Short Amphiphiles or Micelle Peptides May Help to Fight Against COVID-19

Page: [33 - 43] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: COVID-19 is a global threat as a result of the incessant spread of SARS-CoV- 2, necessitating the rapid availability of effective antiviral medications to protect our society. For SARSCoV- 2, a group of peptides has already been indicated, although their effectiveness has yet to be shown. SARS-CoV-2 is an enveloped virus with hydrophobic fusion protein and spike glycoproteins.

Methods: Here, we have compiled a list of amphiphilic peptides that have been published, as well as their in-silico docking studies with the SARS-CoV-2 spike glycoprotein.

Results: The findings demonstrated that spike protein and amphiphilic peptides with increased binding affinity create a complex. It was also observed that PalL1 (ARLPRTMVHPKPAQP), 10AN1 (FWFTLIKTQAKQPARYRRFC), THETA defensin (RCICGRGICRLL), and mucroporin M1 (LFRLIKSLIKRLVSAFK) showed the binding free energy of more than -1000 kcal/mol. Molecular pI and hydrophobicity are also important factors of peptides to enhance the binding affinity with spike protein of SARS-CoV-2.

Conclusion: In light of these findings, it is crucial to compare the in-vitro to in-vivo efficacy of amphiphilic peptides in order to produce an efficient anti-SARS-CoV-2 peptide therapy that might assist control the present pandemic scenario.

Keywords: Amphiphilic peptides, SARS-CoV-2, COVID-19, spike protein, in-silico analysis, micelle peptides.

