Survey on Structural Neuro Imaging for the Identification of Brain Abnormalities in Schizophrenia

Article ID: e310122200724 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The importance of identifying the structural and functional abnormalities in the brain in the early prediction and diagnosis of schizophrenia has attracted the attention of neuroimaging scientists and clinicians.

Objective: The purpose of this study is to structure a review paper that recognizes specific biomarkers of the schizophrenic brain.

Methods: Neuroimaging can be used to characterize brain structure, function, and chemistry by different non-invasive techniques such as computed tomography, magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography. The abnormalities in the brain can be used to discriminate psychic disorder like schizophrenia from others. To find disease-related brain alterations in neuroimaging, structural neuroimaging studies provide the most consistent evidence in most of the studies.

The review discusses the major issues and findings in structural neuroimaging studies of schizophrenia. In particular, the data is collected from different papers that concentrated on the brain affected regions of different subjects and made a conclusion out of it.

Results: In this work, a detailed survey has been done to find structural abnormalities in the brain from different neuroimaging techniques. Several image processing methods are used to acquire brain images. Different Machine learning techniques, Optimization methods, and Pattern recognition methods are used to predict the disease with specific biomarkers, and their results are emphasized. Thus, in this work, deep learning is also highlighted, which shows a promising role in obtaining neuroimaging data to characterize disease-related alterations in brain structure.

Keywords: Machine learning, schizophrenia, neuro imaging, deep learning, pattern recognition, brain abnormalities.

Graphical Abstract

[1]
Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. P&T 2014; 39(9): 638-45.
[PMID: 25210417]
[2]
McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008; 30(1): 67-76.
[http://dx.doi.org/10.1093/epirev/mxn001] [PMID: 18480098]
[3]
Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet 2016; 388(10039): 86-97.
[http://dx.doi.org/10.1016/S0140-6736(15)01121-6] [PMID: 26777917]
[4]
Bruton CJ, Crow TJ, Frith CD, Johnstone EC, Owens DG, Roberts GW. Schizophrenia and the brain: a prospective clinico-neuropathological study. Psychol Med 1990; 20(2): 285-304.
[http://dx.doi.org/10.1017/S0033291700017608] [PMID: 2356255]
[5]
Rozycki M, Satterthwaite TD, Koutsouleris N, et al. Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals. Schizophr Bull 2018; 44(5): 1035-44.
[http://dx.doi.org/10.1093/schbul/sbx137] [PMID: 29186619]
[6]
American Psychiatric Association. A Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association 1980; Vol. 3. Available from: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=947108
[7]
World Health Organization. The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. World Health Organization 1992. Available from: https://apps.who.int/iris/handle/10665/37958
[8]
Kambeitz J, Kambeitz-Ilankovic L, Leucht S, et al. Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology 2015; 40(7): 1742-51.
[http://dx.doi.org/10.1038/npp.2015.22] [PMID: 25601228]
[9]
Senthil G, Lehner T. Schizophrenia research in the era of team science and big data. Schizophr Res 2020; 217: 13-6.
[http://dx.doi.org/10.1016/j.schres.2019.07.008] [PMID: 31324441]
[10]
He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 2007; 17(10): 2407-19.
[http://dx.doi.org/10.1093/cercor/bhl149] [PMID: 17204824]
[11]
He Y, Wang J, Wang L, et al. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 2009; 4(4): e5226.
[http://dx.doi.org/10.1371/journal.pone.0005226] [PMID: 19381298]
[12]
Han W, Sorg C, Zheng C, et al. Low-rank network signatures in the triple network separate schizophrenia and major depressive disorder. Neuroimage Clin 2019; 22: 101725.
[http://dx.doi.org/10.1016/j.nicl.2019.101725] [PMID: 30798168]
[13]
Veronese E, Castellani U, Peruzzo D, Bellani M, Brambilla P. Machine learning approaches: from theory to application in schizophrenia. Comput Math Methods Med 2013; 2013: 867924.
[http://dx.doi.org/10.1155/2013/867924] [PMID: 24489603]
[14]
Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev 2015; 57: 328-49.
[http://dx.doi.org/10.1016/j.neubiorev.2015.08.001] [PMID: 26254595]
[15]
Sheikhpour R, Sarram MA, Sheikhpour R. Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer. Appl Soft Comput 2016; 40: 113-31.
[http://dx.doi.org/10.1016/j.asoc.2015.10.005]
[16]
Rovetta S, Suchaka G, Cabri A, Masulli F. Feature selection: A multi-objective stochastic optimization approach. 2020 IEEE 6th International Conference on Optimization and Applications (ICOA). 2020 April 20-21; Beni Mellal, Morocco.
