Biochemical and Molecular Mechanism of Plant-mediated Synthesis of Silver Nanoparticles – A Review

Page: [939 - 954] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

In the past few decades, metal nanoparticles have received a great deal of attention from researchers. Particularly, silver nanoparticles have great potential in a wide range of applications such as antimicrobials, drug delivery carriers, sensors, optoelectronics, and attractive gadgets. Designing a systematic and natural or environmentally-friendly method for blending metal nanoparticles could be a principal step within the field of nanotechnology. Awareness of “green nanotechnology” in nanoparticle synthesis is developing amongst scientists. In the recent decade, more than a hundred different plant extract sources for synthesizing silver nanoparticles (AgNPs) have been described. The majority of publications focused on the union and characterization of several plant parts; however, a few articles focused on the role of biomolecules in plants and the working conditions involved in the amalgamation. This review highlights the potential of plant extracts in the synthesis of AgNPs with a special focus on the biochemical and molecular mechanism involved in the synthesis of AgNPs using plant extract as a reducing and capping agent. The present review also includes the characterization of AgNPs and the physical parameters affecting the size and shape of AgNPs.

Keywords: AgNPs, plant-mediated synthesis, characterization, molecular mechanism, physical requisites, optoelectronics.

Graphical Abstract

[1]
Putheti, R.R.; Okigbo, R.N.; Sai, M.A.; Chavanpatil, S. African journal of pure and applied chemistry., 2008, 2, 27.
[2]
Thakore, S.; Rathore, P.S.; Jadeja, R.N.; Thounaojam, M.; Devkar, R.V. Sunflower oil mediated biomimetic synthesis and cytotoxicity of monodisperse hexagonal silver nanoparticles. Mater. Sci. Eng. C, 2014, 44, 209-215.
[http://dx.doi.org/10.1016/j.msec.2014.08.019] [PMID: 25280698]
[3]
Liu, Z.; Bucknall, D.G.; Allen, M.G. Inclined nanoimprinting lithography for 3D nanopatterning. Nanotechnology, 2011, 22(22), 225302.
[http://dx.doi.org/10.1088/0957-4484/22/22/225302] [PMID: 21464523]
[4]
Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res., 2008, 10(3), 507-517.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[5]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[6]
Guzman, M.G.; Dille, J.; Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng., 2009, 2(3), 104-111.
[7]
Rodriguez-Sanchez, L.; Blanco, M.C.; Lopez-Quintela, M.A. Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B, 2000, 104(41), 9683-9688.
[http://dx.doi.org/10.1021/jp001761r]
[8]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[9]
Natsuki, J.; Natsuki, T.; Hashimoto, Y. A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Mater. Sci. Appl., 2015, 4(5), 325-332.
[http://dx.doi.org/10.11648/j.ijmsa.20150405.17]
[10]
Rastogi, L.; Arunachalam, J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phys., 2011, 129(1-2), 558-563.
[http://dx.doi.org/10.1016/j.matchemphys.2011.04.068]
[11]
Tripathi, G.N. p-Benzosemiquinone radical anion on silver nanoparticles in water. J. Am. Chem. Soc., 2003, 125(5), 1178-1179.
[http://dx.doi.org/10.1021/ja029049q] [PMID: 12553814]
[12]
Zhang, Y.; Wang, L.; Tian, J.; Li, H.; Luo, Y.; Sun, X. Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection. Langmuir, 2011, 27(6), 2170-2175.
[http://dx.doi.org/10.1021/la105092f] [PMID: 21302954]
[13]
Aroca, R.F.; Alvarez-Puebla, R.A.; Pieczonka, N.; Sanchez-Cortez, S.; Garcia-Ramos, J.V. Surface-enhanced raman scattering on colloidal nanostructures. Adv. Colloid Interface Sci., 2005, 116(1-3), 45-61.
[http://dx.doi.org/10.1016/j.cis.2005.04.007] [PMID: 16213453]
[14]
Jiang, Z.J.; Liu, C.Y.; Sun, L.W. Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B, 2005, 109(5), 1730-1735.
[http://dx.doi.org/10.1021/jp046032g] [PMID: 16851151]
[15]
Atiyeh, BS; Costagliola, M; Hayek, SN; Dibo, SA Effect of silver on burn wound infection control and healing: review of the literature. burns, 2007, 33(2), 139-48.
[16]
Lokina, S.; Narayanan, V. Antimicrobial and anticancer activity of gold nanoparticles synthesized from grapes fruit extract. Chem. Sci. Trans., 2013, 2(S1), S105-S110.
[17]
