Synthesis of Isatin Derivatives Exhibiting Antibacterial, Antifungal and Cytotoxic Activities

Page: [748 - 756] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Objective: The current objective was to synthesize biologically active Isatin derivatives. For this purpose, six (06) chemical entities of Isatin derivatives such as 3a-3c and 4a-4c were synthesized from Isatin substrate.

Methods: The pure compounds were characterized with the help of 1H-NMR, FT-IR, EIMS spectroscopic techniques. The synthesized amines 3a-3c and hydrazones 4a-4c were evaluated for their toxicity potential with the help of brine shrimp bioassay.

Results: The obtained results revealed that 3c exhibited promising toxicity (LD50 = 1.03 × 10-5 M) against Artemia salina. The pure chemical entities such as compounds 3a-3c and 4a-4c were evaluated against four Gram-negative (E. coli, P. aeruginosa, S. typhi, S. flexneri) and two Gram-positive (B. subtilis, S. aureus) bacteriae. The compound 3a displayed significant activity against two bacterial strains; i.e. P. aeruginosa, S. typhi, compound 3c demonstrated significant activity against P. aeruginosa. Compound 4b was the most active against S. typhi, displaying a greater diameter of the growth of inhibition zone (GIZ) than the standard drug. Compound 4c exhibited significant activity against P. aeruginosa and S. typhi. Compounds 3a-3c and 4a-4c exhibited moderate to significant antibacterial activity against three out of five strains. Only Compound 3c revealed promising toxicity (LD50 = 1.03 × 10-5 M) against Artemia salina. Antifungal studies of the compounds 3a-3c and 4a-4c against six fungal cultures; T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata. All the compounds were active against one or more pathogens having inhibition (10- 90 %). Compound 3a exhibited significant inhibition i.e. 90 % against M. canis, 70 % against T. longifusus, compound 4b further displayed significant inhibition (90 %) against A. flavus and thus proved to be the most active member of the series.

Conclusion: All compounds showed better antibacterial, antifungal and cytotoxic activities, which may provide a ground to prepare enhanced molecules with much higher antibacterial activities.

Keywords: Isatin derivatives, cytotoxicity, antifungal activity, antibacterial activity, mass, FT-IR, 1HNMR, synthetic strategy.