[http://dx.doi.org/10.1109/ICOA49421.2020.9094478]
[17]
Ghamisi P, Benediktsson JA. Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci Remote Sens Lett 2014; 12(2): 309-13.
[http://dx.doi.org/10.1109/LGRS.2014.2337320]
[18]
Krystal JH, Murray JD, Chekroud AM, et al. Computational psychiatry and the challenge of schizophrenia. Schizopher Bulletin 2017; 473-5.
[http://dx.doi.org/10.1093/schbul/sbx025]
[19]
Lai JW, Ang CKE, Acharya UR, Cheong KH. Schizophrenia: A survey of artificial intelligence techniques applied to detection and classification. Int J Environ Res Public Health 2021; 18(11): 6099.
[http://dx.doi.org/10.3390/ijerph18116099] [PMID: 34198829]
[20]
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009; 62(10): e1-e34.
[http://dx.doi.org/10.1016/j.jclinepi.2009.06.006] [PMID: 19631507]
[21]
Jauhar S, McKenna PJ, Radua J, Fung E, Salvador R, Laws KR. Cognitive-behavioural therapy for the symptoms of schizophrenia: systematic review and meta-analysis with examination of potential bias. Br J Psychiatry 2014; 204(1): 20-9.
[http://dx.doi.org/10.1192/bjp.bp.112.116285] [PMID: 24385461]
[22]
Chua SE, McKenna PJ. Schizophrenia-A brain disease? A critical review of structural and functional cerebral abnormality in the disorder. Br J Psychiatry 1995; 166(5): 563-82.
[http://dx.doi.org/10.1192/bjp.166.5.563] [PMID: 7620741]
[23]
Song S, Qiu J, Lu W. Predicting disease severity in children with combined attention deficit hyperactivity disorder using quantitative features from structural MRI of amygdaloid and hippocampal subfields. J Neural Eng 2021; 184: 046013.
[http://dx.doi.org/10.1088/1741-2552/abeddf] [PMID: 33706290]
[24]
Delvecchio G, Lorandi A, Perlini C, et al. Brain anatomy of symptom stratification in schizophrenia: a voxel-based morphometry study. Nord J Psychiatry 2017; 71(5): 348-54.
[http://dx.doi.org/10.1080/08039488.2017.1300323] [PMID: 28290743]
[25]
Wetzel SG, Johnson G, Tan AG, et al. Three-dimensional, T1-weighted gradient-echo imaging of the brain with a volumetric interpolated examination. AJNR Am J Neuroradiol 2002; 23(6): 995-1002.
[PMID: 12063232]
[26]
Pinaya WHL, Mechelli A, Sato JR. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study. Hum Brain Mapp 2019; 40(3): 944-54.
[http://dx.doi.org/10.1002/hbm.24423] [PMID: 30311316]
[27]
Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev 2017; 74(Pt A): 58-75.
[http://dx.doi.org/10.1016/j.neubiorev.2017.01.002] [PMID: 28087243]
[28]
Scarpazza C, Ha M, Baecker L, et al. Translating research findings into clinical practice: a systematic and critical review of neuroimaging-based clinical tools for brain disorders. Transl Psychiatry 2020; 10(1): 107.
[http://dx.doi.org/10.1038/s41398-020-0798-6] [PMID: 32313006]
[29]
Wheeler AL, Voineskos AN. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci 2014; 8: 653.
[http://dx.doi.org/10.3389/fnhum.2014.00653] [PMID: 25202257]
[30]
Steardo L Jr, Carbone EA, de Filippis R, et al. Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: A systematic review. Front Psychiatry 2020; 11: 588.
[http://dx.doi.org/10.3389/fpsyt.2020.00588] [PMID: 32670113]
[31]
Osadebey M, Bouguila N, Arnold D. Brain MRI intensity inhomogeneity correction using region of interest, anatomic structural map, and outlier detection. In: Al-Jumeily D, Hussain A, Mallucci C, Oliver C, Eds. Applied Computing in Medicine and Health. Waltham: Morgan Kaufmann 2016; pp. 79-98.
[http://dx.doi.org/10.1016/B978-0-12-803468-2.00004-7]
[32]
Kalavathi P, Prasath VB. Methods on skull stripping of MRI head scan images-a review. J Digit Imaging 2016; 29(3): 365-79.
[http://dx.doi.org/10.1007/s10278-015-9847-8] [PMID: 26628083]
[33]
Fennema-Notestine C, Ozyurt IB, Clark CP, et al. Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location. Hum Brain Mapp 2006; 27(2): 99-113.
[http://dx.doi.org/10.1002/hbm.20161] [PMID: 15986433]
[34]
Matsumoto S, Asato R, Konishi J. A fast way to visualize the brain surface with volume rendering of MRI data. J Digit Imaging 1999; 12(4): 185-90.