Graphical Abstract

[1]
Wang, C.; Wang, Z.; Wang, G.; Lau, J.Y.; Zhang, K.; Li, W. COVID-19 in early 2021: Current status and looking forward. Signal Transduct. Target. Ther., 2021, 6(1), 114.
[http://dx.doi.org/10.1038/s41392-021-00527-1] [PMID: 33686059]
[2]
Silveira, M.M.; Moreira, G.M.S.G.; Mendonça, M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci., 2021, 267, 118919.
[http://dx.doi.org/10.1016/j.lfs.2020.118919] [PMID: 33352173]
[3]
Paria, K.; Paul, D.; Chowdhury, T.; Pyne, S.; Chakraborty, R.; Mandal, S.M. Synergy of melanin and vitamin-D may play a fundamental role in preventing SARS-CoV-2 infections and halt COVID-19 by inactivating furin protease. Transl. Med. Commun., 2020, 5(1), 21.
[http://dx.doi.org/10.1186/s41231-020-00073-y] [PMID: 33169107]
[4]
Chowdhury, T.; Baindara, P.; Mandal, S.M. LPD-12: A promising lipopeptide to control COVID-19. Int. J. Antimicrob. Agents, 2021, 57(1), 106218.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106218] [PMID: 33166692]
[5]
Baindara, P.; Chakraborty, R.; Holliday, Z.M.; Mandal, S.M.; Schrum, A.G. Oral probiotics in coronavirus disease 2019: Connecting the gut-lung axis to viral pathogenesis, inflammation, secondary infection and clinical trials. New Microbes New Infect., 2021, 40, 100837.
[http://dx.doi.org/10.1016/j.nmni.2021.100837] [PMID: 33425362]
[6]
Manna, S.; Chowdhury, T.; Chakraborty, R.; Mandal, S.M. Probiotics-derived peptides and their immunomodulatory molecules can play a preventive role against viral diseases including COVID-19. Probiotics Antimicrob. Proteins, 2020, 23, 1-13.
[PMID: 33226581]
[7]
Chowdhury, T.; Roymahapatra, G.; Mandal, S.M. In silico identification of a potent arsenic based approved drug darinaparsin against SARS-CoV-2: Inhibitor of RNA dependent RNA polymerase (RdRp) and essential proteases. Infect. Disord. Drug Targets, 2020. Epub ahead of print
[PMID: 32718300]
[8]
Manna, S.; Chowdhury, T.; Baindara, P.; Mandal, S.M. Fusion protein targeted antiviral peptides: Fragment-Based Drug Design (FBDD) guided rational design of dipeptides against SARS-CoV-2. Curr. Protein Pept. Sci., 2020, 21(10), 938-947.
[http://dx.doi.org/10.2174/1389203721666200908164641] [PMID: 32901582]
[9]
Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol., 2020, 5(4), 562-569.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[10]
Accardo, A.; Tesauro, D.; Mangiapia, G.; Pedone, C.; Morelli, G. Nanostructures by self-assembling peptide amphiphile as potential selective drug carriers. Biopolymers, 2007, 88(2), 115-121.
[http://dx.doi.org/10.1002/bip.20648] [PMID: 17154288]
[11]
Accardo, A.; Vitiello, M.; Tesauro, D.; Galdiero, M.; Finamore, E.; Martora, F.; Mansi, R.; Ringhieri, P.; Morelli, G. Self-assembled or mixed peptide amphiphile micelles from Herpes simplex virus glycoproteins as potential immunomodulatory treatment. Int. J. Nanomedicine, 2014, 9, 2137-2148.
[PMID: 24855352]
[12]
Abudula, T.; Bhatt, K.; Eggermont, L.J.; O’Hare, N.; Memic, A.; Bencherif, S.A. Supramolecular self-assembled peptide-based vaccines: Current state and future perspectives. Front Chem., 2020, 8, 598160.
[http://dx.doi.org/10.3389/fchem.2020.598160] [PMID: 33195107]
[13]
Shah, V.K.; Firmal, P.; Alam, A.; Ganguly, D.; Chattopadhyay, S. Overview of immune response during SARS-CoV-2 infection: Lessons from the past. Front. Immunol., 2020, 11(11), 1949.
[http://dx.doi.org/10.3389/fimmu.2020.01949] [PMID: 32849654]
[14]
Kozhikhova, K.V.; Shilovskiy, I.P.; Shatilov, A.A.; Timofeeva, A.V.; Turetskiy, E.A.; Vishniakova, L.I.; Nikolskii, A.A.; Barvinskaya, E.D.; Karthikeyan, S.; Smirnov, V.V.; Kudlay, D.A.; Andreev, S.M.; Khaitov, M.R. Linear and dendrimeric antiviral peptides: Design, chemical synthesis and activity against human respiratory syncytial virus. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(13), 2607-2617.
