Shapiro, J.D.; Arbuck, S.G.; Wright, J.; Hamilton, J.M.; Allegra, C.J.; Grem, J.L. Phase I and pharmacologic study of irinotecan administered as a 96-hour infusion weekly to adult cancer patients. J. Clin. Oncol., 2000, 18(3), 659-667.
[http://dx.doi.org/10.1200/JCO.2000.18.3.659] [PMID: 10653882]
[23]
Obach, R.S.; Lombardo, F.; Waters, N.J. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab. Dispos., 2008, 36(7), 1385-1405.
[http://dx.doi.org/10.1124/dmd.108.020479] [PMID: 18426954]
[24]
Couldwell, W.T.; Surnock, A.A.; Tobia, A.J.; Cabana, B.E.; Stillerman, C.B.; Forsyth, P.A.; Appley, A.J.; Spence, A.M.; Hinton, D.R.; Chen, T.C. A phase 1/2 study of orally administered synthetic hypericin for treatment of recurrent malignant gliomas. Cancer, 2011, 117(21), 4905-4915.
[http://dx.doi.org/10.1002/cncr.26123] [PMID: 21456013]
[25]
Wang, Z.; Lin, S.; Hu, M. Contents of hypericin and pseudohypericin in five commercial products of St John’s wort (Hypericum perforatum). J. Sci. Food Agric., 2004, 84(5), 395-397.
[http://dx.doi.org/10.1002/jsfa.1598]
[26]
Davidson, R.; Cavalcanti, R.; Brunton, J.L.; Bast, D.J.; de Azavedo, J.C.; Kibsey, P.; Fleming, C.; Low, D.E. Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N. Engl. J. Med., 2002, 346(10), 747-750.
[http://dx.doi.org/10.1056/NEJMoa012122] [PMID: 11882730]
[27]
Kühl, A.A.; Erben, U.; Cieluch, C.; Spieckermann, S.; Gröne, J.; Lohneis, P.; Pape, U.F.; Arsenic, R.; Utku, N. Tissue-infiltrating plasma cells are an important source of carboxylesterase 2 contributing to the therapeutic efficacy of prodrugs. Cancer Lett., 2016, 378(1), 51-58.
[http://dx.doi.org/10.1016/j.canlet.2016.04.041] [PMID: 27149931]
[28]
Wang, X.; Zhu, H.J.; Markowitz, J.S. Carboxylesterase 1-mediated drug-drug interactions between clopidogrel and simvastatin. Biol. Pharm. Bull., 2015, 38(2), 292-297.
[http://dx.doi.org/10.1248/bpb.b14-00679] [PMID: 25747989]