Microwave-assisted, [Bmim]HSO4-catalyzed the Friedländer Quinoline Synthesis of Quinoline Under Solvent-free Conditions

Page: [117 - 123] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

An efficient and green method for the Friedländer quinoline synthesis has been described. The synthesis was performed under microwave irradiation using ionic liquid [Bmim]HSO4 as a catalyst. A diverse range of quinoline derivatives was obtained in high yields from 2-aminoaryl aldehydes and ketones under solvent-free conditions.

Keywords: 2-aminoaryl aldehydes, ketones, condensation, electron-donating, irradiation, ionic liquid.

Graphical Abstract

[1]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[2]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[3]
Friedländer, P. Ueber o-Amidobenzaldehyd. Ber, 1882, 15, 2572-2575.
[http://dx.doi.org/10.1002/cber.188201502219]
[4]
Friedländer, P.; Gohring, C.F. Ueber eine Darstellungsmethode im Pyridinkern substituirter Chinolinderivate. Ber., 1883, 16, 1833-1839.
[http://dx.doi.org/10.1002/cber.18830160265]
[5]
Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, Mdo.C.; Soriano, E. Recent advances in the Friedländer reaction. Chem. Rev., 2009, 109(6), 2652-2671.
[http://dx.doi.org/10.1021/cr800482c] [PMID: 19361199]
[6]
Fallah-Mehrjardi, M. Friedländer synthesis of poly-substituted quinolines: a mini review. Mini Rev. Org. Chem., 2017, 14, 187-196.
[http://dx.doi.org/10.2174/1570193X14666170206124809]
[7]
Palimkar, S.S.; Siddiqui, S.A.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Ionic liquid-promoted regiospecific Friedlander annulation: novel synthesis of quinolines and fused polycyclic quinolines. J. Org. Chem., 2003, 68(24), 9371-9378.
[http://dx.doi.org/10.1021/jo035153u] [PMID: 14629159]
[8]
Shirini, F.; Yahyazadeh, A.; Mohammadi, K.; Khaligh, N.G. Solvent-free synthesis of quinoline derivatives via the Friedländer reaction using 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and recyclable ionic liquid catalyst. C. R. Chim., 2014, 17, 370-376.
[http://dx.doi.org/10.1016/j.crci.2013.10.007]
[9]
Tajik, H.; Niknam, K.; Sarrafan, M. 1-Butyl-3-methylimidazolium Hydrogen Sulfate ([bmim]-HSO4)–Mediated Synthesis of Polysubstituted Quiniline. Synth. Commun., 2011, 41, 2103-2114.
[http://dx.doi.org/10.1080/00397911.2010.497596]
[10]
Garrison, A.T.; Abouelhassan, Y.; Yang, H.; Yousaf, H.H.; Nguyen, T.J.; Huigens Iii, R.W. Microwave-enhanced Friedländer synthesis for the rapid assembly of halogenated quinolines with antibacterial and biofilm eradication activities against drug resistant and tolerant bacteria. MedChemComm, 2016, 8(4), 720-724.
[http://dx.doi.org/10.1039/C6MD00381H] [PMID: 30108790]
[11]
Chan, C-K.; Lai, C.-Y.; Wang, C.-C. Environmentally friendly nafion-mediated friedländer quinoline synthesis under microwave irradiation: application to one-pot synthesis of substituted quinolinyl chalcones. Synthesis, 2020, 52, 1779-1794.
[http://dx.doi.org/10.1055/s-0039-1690088]
[12]
Bougrin, K.; Loupy, A.; Soufiaoui, M. Microwave-assisted solvent-free heterocyclic synthesis. J. Photochem. Photobiol. Photochem. Rev., 2005, 6, 139-167.
[http://dx.doi.org/10.1016/j.jphotochemrev.2005.07.001]
[13]
Xu, J.; Chen, Q.; Luo, Z.; Tang, X.; Zhao, J. N-Heterocyclic carbene copper catalyzed quinoline synthesis from 2-aminobenzyl alcohols and ketones using DMSO as an oxidant at room temperature. RSC Advances, 2019, 9, 28764-28767.
[http://dx.doi.org/10.1039/C9RA04926F]
[14]
Xi, L-Y.; Zhang, R-Y.; Zhang, L.; Chen, S-Y.; Yu, X-Q. An efficient synthesis of quinolines via copper-catalyzed C-N cleavage. Org. Biomol. Chem., 2015, 13(13), 3924-3930.
[http://dx.doi.org/10.1039/C5OB00075K] [PMID: 25712024]
[15]
Parua, S.; Sikari, R.; Sinha, S.; Das, S.; Chakraborty, G.; Paul, N.D. A nickel catalyzed acceptorless dehydrogenative approach to quinolines. Org. Biomol. Chem., 2018, 16(2), 274-284.
[http://dx.doi.org/10.1039/C7OB02670F] [PMID: 29242865]
[16]
Xu, T.; Shao, Y.; Dai, L.; Yu, S.; Cheng, T.; Chen, J. Pd-Catalyzed Tandem Reaction of 2-Aminostyryl Nitriles with Arylboronic Acids: Synthesis of 2-Arylquinolines. J. Org. Chem., 2019, 84(21), 13604-13614.
[http://dx.doi.org/10.1021/acs.joc.9b01875] [PMID: 31547657]
[17]
Das, S.; Maiti, D.; De Sarkar, S. Synthesis of polysubstituted quinolines from α-2-aminoaryl alcohols via nickel-catalyzed dehydrogenative coupling. J. Org. Chem., 2018, 83(4), 2309-2316.
[http://dx.doi.org/10.1021/acs.joc.7b03198] [PMID: 29345932]
[18]
Chakraborty, G.; Sikari, R.; Das, S.; Mondal, R.; Sinha, S.; Banerjee, S.; Paul, N.D. Dehydrogenative synthesis of quinolines, 2-aminoquinolines, and quinazolines using singlet diradical Ni(II)-catalysts. J. Org. Chem., 2019, 84(5), 2626-2641.
[http://dx.doi.org/10.1021/acs.joc.8b03070] [PMID: 30685972]
[19]
Li, B.; Gou, C.; Fan, X.; Zhang, J.; Zhang, X. Synthesis of substituted quinoline via copper-catalyzed one-pot cascade reactions of 2-bromobenzaldehydes with aryl methyl ketones and aqueous ammonia. Tetrahedron Lett., 2015, 55, 5944-5948.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.024]
[20]
Zhu, Y.; Cai, C.A. N-heterocyclic carbene - catalyzed approach to the indirect friedländer quinoline synthesis. RSC Advances, 2014, 4, 52911-52914.
[http://dx.doi.org/10.1039/C4RA07858F]
[21]
Liu, Y.; Hu, Y.; Cao, Z.; Zhan, X.; Luo, W.; Liu, Q.; Guo, C. Copper-catalyzed aerobic oxidative cyclization of anilines, aryl methyl ketones and DMSO: efficient assembly of 2-arylquinolines. Adv. Synth. Catal., 2018, 360, 2691-2695.
[http://dx.doi.org/10.1002/adsc.201800373]
[22]
Rubio-Presa, R.; Suárez-Pantiga, S.; Pedrosa, M.R.; Sanz, R. Molybdenum-catalyzed sustainable friedländer synthesis of quinolines. Adv. Synth. Catal., 2018, 360, 2216-2220.
[http://dx.doi.org/10.1002/adsc.201800278]