[http://dx.doi.org/10.1039/C9TB02485A] [PMID: 32124885]
[15]
Badani, H.; Garry, R.F.; Wimley, W.C. Peptide entry inhibitors of enveloped viruses: The importance of interfacial hydrophobicity. Biochim. Biophys. Acta, 2014, 1838(9), 2180-2197.
[http://dx.doi.org/10.1016/j.bbamem.2014.04.015] [PMID: 24780375]
[16]
Teissier, E.; Penin, F.; Pécheur, E.I. Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules, 2010, 16(1), 221-250.
[http://dx.doi.org/10.3390/molecules16010221] [PMID: 21193846]
[17]
Ghosh, A.; Pithadia, A.S.; Bhat, J.; Bera, S.; Midya, A.; Fierke, C.A.; Ramamoorthy, A.; Bhunia, A. Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: Mechanism of self aggregation and amyloid-inhibition of hIAPP. Biochemistry, 2015, 54(13), 2249-2261.
[http://dx.doi.org/10.1021/acs.biochem.5b00061] [PMID: 25785896]
[18]
Domenico, L.; Mikhail, A.K.; Salvatore, M.; Pietro, C. Amphiphiles self-assembly: Basic concepts and future perspectives of supramolecular approaches. Adv. Condens. Matter Phys., 2015, 2015, 22.
[19]
Sen, S.; Han, Y.; Rehak, P.; Vuković, L.; Král, P. Computational studies of micellar and nanoparticle nanomedicines. Chem. Soc. Rev., 2018, 47(11), 3849-3860.
[http://dx.doi.org/10.1039/C8CS00022K] [PMID: 29645040]
[20]
Madani, F.; Lindberg, S.; Langel, U.; Futaki, S.; Gräslund, A. Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys., 2011, 2011, 414729.
[http://dx.doi.org/10.1155/2011/414729] [PMID: 21687343]
[21]
Lee, S.; Trinh, T.H.T.; Yoo, M.; Shin, J.; Lee, H.; Kim, J.; Hwang, E.; Lim, Y.B.; Ryou, C. Self-assembling peptides and their application in the treatment of diseases. Int. J. Mol. Sci., 2019, 20(23), 5850.
[http://dx.doi.org/10.3390/ijms20235850] [PMID: 31766475]
[22]
Chengkang, T.; Feng, Q.; Xiaojun, Z. Molecular Design and Applications of Self-Assembling Surfactant-Like Peptides. J. Nanomater., 2013, 2013, 9.
[23]
Chakravarty, M.; Vora, A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res., 2020, 3, 1-40.
[PMID: 32748035]
[24]
Teixeira, M.C.; Carbone, C.; Sousa, M.C.; Espina, M.; Garcia, M.L.; Sanchez-Lopez, E.; Souto, E.B. Nanomedicines for the Delivery of Antimicrobial Peptides (AMPs). Nanomaterials (Basel), 2020, 10(3), 560.
[http://dx.doi.org/10.3390/nano10030560] [PMID: 32244858]
[25]
Avrahami, D.; Shai, Y. Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry, 2002, 41(7), 2254-2263.
[http://dx.doi.org/10.1021/bi011549t] [PMID: 11841217]
[26]
OuYang, B.; Dong, Y.; Chou, J.J. Structural and Functional Properties of Viral Membrane Proteins. In: Advances in Membrane Proteins; Cao, Y., Ed.; Springer: Singapore, 2018.
[http://dx.doi.org/10.1007/978-981-13-0532-0_6]
[27]
Jenssen, H.; Hamill, P.; Hancock, R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[28]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: Current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[29]
Hüttl, C.; Hettrich, C.; Miller, R.; Paulke, B.R.; Henklein, P.; Rawel, H.; Bier, F.F. Self-assembled peptide amphiphiles function as multivalent binder with increased hemagglutinin affinity. BMC Biotechnol., 2013, 13, 51.
[http://dx.doi.org/10.1186/1472-6750-13-51] [PMID: 23777281]
[30]
Costin, J.M.; Jenwitheesuk, E.; Lok, S.M.; Hunsperger, E.; Conrads, K.A.; Fontaine, K.A.; Rees, C.R.; Rossmann, M.G.; Isern, S.; Samudrala, R.; Michael, S.F. Structural optimization and de novo design of dengue virus entry inhibitory peptides. PLoS Negl. Trop. Dis., 2010, 4(6), e721.
[http://dx.doi.org/10.1371/journal.pntd.0000721] [PMID: 20582308]
[31]