Graphical Abstract

[1]
Rahim, F.; Taha, M.; Iqbal, N.; Hayat, S.; Qureshi, F.; Uddin, I.; Zaman, K.; Rab, A.; Wadood, A.; Uddin, N. Isatin based thiosemicarbazide derivatives as potential inhibitor of α-glucosidase, synthesis and their molecular docking study. J. Mol. Struct., 2020, 1222-128922.
[http://dx.doi.org/10.1016/j.molstruc.2020.128922]
[2]
Abbasi, I.; Nadeem, H.; Saeed, A.; Kharl, H.A.A.; Tahir, M.N.; Naseer, M.M. Isatin-hydrazide conjugates as potent α-amylase and α-glucosidase inhibitors: Synthesis, structure and invitro evaluations. Bioorg. Chem., 2021, 116, 105385.
[http://dx.doi.org/10.1016/j.bioorg.2021.105385] [PMID: 34600331]
[3]
Khatoon, S.; Aroosh, A.; Islam, A.; Kalsoom, S.; Ahmad, F.; Hameed, S.; Abbasi, S.W.; Yasinzai, M.; Naseer, M.M. Novel coumarin-isatin hybrids as potent antileishmanial agents: Synthesis, in silico and in vitro evaluations. Bioorg. Chem., 2021, 110, 104816.
[http://dx.doi.org/10.1016/j.bioorg.2021.104816] [PMID: 33799180]
[4]
Rasheed, S.; Ahmed, M.; Faisal, M.; Naseer, M.M. Isatin-3-thiosemicarbazone as Chromogenic Sensor for the Selective Detection of Fluoride Anion. Heterocycl. Commun., 2020, 26, 123-129.
[http://dx.doi.org/10.1515/hc-2020-0104]
[5]
Haider, A.; Ahmed, M.; Faisal, M.; Naseer, M.M. Isatin as simple, highly selective and sensitive colorimetric sensor for fluoride anion. Heterocycl. Commun., 2020, 26, 14-19.
[http://dx.doi.org/10.1515/hc-2020-0003]
[6]
Haider, A.; Ahmed, M.; Naseer, M.M. Highly Sensitive and Selective Naked Eye Detection of Fluoride anion with Isatin-thiazole Hybrid Molecule. Measurement, 2020, 154, 107457.
[http://dx.doi.org/10.1016/j.measurement.2019.107457]
[7]
Pervez, H.; Khan, N.; Iqbal, J.; Zaib, S.; Yaqub, M.; Naseer, M.M. Synthesis and in vitro bio-activity evaluation of N4-benzyl substituted 5-chloroisatin 3-thiosemicarbazones as urease and glycation inhibitors. Acta Chim. Slov., 2018, 65(1), 108-118.
[http://dx.doi.org/10.17344/acsi.2017.3649] [PMID: 29562103]
[8]
Pervez, H.; Khan, N.; Iqbal, J.; Zaib, S.; Yaqub, M.; Tahir, M.N.; Naseer, M.M. Synthesis, crystal structure, molecular docking studies and bio-evaluation of some N4-benzyl substituted isatin-3-thiosemicarbazones as antiurease and antiglycating agents. Heterocycl. Commun., 2018, 24, 51-58.
[http://dx.doi.org/10.1515/hc-2017-0148]
[9]
Hussain, M.; Bauzá, A.; Frontera, A.; Lo, K.M.; Naseer, M.M. Structure guided or structure guiding? Mixed carbon/hydrogen bonding in bis-Schiff base of N-allyl isatin. CrystEngComm, 2018, 20, 150-154.
[http://dx.doi.org/10.1039/C7CE01697B]
[10]
Doyle, A.A.; Stephens, J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia, 2019, 139, 104405.
[http://dx.doi.org/10.1016/j.fitote.2019.104405] [PMID: 31707126]
[11]
Elancheran, R.; Kabilan, S.; Kotoky, J.; Ramanathan, M.; Bhattacharjee, A. In silico molecular docking, synthesis of 4-(4-benzoylaminophenoxy) phenol derivatives as androgen receptor antagonists. Combinator. Chem. High Through. Screen, 2019, 22(5), 307-316.
[http://dx.doi.org/10.2174/1386207322666190701124752]
[12]
Maruthanila, V.L.; Elancheran, R.; Roy, N.K.; Bhattacharya, A.; Kunnumakkara, A.B.; Kabilan, S.; Kotoky, J. In silico Molecular Modelling of Selected Natural Ligands and their Binding Features with Estrogen Receptor Alpha. Curr. Computeraided Drug Des., 2019, 15(1), 89-96.
[http://dx.doi.org/10.2174/1573409914666181008165356] [PMID: 30306879]
[13]
Elancheran, R.; Saravanan, K.; Divakar, S.; Kumari, S.; Maruthanila, V.L.; Kabilan, S.; Ramanathan, M.; Devi, R.; Kotoky, J. Design, Synthesis and Biological Evaluation of Novel 1, 3- thiazolidine-2, 4-diones as Anti-prostate Cancer Agents. Anticancer. Agents Med. Chem., 2017, 17(13), 1756-1768.
[http://dx.doi.org/10.2174/1871521409666170412121820] [PMID: 28403781]
[14]
Lashgari, N.; Ziarani, G.M. Synthesis of heterocyclic compounds based on isatin through 1, 3-dipolar cycloaddition reactions. J. Org. Chem., 2012, 1(1), 277-320.
[15]