[http://dx.doi.org/10.1007/BF03168854] [PMID: 10587913]
[35]
Mahmood Q, Chodorowski A, Mehnert A, Gellermann J, Persson M. Unsupervised segmentation of head tissues from multi-modal MR images for EEG source localization. J Digit Imaging 2015; 28(4): 499-514.
[http://dx.doi.org/10.1007/s10278-014-9752-6] [PMID: 25533494]
[36]
Hata Y, Kobashi S, Kondo K, Kitamura YT, Yanagida T. Transcranial ultrasonography system for visualizing skull and brain surface aided by fuzzy expert system. IEEE Trans Syst Man Cybern B Cybern 2005; 35(6): 1360-73.
[http://dx.doi.org/10.1109/TSMCB.2005.855593] [PMID: 16366261]
[37]
Bäckström K, Nazari M, Gu IY-H, Jakola AS. An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018 April 4-7; Washington, DC, USA.
[http://dx.doi.org/10.1109/ISBI.2018.8363543]
[38]
Goto M, Abe O, Aoki S, et al. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects. Neuroradiology 2013; 55(7): 869-75.
[http://dx.doi.org/10.1007/s00234-013-1193-2] [PMID: 23619702]
[39]
Latha M, Kavitha G. Detection of schizophrenia in brain MR images based on segmented ventricle region and deep belief networks. Neural Comput Appl 2019; 31(9): 5195-206.
[http://dx.doi.org/10.1007/s00521-018-3360-1]
[40]
Ulloa A, Plis S, Erhardt E, Calhun V. Synthetic structural magnetic resonance image generator improves deep learning prediction of schizophrenia. In: 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP). 2015 September 17-20; Boston, MA, USA.
[http://dx.doi.org/10.1109/MLSP.2015.7324379]
[41]
Zeng L-L, Wang H, Hu P, et al. Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine 2018; 30: 74-85.
[http://dx.doi.org/10.1016/j.ebiom.2018.03.017] [PMID: 29622496]
[42]
Han S, Huang W, Zhang Y, et al. Recognition of early-onset schizophrenia using deep-learning method. Appl Inform (Berl) 2017; 4: 16.
[http://dx.doi.org/10.1186/s40535-017-0044-3]
[43]
Pinaya WHL, Gadelha A, Doyle OM, et al. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep 2016; 6(1): 38897.
[http://dx.doi.org/10.1038/srep38897] [PMID: 27941946]
[44]
Patel P, Aggarwal P, Gupta A. Classification of schizophrenia versus normal subjects using deep learning. Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Processing. 1-6.
[http://dx.doi.org/10.1145/3009977.3010050]
[45]
Hazarika RA, Kharkongor K, Kumar Maji A, Kandar D, Sanyal S. A hybrid approach for segmenting grey and white matter from brain Magnetic Resonance Imaging (MRI). In: Bhattacharjee D, Kole DK, Dey N, Basu S, Plewczynski D, Eds. Proceedings of International Conference on Frontiers in Computing and Systems. Advances in Intelligent Systems and Computing; Singapore: Springer, 2021.
[http://dx.doi.org/10.1007/978-981-15-7834-2_12]
[46]
Warfield SK, Kaus M, Jolesz FA, Kikinis R. Adaptive template moderated spatially varying statistical classification. In: Wells WM, Colchester A, Delp S, Eds. MICCAI’98 MICCAI 1998 Lecture Notes in Computer Science. Medical Image Computing and Computer-Assisted InterventionBerlin, Heidelberg: Springer 1998.
[http://dx.doi.org/10.1007/BFb0056228]
[47]
Tongbram S, Shimray BA, Singh LS, et al. A novel image segmentation approach using fcm and whale optimization algorithm. J Ambient Intell Humaniz Comput 2021; 2021: 1-15.
[http://dx.doi.org/10.1007/s12652-020-02762-w]
[48]
Dinh P-H. A novel approach based on grasshopper optimization algorithm for medical image fusion. Expert Syst Appl 2021; 171: 114576.
[http://dx.doi.org/10.1016/j.eswa.2021.114576]
[49]
Janousova E, Schwarz D, Kasparek T. Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition. Psychiatry Res Neuroimaging 2015; 232(3): 237-49.
[http://dx.doi.org/10.1016/j.pscychresns.2015.03.004] [PMID: 25912090]
[50]
Al-Tashi Q, Md Rais H, Abdulkadir SJ, Mirjalili S, Alhussian H. A review of grey wolf optimizer-based feature selection methods for classification. In: Mirjalili S, Faris H, Aljarah I, Eds. Evolutionary Machine Learning Techniques Algorithms for Intelligent Systems. Singapore: Springer 2020; pp. 273-86.
[http://dx.doi.org/10.1007/978-981-32-9990-0_13]
[51]
Kim J, Calhoun VD, Shim E, Lee JH. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 2016; 124(Pt A): 127-46.