Mohapatra, B.; Kuriakose, S.; Mohapatra, S. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract. J. Alloys Compd., 2015, 637, 119-126.
[http://dx.doi.org/10.1016/j.jallcom.2015.02.206]
[18]
Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA, 1999, 96(24), 13611-13614.
[http://dx.doi.org/10.1073/pnas.96.24.13611] [PMID: 10570120]
[19]
Sastry, M.; Ahmad, A.; Khan, M.I.; Kumar, R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci., 2003, 85(2), 162-170.
[20]
Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus fusarium oxysporum. Colloids Surf. B Biointerfaces, 2003, 28(4), 313-318.
[http://dx.doi.org/10.1016/S0927-7765(02)00174-1]
[21]
MubarakAli D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B Biointerfaces, 2011, 85(2), 360-365.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.009] [PMID: 21466948]
[22]
Vigneshwaran, N.; Kathe, A.A.; Varadarajan, P.V.; Nachane, R.P.; Balasubramanya, R.H. Functional finishing of cotton fabrics using silver nanoparticles. J. Nanosci. Nanotechnol., 2007, 7(6), 1893-1897.
[http://dx.doi.org/10.1166/jnn.2007.737] [PMID: 17654961]
[23]
Alarcón, R.I.; Frutis, M.Á.; Téllez, S.C.; Guajardo, C.F.; Urby, R.B.; Castro, N.C.; Flores, G.A. Blue, white, and red tunable light emission from (Y2O3: Sm3+)-benzoate hybrid nanophosphors. J. Nanophotonics, 2018, 12(4), 046003.
[24]
Kumar, V.; Yadav, S.K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol., 2009, 84(2), 151-157.
[25]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[26]
Abdel-Halim, E.S.; El-Rafie, M.H.; Al-Deyab, S.S. Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydr. Polym., 2011, 85(3), 692-697.
[http://dx.doi.org/10.1016/j.carbpol.2011.03.039]
[27]
Martinez-Gutierrez, F.; Olive, P.L.; Banuelos, A.; Orrantia, E.; Nino, N.; Sanchez, E.M.; Ruiz, F.; Bach, H.; Av-Gay, Y. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine, 2010, 6(5), 681-688.
[http://dx.doi.org/10.1016/j.nano.2010.02.001] [PMID: 20215045]
[28]
Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine, 2010, 6(4), 570-574.
[http://dx.doi.org/10.1016/j.nano.2009.12.002] [PMID: 20060498]
[29]
Shankar, S.S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater., 2004, 3(7), 482-488.
[http://dx.doi.org/10.1038/nmat1152] [PMID: 15208703]
[30]
Shankar, S.S.; Ahmad, A.; Pasricha, R.; Sastry, M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem., 2003, 13(7), 1822-1826.
[http://dx.doi.org/10.1039/b303808b]
[31]
Shankar, S.S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog., 2003, 19(6), 1627-1631.
[http://dx.doi.org/10.1021/bp034070w] [PMID: 14656132]
[32]
Rai, A.; Singh, A.; Ahmad, A.; Sastry, M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir, 2006, 22(2), 736-741.
[http://dx.doi.org/10.1021/la052055q] [PMID: 16401125]
[33]
Rai, A.; Chaudhary, M.; Ahmad, A.; Bhargava, S.; Sastry, M. Synthesis of triangular Au core–Ag shell nanoparticles. Mater. Res. Bull., 2007, 42(7), 1212-1220.
[http://dx.doi.org/10.1016/j.materresbull.2006.10.019]
[34]
Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog., 2006, 22(2), 577-583.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[35]
Rajeshkumar, S.; Bharath, L.V. Mechanism of plant-mediated synthesis of silver nanoparticles - A review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact., 2017, 273, 219-227.
[http://dx.doi.org/10.1016/j.cbi.2017.06.019] [PMID: 28647323]
[36]
Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Rad. Res. Appl. Sci., 2016, 9(3), 217-227.
[http://dx.doi.org/10.1016/j.jrras.2015.10.002]
[37]
Tran, Q.H.; Le, A.T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2013, 4(3), 033001.
[http://dx.doi.org/10.1088/2043-6262/4/3/033001]
[38]
Sapsford, K.E.; Tyner, K.M.; Dair, B.J.; Deschamps, J.R.; Medintz, I.L. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem., 2011, 83(12), 4453-4488.
[http://dx.doi.org/10.1021/ac200853a] [PMID: 21545140]
[39]
Tomaszewska, E.; Soliwoda, K.; Kadziola, K.; Tkacz-Szczesna, B.; Celichowski, G.; Cichomski, M.; Szmaja, W.; Grobelny, J. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater., 2013, 2013, 313081.
[40]
Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces, 2010, 76(1), 50-56.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.008] [PMID: 19896347]
[41]