Greenwell, M.; Rahman, P.K. Medicinal plants: their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[PMID: 26594645]
[16]
Chemchem, M.; Menacer, R.; Merabet, N.; Bouridane, H.; Yahiaoui, S.; Moussaoui, S.; Belkhiri, L. Green synthesis, antibacterial evaluation and QSAR analysis of some isatin Schiff bases. J. Mol. Struct., 2020, 1208, 127853.
[http://dx.doi.org/10.1016/j.molstruc.2020.127853]
[17]
Azizian, J.; Mohammadi, K.M.; Firuzi, O.; Razzaghi-asl, N.; Miri, R. Synthesis, biological activity and docking study of some new isatin Schiff base derivatives. Med. Chem. Res., 2012, 21, 3730-3740.
[http://dx.doi.org/10.1007/s00044-011-9896-6]
[18]
Abo-Ashour, M.F.; Eldehna, W.M.; Nocentini, A.; Ibrahim, H.S.; Bua, S.; Abou-Seri, S.M.; Supuran, C.T. Novel hydrazido benzenesulfon-amides-isatin conjugates: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur. J. Med. Chem., 2018, 157, 28-36.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.054] [PMID: 30071407]
[19]
Liang, C.; Xia, J.; Lei, D.; Li, X.; Yao, Q.; Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem., 2014, 74, 742-750.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.040] [PMID: 24176732]
[20]
Sridhar, S.K.; Pandeya, S.N.; Stables, J.P.; Ramesh, A. Anticonvulsant activity of hydrazones, Schiff and Mannich bases of isatin deriva-tives. Eur. J. Pharm. Sci., 2002, 16(3), 129-132.
[http://dx.doi.org/10.1016/S0928-0987(02)00077-5] [PMID: 12128166]
[21]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4451-4455.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.046] [PMID: 16115762]
[22]
Khan, K.; Mughal, M.; Ambreen, R.; Khan, N.; Perveen, A.; Choudhary, S.M. I Schiff bases of istain: Antiglycation activity. Lett. Drug Des. Discov., 2009, 6(5), 358-362.
[http://dx.doi.org/10.2174/1570180810906050358]
[23]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62(62), 590-596.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.032] [PMID: 23434528]
[24]
Vine, K.; Matesic, L.; Locke, J.; Ranson, M.; Skropeta, D. Cytotoxic and anticancer activities of isatin and its derivatives: A comprehensive review from 2000-2008. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2009, 9(4), 397-414.
[25]
Pervez, H.; Ahmad, M.; Yaqub, M.; Tahir, M.; Saira, N.N. -{2-[N-(4-Methylphenyl) oxamoyl] phenyl} propanamide. Acta Crystallogr. Sect. E Struct. Rep. Online, 2010, 66(7), 1729-1729.
[http://dx.doi.org/10.1107/S1600536810023263]
[26]
El-Faham, A.; Farooq, M.; Khattab, S.N.; Abutaha, N.; Wadaan, M.A.; Ghabbour, H.A.; Fun, H.K. Synthesis, characterization, and anti-cancer activity of some new N′-(2-Oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazones derivatives. Molecules, 2015, 20(8), 14638-14655.
[http://dx.doi.org/10.3390/molecules200814638] [PMID: 26287132]
[27]
Pervez, H.; Saira, N.; Iqbal, M.S.; Yaqub, M.; Khan, K.M. Synthesis and toxicity evaluation of some N4-aryl substituted 5-trifluoromethoxyisatin-3-thiosemicarbazones. Molecules, 2011, 16(8), 6408-6421.
[http://dx.doi.org/10.3390/molecules16086408] [PMID: 25134761]
[28]
Pervez, H.; Ahmad, M.; Yaqub, M.; Somra, M.; Iqbal, F.; Khan, K. Synthesis and biological evaluation of some novel isatins-derived hydrazones. J. Pharm. Res., 2011, 4(12), 4355-4358.
[29]
Carron, E.; Maran, J.; Montero, L.; Fernandozalgo, A.; Dominguez, A. Antimicrobial properties of some extracts obtained from some Mediterranean plants of medicinal value. Plantes Medicinales et Phytotherapie, 1987, 21, 195-202.
[30]
Choudhary, M.; Thomsen, I. Bioassay techniques for drug development; CRC Press, 2001.
[31]
Rauf, M.K.; Yaseen, S.; Badshah, A.; Zaib, S.; Arshad, R.; Imtiaz-Ud-Din, ; Tahir, M.N.; Iqbal, J. Synthesis, characterization and urease inhibition, in vitro anticancer and antileishmanial studies of Ni(II) complexes with N,N,N′-trisubstituted thioureas. Eur. J. Biochem., 2015, 20(3), 541-554.
[http://dx.doi.org/10.1007/s00775-015-1239-5] [PMID: 25604966]
[32]
Allen, C.; Drake, N.; Hamilton, C.S.; Shriner, R.; Smith, L.; Snyder, H. Organic Syntheses; Wiley: New York, 1955, 3, p. 456.