[http://dx.doi.org/10.1016/j.neuroimage.2015.05.018] [PMID: 25987366]
[52]
Qiu Y, Lin Q-H, Kuang L-D, Zhao W-D, et al. Classification of schizophrenia patients and healthy controls using ICA of complexvalued fMRI data and convolutional neural networks. In: Lu H, Tang H, Wang Z, Eds. Advances in Neural Networks. Lecture Notes in Computer ScienceCham: Springer 2019.
[http://dx.doi.org/10.1007/978-3-030-22808-8_53]
[53]
Yan W, Plis S, Calhoun VD, et al. Discriminating schizophrenia from normal controls using resting state functional network connectivity: A deep neural network and layer-wise relevance propagation method. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP). 2017 September 25-28; Tokyo, Japan.
[http://dx.doi.org/10.1109/MLSP.2017.8168179]
[54]
Qureshi MNI, Oh J, Lee B. 3D-CNN based discrimination of schizophrenia using resting-state fMRI. Artif Intell Med 2019; 98: 10-7.
[http://dx.doi.org/10.1016/j.artmed.2019.06.003] [PMID: 31521248]
[55]
Pasternak O, Westin CF, Dahlben B, Bouix S, Kubicki M. The extent of diffusion MRI markers of neuroinflammation and white matter deterioration in chronic schizophrenia. Schizophr Res 2015; 161(1): 113-8.
[http://dx.doi.org/10.1016/j.schres.2014.07.031] [PMID: 25126717]
[56]
Jiang Y, Luo C, Li X, et al. White-matter functional networks changes in patients with schizophrenia. Neuroimage 2019; 190: 172-81.
[http://dx.doi.org/10.1016/j.neuroimage.2018.04.018] [PMID: 29660513]
[57]
Lai C, Guo S, Cheng L, Wang W. A comparative study of feature selection methods for the discriminative analysis of temporal lobe epilepsy. Front Neurol 2017; 8: 633.
[http://dx.doi.org/10.3389/fneur.2017.00633] [PMID: 29375459]
[58]
Andreasen NC, Flashman L, Flaum M, et al. Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. JAMA 1994; 272(22): 1763-9.
[http://dx.doi.org/10.1001/jama.1994.03520220057031] [PMID: 7966925]
[59]
Liang S, Vega R, Kong X, et al. Neurocognitive graphs of first-episode schizophrenia and major depression based on cognitive features. Neurosci Bull 2018; 34(2): 312-20.
[http://dx.doi.org/10.1007/s12264-017-0190-6] [PMID: 29098645]
[60]
Pannacciulli N, Del Parigi A, Chen K, Le DS, Reiman EM, Tataranni PA. Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage 2006; 31(4): 1419-25.
[http://dx.doi.org/10.1016/j.neuroimage.2006.01.047] [PMID: 16545583]
[61]
Prabha S, Sakthidasan Sankaran K, Chitradevi D. Efficient optimization based thresholding technique for analysis of alzheimer MRIs. Int J Neurosci 2021; 14: 1-14.
[http://dx.doi.org/10.1080/00207454.2021.1901696] [PMID: 33715571]
[62]
Prabha S, Sujatha CM. Proposal of index to estimate breast similarities in thermograms using fuzzy C means and anisotropic diffusion filter based fuzzy C means clustering. Infrared Phys Technol 2018; 1(93): 316-25.
[http://dx.doi.org/10.1016/j.infrared.2018.08.018]
[63]
(a) Shen D, Wu G, Suk H-I. Deep learning in medical image analysis Annu Rev Biomed Eng 2017; 19: 221-48.
[http://dx.doi.org/10.1146/annurev-bioeng-071516-044442] [PMID: 28301734];
(b) Justin Remer. Altered brain development in infants and young children with at risk genetics for psychiatric dysfunction
[64]
Shi F, Shen D, Yap PT, et al. CENTS: cortical enhanced neonatal tissue segmentation. Hum Brain Mapp 2011; 32(3): 382-96.
[http://dx.doi.org/10.1002/hbm.21023] [PMID: 20690143]
[65]
Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 2015; 15(1): 29.
[http://dx.doi.org/10.1186/s12880-015-0068-x] [PMID: 26263899]
[66]
Dekhil O, Ismail M, Shalaby A, et al. A novel CAD system for autism diagnosis using structural and functional MRI. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). 2017 April 18-21; Melbourne, VIC, Australia.
[http://dx.doi.org/10.1109/ISBI.2017.7950683]
[67]
Despotović I, Goossens B, Philips W. MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015; 2015: 450341.
[http://dx.doi.org/10.1155/2015/450341] [PMID: 25945121]
[68]
Yushkevich PA, Gao Y, Gerig G. ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016 August 16-20; Orlando, FL, USA.