Campbell, G.R.; Loret, E.P. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology, 2009, 6, 50.
[http://dx.doi.org/10.1186/1742-4690-6-50] [PMID: 19467159]
[32]
Anang, S.; Kaushik, N.; Hingane, S.; Kumari, A.; Gupta, J.; Asthana, S. Shalimar; Nayak, B.; Ranjith-Kumar, C.T.; Surjit, M. Potent inhibition of hepatitis e virus release by a cyclic peptide inhibitor of the interaction between viral open reading frame 3 protein and host tumor susceptibility gene 101. J. Virol., 2018, 92(20), 00684-18.
[http://dx.doi.org/10.1128/JVI.00684-18] [PMID: 30068652]
[33]
Tavassoli, A.; Lu, Q.; Gam, J.; Pan, H.; Benkovic, S.J.; Cohen, S.N. Inhibition of HIV budding by a genetically selected cyclic peptide targeting the Gag-TSG101 interaction. ACS Chem. Biol., 2008, 3(12), 757-764.
[http://dx.doi.org/10.1021/cb800193n] [PMID: 19053244]
[34]
Yasin, B.; Wang, W.; Pang, M.; Cheshenko, N.; Hong, T.; Waring, A.J.; Herold, B.C.; Wagar, E.A.; Lehrer, R.I. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol., 2004, 78(10), 5147-5156.
[http://dx.doi.org/10.1128/JVI.78.10.5147-5156.2004] [PMID: 15113897]
[35]
Horne, W.S.; Wiethoff, C.M.; Cui, C.; Wilcoxen, K.M.; Amorin, M.; Ghadiri, M.R.; Nemerow, G.R. Antiviral cyclic D,L-alpha-peptides: Targeting a general biochemical pathway in virus infections. Bioorg. Med. Chem., 2005, 13(17), 5145-5153.
[http://dx.doi.org/10.1016/j.bmc.2005.05.051] [PMID: 15993611]
[36]
Hoffmann, J.; Schneider, C.; Heinbockel, L.; Brandenburg, K.; Reimer, R.; Gabriel, G. A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment. Antiviral Res., 2014, 104, 23-33.
[http://dx.doi.org/10.1016/j.antiviral.2014.01.015] [PMID: 24486207]
[37]
Rajik, M.; Jahanshiri, F.; Omar, A.R.; Ideris, A.; Hassan, S.S.; Yusoff, K. Identification and characterisation of a novel anti-viral peptide against avian influenza virus H9N2. Virol. J., 2009, 6, 74.
[http://dx.doi.org/10.1186/1743-422X-6-74] [PMID: 19497129]
[38]
Li, Q.; Zhao, Z.; Zhou, D.; Chen, Y.; Hong, W.; Cao, L.; Yang, J.; Zhang, Y.; Shi, W.; Cao, Z.; Wu, Y.; Yan, H.; Li, W. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides, 2011, 32(7), 1518-1525.
[http://dx.doi.org/10.1016/j.peptides.2011.05.015] [PMID: 21620914]
[39]
Alhoot, M.A.; Rathinam, A.K.; Wang, S.M.; Manikam, R.; Sekaran, S.D. Inhibition of dengue virus entry into target cells using synthetic antiviral peptides. Int. J. Med. Sci., 2013, 10(6), 719-729.
[http://dx.doi.org/10.7150/ijms.5037] [PMID: 23630436]
[40]
Su, X.; Wang, Q.; Wen, Y.; Jiang, S.; Lu, L. Protein- and peptide-based virus inactivators: Inactivating viruses before their entry into cells. Front. Microbiol., 2020, 11, 1063.
[http://dx.doi.org/10.3389/fmicb.2020.01063] [PMID: 32523582]
[41]
Florindo, H.F.; Kleiner, R.; Vaskovich-Koubi, D.; Acúrcio, R.C.; Carreira, B.; Yeini, E.; Tiram, G.; Liubomirski, Y.; Satchi-Fainaro, R. Immune-mediated approaches against COVID-19. Nat. Nanotechnol., 2020, 15(8), 630-645.
[http://dx.doi.org/10.1038/s41565-020-0732-3] [PMID: 32661375]
[42]
Huang, Y.; Yang, C.; Xu, X.F.; Xu, W.; Liu, S.W. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[43]
Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, 30(4), 343-355.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[44]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[45]
Ghosh, A.; Bhattacharyya, D.; Bhunia, A. Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study. Biochim. Biophys. Acta Biomembr., 2018, 1860(2), 335-346.
[http://dx.doi.org/10.1016/j.bbamem.2017.10.015] [PMID: 29038024]
[46]
Kosol, S.; Zangger, K. Dynamics and orientation of a cationic antimicrobial peptide in two membrane-mimetic systems. J. Struct. Biol., 2010, 170(1), 172-179.
[http://dx.doi.org/10.1016/j.jsb.2009.12.026] [PMID: 20045466]