[http://dx.doi.org/10.1109/EMBC.2016.7591443]
[69]
Xu L, Liu J, Adali T, Calhoun VD. Source based morphometry using structural MRI phase images to identify sources of gray matter and white matter relative differences in schizophrenia versus controls. IEEE International Conference on Acoustics, Speech and Signal Processing. 2008 March 31- April 4; Las Vegas, NV, USA. 2008.
[70]
Gur RE, Cowell PE, Latshaw A, et al. Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 2000; 57(8): 761-8.
[http://dx.doi.org/10.1001/archpsyc.57.8.761] [PMID: 10920464]
[71]
Mitelman SA, et al. Longitudinal assessment of gray and white matter in chronic schizophrenia: A combined diffusion-tensor and structural magnetic resonance imaging study. Open Neuroimaging J 2009; 3: 31.
[http://dx.doi.org/10.2174/1874440000903010031] [PMID: 19547667]
[72]
Liu N, Xiao Y, Zhang W, et al. Characteristics of gray matter alterations in never-treated and treated chronic schizophrenia patients. Transl Psychiatry 2020; 10(1): 136.
[http://dx.doi.org/10.1038/s41398-020-0828-4] [PMID: 32398765]
[73]
Csernansky JG, Schindler MK, Splinter NR, et al. Abnormalities of thalamic volume and shape in schizophrenia. Am J Psychiatry 2004; 161(5): 896-902.
[http://dx.doi.org/10.1176/appi.ajp.161.5.896] [PMID: 15121656]
[74]
Gaser C, Nenadic I, Buchsbaum BR, Hazlett EA, Buchsbaum MS. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex. Am J Psychiatry 2004; 161(1): 154-6.
[http://dx.doi.org/10.1176/appi.ajp.161.1.154] [PMID: 14702264]
[75]
Calhoun VD, Adali T, Giuliani NR, Pekar JJ, Kiehl KA, Pearlson GD. Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data. Hum Brain Mapp 2006; 27(1): 47-62.
[http://dx.doi.org/10.1002/hbm.20166] [PMID: 16108017]
[76]
(a) Natarajan S, Govindaraj V, Narayanan A, et al Review on brain MRI segmentation methods In: Komanapalli VLN, Sivakumaran N, Hampannavar S, Eds Advances in Automation, Signal Processing, Instrumentation, and Control Singapore: Springer 2021; p. 351.
[http://dx.doi.org/10.1007/978-981-15-8221-9_33];
(b) Dakka J, Bashivan P, Gheiratmand M, Rish I, Jha S, Greiner R. Learning neural markers of schizophrenia disorder using recurrent neural networks. arXiv 2017.
[77]
Jeyavathana R, Beaulah R, Balasubramanian A, Anbarasa P. A survey: Analysis on pre-processing and segmentation techniques for medical images. Int J Res Sci Innov 2016; 3(4): 113-20.
[78]
Passat N, Ronse C, Baruthio J, Armspach JP, Maillot C, Jahn C. Region-growing segmentation of brain vessels: an atlas-based automatic approach. J Magn Reson Imaging 2005; 21(6): 715-25.
[http://dx.doi.org/10.1002/jmri.20307] [PMID: 15906324]
[79]
Rani C, Saladi S, Pearl MS, Muthu R. Morphological operations in medical image pre-processing. International Conference on Advanced Computing and Communication Systems. 2017 January 6-7; Coimbatore, India.
[80]
Yang Q, Zhang H, Xia J, Zhang X. Evaluation of magnetic resonance image segmentation in brain low-grade gliomas using support vector machine and convolutional neural network. Quant Imaging Med Surg 2021; 11(1): 300-16.
[http://dx.doi.org/10.21037/qims-20-783] [PMID: 33392030]
[81]
Liu L, Hua C, Cheng Z, Ji Y. Intelligent diagnosis method of MRI brain image using parallel self-organizing feature maps neural network. J Med Imaging Health Inform 2021; 11(2): 487-96.
[http://dx.doi.org/10.1166/jmihi.2021.3285]
[82]
Mohapatra S, Swarnkar T, Das J. Deep convolutional neural network in medical image processing. In: Balas VE, Kumar R, Mishra BK, Eds. Handbook of Deep Learning in Biomedical Engineering. Cambridge, Massachusetts, USA: Academic Press 2021; pp. 25-60.
[http://dx.doi.org/10.1016/B978-0-12-823014-5.00006-5]
[83]
Wang P, Fan E, Wang P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit Lett 2021; 141: 61-7.
[http://dx.doi.org/10.1016/j.patrec.2020.07.042]
[84]
Andreasen NC, Carpenter WT Jr. Diagnosis and classification of schizophrenia. Schizophr Bull 1993; 19(2): 199-214.
[http://dx.doi.org/10.1093/schbul/19.2.199] [PMID: 8322032]
[85]
Oh K, Kim W, Shen G, et al. Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization. Schizophr Res 2019; 212: 186-95.
[http://dx.doi.org/10.1016/j.schres.2019.07.034] [PMID: 31395487]
[86]
Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical image analysis IEEE Access 2017; 6: 9375-89
[http://dx.doi.org/10.1109/ACCESS.2017.2788044]
[87]
Xiao Y, Yan Z, Zhao Y, et al. Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI. Schizophr Res 2019; 214: 11-7.
[http://dx.doi.org/10.1016/j.schres.2017.11.037] [PMID: 29208422]
[88]
Cigdem O, Soyak R, Aydeniz B, et al. Classification of healthy siblings of bipolar disorder patients from healthy controls using MRI. 2019 Medical Technologies Congress (TIPTEKNO). 2019 October 3-5; Izmir, Turkey.
[89]
Vieira S, Gong QY, Pinaya WHL, et al. Using machine learning and structural neuroimaging to detect first episode psychosis: Reconsidering the evidence. Schizophr Bull 2020; 46(1): 17-26.
[http://dx.doi.org/10.1093/schbul/sby189] [PMID: 30809667]
[90]
Yan MXH, Karp JS. Segmentation of 3D brain MR using an adaptive K-means clustering algorithm. Proceedings of 1994 IEEE Nuclear Science Symposium-NSS. 941994 October 30-November 5; Norfolk, VA, USA: 4
[http://dx.doi.org/10.1109/NSSMIC.1994.474771]
[91]
Gutierrez D, Montandon ML, Assal F, et al. Anatomically guided voxel-based partial volume effect correction in brain PET: impact of MRI segmentation. Comput Med Imaging Graph 2012; 36(8): 610-9.
[http://dx.doi.org/10.1016/j.compmedimag.2012.09.001] [PMID: 23046730]
[92]
Latha M, Kavitha G. Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain. Magn Reson Mater Biol Phys Med 2018; 31(4): 483-99.
[http://dx.doi.org/10.1007/s10334-018-0674-z] [PMID: 29397450]
[93]
Pitiot A, Delingette H, Thompson PM, Ayache N. Expert knowledge-guided segmentation system for brain MRI. Neuroimage 2004; 23 (Suppl. 1): S85-96.
[http://dx.doi.org/10.1016/j.neuroimage.2004.07.040] [PMID: 15501103]
[94]
Hwang J, Kim J, Han Y, Park H. An automatic cerebellum extraction method in T1-weighted brain MR images using an active contour model with a shape prior. Magn Reson Imaging 2011; 29(7): 1014-22.
[http://dx.doi.org/10.1016/j.mri.2011.01.005] [PMID: 21616622]
[95]
Zhang Y, Matuszewski BJ, Shark L-K, Moore CJ. Medical image segmentation using new hybrid level-set method. 2008 Fifth International Conference BioMedical Visualization: Information Visualization in Medical and Biomedical Informatics; 2008 July 9- 11; London UK.
[http://dx.doi.org/10.1109/MediVis.2008.12]
[96]
Yassin W, Nakatani H, Zhu Y, et al. Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis. Transl Psychiatry 2020; 10(1): 278.
[http://dx.doi.org/10.1038/s41398-020-00965-5] [PMID: 32801298]
[97]
Lakshmi S, Sankaranarayanan V. A study of edge detection techniques for segmentation computing approaches IJCA Special Issue on “Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications”. CASCT 2010; pp. 35-41.
[98]
Xu L, Pearlson G, Calhoun VD. Joint source based morphometry identifies linked gray and white matter group differences. Neuroimage 2009; 44(3): 777-89.
[http://dx.doi.org/10.1016/j.neuroimage.2008.09.051] [PMID: 18992825]
[99]
Narkhede HP. Review of image segmentation techniques. Int J Sci Modern Eng 2013; 1(8): 54-61.
[100]
Kandwal R, Kumar A, Bhargava S. Review: Existing image segmentation techniques. Int J Adv Res Comput Sci Softw Eng 2014; 4(4): 2277-85.
[101]
Langote VB, Chaudhari DS. Segmentation techniques for image analysis. IJAERS 2012; 1(2): 255.
[102]
Prastawa M. An MRI segmentation framework for brains with anatomical deviations. The University of North Carolina at Chapel Hill 2007.
[103]
Ashok N, Tatikonda VSM, Usha Nandini D. Unique and dynamic approach to predict schizophrenia disease using machine learning. In: Bhoi AK, Mallick PK, Balas VE, Mishra BSP, Eds. Advances in Systems, Control and Automations: Select Proceedings of ETAEERE 2020. Singapore: Springer. 2021.
[http://dx.doi.org/10.1007/978-981-15-8685-9_50]
[104]
Duda RO, Hart PE. Pattern Classification. Hoboken, New Jersey: John Wiley & Sons 2006.
[105]
Malathi M, Sinthia P. MRI brain tumour segmentation using hybrid clustering and classification by back propagation algorithm. Asian Pac J Cancer Prev 2018; 19(11): 3257-63.
[http://dx.doi.org/10.31557/APJCP.2018.19.11.3257] [PMID: 30486629]
[106]
Olabi B, Ellison-Wright I, McIntosh AM, Wood SJ, Bullmore E, Lawrie SM. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry 2011; 70(1): 88-96.
[http://dx.doi.org/10.1016/j.biopsych.2011.01.032] [PMID: 21457946]
[107]
Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 2004; 13(1): 146-65.
[http://dx.doi.org/10.1117/1.1631315]
[108]
Chand GB, Dwyer DB, Erus G, et al. Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning. Brain 2020; 143(3): 1027-38.
[http://dx.doi.org/10.1093/brain/awaa025] [PMID: 32103250]
[109]
Dhanachandra N, Manglem K, Chanu YJ. Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Comput Sci 2015; 54: 764-71.
[http://dx.doi.org/10.1016/j.procs.2015.06.090]
[110]
O’Donoghue S, Holleran L, Cannon DM, McDonald C. Anatomical dysconnectivity in bipolar disorder compared with schizophrenia: A selective review of structural network analyses using diffusion MRI. J Affect Disord 2017; 209: 217-28.
[http://dx.doi.org/10.1016/j.jad.2016.11.015] [PMID: 27930915]
[111]
Youssif A, Youssry H. Tissue segmentation Techniques of brain MR Images. International Conference on Intelligent Computational Systems. Dubai, Jan 7-8-2021.
[112]
Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31(3): 1116-28.
[http://dx.doi.org/10.1016/j.neuroimage.2006.01.015] [PMID: 16545965]
[113]
Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006; 31(3): 968-80.
[http://dx.doi.org/10.1016/j.neuroimage.2006.01.021] [PMID: 16530430]
[114]
Liang S, Li Y, Zhang Z, et al. Classification of first-episode schizophrenia using multimodal brain features: A combined structural and diffusion imaging study. Schizophr Bull 2019; 45(3): 591-9.
[http://dx.doi.org/10.1093/schbul/sby091] [PMID: 29947804]
[115]
S P. Thermal imaging techniques for breast screening-a survey. Curr Med Imaging Rev 2020; 16(7): 855-62.
[http://dx.doi.org/10.2174/1573405615666191115145038] [PMID: 33059555]
[116]
Chitradevi D, Prabha S, Prabhu AD. Diagnosis of Alzheimer disease in MR brain images using optimization techniques. Neural Comput Appl 2021; 33: 223-37.
[http://dx.doi.org/10.1007/s00521-020-04984-7]
[117]
Chitradevi D, Prabha S. Analysis of brain sub regions using optimization techniques and deep learning method in Alzheimer disease. Appl Soft Comput 2020; 1(86): 105857.
[http://dx.doi.org/10.1016/j.asoc.2019.105857]
[118]
Ganeshan B, Miles KA, Young RC, Chatwin CR, Gurling HM, Critchley HD. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia. Eur Radiol 2010; 20(4): 941-8.
[http://dx.doi.org/10.1007/s00330-009-1605-1] [PMID: 19760235]
[119]
Manohar L, Ganesan K. Diagnosis of schizophrenia disorder in MR brain images using multi-objective BPSO based feature selection with fuzzy SVM. J Med Biol Eng 2018; 38(6): 917-32.
[http://dx.doi.org/10.1007/s40846-017-0355-9]
[120]
Alves D, Arkani-Hamed N, Arora S, et al. Simplified models for LHC new physics searches. J Phys G Nucl Part Phys 2012; 39(10): 105005.
[http://dx.doi.org/10.1088/0954-3899/39/10/105005]
[121]
Urbanowicz RJ, Meeker M, La Cava W, Olson RS, Moore JH. Relief-based feature selection: Introduction and review. J Biomed Inform 2018; 85: 189-203.
[http://dx.doi.org/10.1016/j.jbi.2018.07.014] [PMID: 30031057]
[122]
He K, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016 Jun 27-30; Las Vegas, NV, USA.
[123]
Chen Z, Yan T, Wang E, et al. Detecting abnormal brain regions in schizophrenia using structural MRI via machine learning. Comput Intell Neurosci 2020; 2020: 6405930.
[http://dx.doi.org/10.1155/2020/6405930] [PMID: 32300361]
[124]
Huang SH. Supervised feature selection: A tutorial. Artif Intell Res 2015; 4(2): 22-37.
[http://dx.doi.org/10.5430/air.v4n2p22]
[125]
Haryanto AW, Mawardi EK. Influence of word normalization and chi-squared feature selection on support vector machine (SVM) text classification. In: 2018 International Seminar on Application for Technology of Information and Communication; 2018 September 21-22; Semarang, Indonesia.
[http://dx.doi.org/10.1109/ISEMANTIC.2018.8549748]
[126]
Yamaguchi H, Hashimoto Y, Sugihara G, et al. Three-dimensional convolutional autoencoder extracts features of structural brain images with a “diagnostic label-free” approach: Application to schizophrenia datasets. Front Neurosci 2021; 15: 652987.
[http://dx.doi.org/10.3389/fnins.2021.652987] [PMID: 34305514]
[127]
Hall MA. Correlation-based feature selection for machine learning 1999.
[128]
Sadeghi D, Shoeibi A, Ghassemi N, et al. An overview on artificial intelligence techniques for diagnosis of schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. arXiv 2021.
[129]
Aslan Z, Akin M. A comparison of heuristic search algorithms in automatic detection of schizophrenia. In: UEMK 2019 Proceedings Book. Turkey: Gaziantep University 2019.
[130]
Prabha S, Anandh KR, Sujatha CM, Ramakrishnan S. Total variation based edge enhancement for level set segmentation and asymmetry analysis in breast thermograms. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2014 Aug 26-30; Chicago, IL, USA; pp. 6438-41.
[http://dx.doi.org/10.1109/EMBC.2014.6945102]
[131]
Liaqat S, Dashtipour K, Arshad K, Assaleh K, Ramzan N. A hybrid posture detection framework: Integrating machine learning and deep neural networks. IEEE Sens J 2021; 21(7): 9515-22.
[http://dx.doi.org/10.1109/JSEN.2021.3055898]
[132]
Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF. A review of unsupervised feature selection methods. Artif Intell Rev 2020; 53(2): 907-48.
[http://dx.doi.org/10.1007/s10462-019-09682-y]
[133]
Kumar G, Bhatia PK. A detailed review of feature extraction in image processing systems. Fourth International Conference on Advanced Computing & Communication Technologies. 2014 Feb 8-9; Rohtak, India. 2014.
[http://dx.doi.org/10.1109/ACCT.2014.74]
[134]
Cocosco CA, Zijdenbos AP, Evans AC. A fully automatic and robust brain MRI tissue classification method. Med Image Anal 2003; 7(4): 513-27.
[http://dx.doi.org/10.1016/S1361-8415(03)00037-9] [PMID: 14561555]
[135]
Ahmed J, Mulla MZ, Arfat YA. Thermo-mechanical, structural characterization and antibacterial performance of solvent casted polylactide/cinnamon oil composite films. Food Control 2016; 69: 196-204.
[http://dx.doi.org/10.1016/j.foodcont.2016.05.013]
[136]
Oh J, Oh BL, Lee KU, Chae JH, Yun K. Identifying schizophrenia using structural MRI with a deep learning algorithm. Front Psychiatry 2020; 11: 16.
[http://dx.doi.org/10.3389/fpsyt.2020.00016] [PMID: 32116837]
[137]
Cortes-Briones JA, Tapia-Rivas NI, D’Souza DC, Estevez PA. Going deep into schizophrenia with artificial intelligence Schizophr Res 2021; S0920-9964(21): 00179-1.
[http://dx.doi.org/10.1016/j.schres.2021.05.018]
[138]
Rao C, Liu Y. Three-Dimensional Convolutional Neural Network (3D-CNN) for heterogeneous material homogenization. Comput Mater Sci 2020; 184: 109850.
[http://dx.doi.org/10.1016/j.commatsci.2020.109850]
[139]
Mitchell B. Multimodal MRI study using convolutional neural networks for schizophrenia classification 2021.
[140]
Yamamoto M, Bagarinao E, Kushima I, et al. Support vector machine-based classification of schizophrenia patients and healthy controls using structural magnetic resonance imaging from two independent sites PloS one 2020; 15.11: e0239615.
[http://dx.doi.org/10.1371/journal.pone.0239615]
[141]
Hu M, Sim K, Zhou JH, Jiang X, Guan C. Brain MRI-based 3D convolutional neural networks for classification of schizophrenia and controls. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); 2020 Jul 20-24; Montreal, QC, Canada.
[http://dx.doi.org/10.1109/EMBC44109.2020.9176610]
[142]
Guo Y, Qiu J, Lu W. Support vector machine-based schizophrenia classification using morphological information from amygdaloid and hippocampal subregions Brain Sci 2020; 10.8: 562.
[http://dx.doi.org/10.3390/brainsci10080562]