Kannaujia, R.; Srivastava, C.M.; Prasad, V.; Singh, B.N.; Pandey, V. Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity. Plant Physiol. Biochem., 2019, 142, 460-471.
[http://dx.doi.org/10.1016/j.plaphy.2019.08.008] [PMID: 31425972]
[42]
Sulaiman, G.M.; Mohammed, W.H.; Marzoog, T.R.; Al-Amiery, A.A.; Kadhum, A.A.; Mohamad, A.B. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed., 2013, 3(1), 58-63.
[http://dx.doi.org/10.1016/S2221-1691(13)60024-6] [PMID: 23570018]
[43]
Thirunavoukkarasu, M.; Balaji, U.; Behera, S.; Panda, P.K.; Mishra, B.K. Biosynthesis of silver nanoparticle from leaf extract of Desmodium gangeticum (L.) DC. and its biomedical potential. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 116, 424-427.
[http://dx.doi.org/10.1016/j.saa.2013.07.033] [PMID: 23973589]
[44]
Vilchis-Nestor, A.R.; Sánchez-Mendieta, V.; Camacho-López, M.A.; Gómez-Espinosa, R.M.; Camacho-López, M.A.; Arenas-Alatorre, J.A. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater. Lett., 2008, 62(17-18), 3103-3105.
[http://dx.doi.org/10.1016/j.matlet.2008.01.138]
[45]
Dubey, S.P.; Dwivedi, A.D.; Lahtinen, M.; Lee, C.; Kwon, Y.N.; Sillanpaa, M. Protocol for development of various plants leaves extract in single-pot synthesis of metal nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 103, 134-142.
[http://dx.doi.org/10.1016/j.saa.2012.11.021] [PMID: 23257341]
[46]
Arunachalam, K.D.; Annamalai, S.K.; Hari, S. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int. J. Nanomedicine, 2013, 8, 1307-1315.
[http://dx.doi.org/10.2147/IJN.S36670] [PMID: 23569372]
[47]
Pyrz, W.D.; Buttrey, D.J. Particle size determination using TEM: a discussion of image acquisition and analysis for the novice microscopist. Langmuir, 2008, 24(20), 11350-11360.
[http://dx.doi.org/10.1021/la801367j] [PMID: 18729338]
[48]
Khan, M.; Khan, M.; Adil, S.F.; Tahir, M.N.; Tremel, W.; Alkhathlan, H.Z.; Al-Warthan, A.; Siddiqui, M.R. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. Int. J. Nanomedicine, 2013, 8, 1507-1516.
[PMID: 23620666]
[49]
Jagtap, U.B.; Bapat, V.A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind. Crops Prod., 2013, 46, 132-137.
[http://dx.doi.org/10.1016/j.indcrop.2013.01.019]
[50]
Kumar, P.V.; Pammi, S.V.; Kollu, P.; Satyanarayana, K.V.; Shameem, U. Green synthesis and characterization of silver nanoparticles using Boerhaa via diffusa plant extract and their anti bacterial activity. Ind. Crops Prod., 2014, 52, 562-566.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.050]
[51]
Gavade, N.L.; Kadam, A.N.; Suwarnkar, M.B.; Ghodake, V.P.; Garadkar, K.M. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus jujuba leaf extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt B), 953-960.
[http://dx.doi.org/10.1016/j.saa.2014.09.118] [PMID: 25459621]
[52]
Sharma, R.; Bisen, D.P.; Shukla, U. Sharma, BG X-ray diffraction: a powerful method of characterizing nanomaterials. Recent Res. Sci. Technol., 2012, 4(8), 77-79.
[53]
Rajakumar, G.; Abdul Rahuman, A. Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against rhipicephalus (Boophilus) microplus. Res. Vet. Sci., 2012, 93(1), 303-309.
[http://dx.doi.org/10.1016/j.rvsc.2011.08.001] [PMID: 21906765]
[54]
Morais, P.C.; Santos, R.L.; Pimenta, A.C.; Azevedo, R.B.; Lima, E.C. Preparation and characterization of ultra-stable biocompatible magnetic fluids using citrate-coated cobalt ferrite nanoparticles. Thin Solid Films, 2006, 515(1), 266-270.
[http://dx.doi.org/10.1016/j.tsf.2005.12.079]
[55]
Suriyakalaa, U.; Antony, J.J.; Suganya, S.; Siva, D.; Sukirtha, R.; Kamalakkannan, S.; Pichiah, P.B.; Achiraman, S. Hepatocurative activity of biosynthesized silver nanoparticles fabricated using andrographis paniculata. Colloids Surf. B Biointerfaces, 2013, 102, 189-194.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.039] [PMID: 23018020]
[56]
Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater. Sci. Eng. C, 2015, 49, 373-381.
[http://dx.doi.org/10.1016/j.msec.2015.01.035] [PMID: 25686962]
[57]
Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of rosa rugosa. Colloids Surf. A Physicochem. Eng. Asp., 2010, 364(1-3), 34-41.
[http://dx.doi.org/10.1016/j.colsurfa.2010.04.023]
[58]
Gericke, M.; Pinches, A. Microbial production of gold nanoparticles. Gold Bull., 2006, 39, 22-28.
[http://dx.doi.org/10.1007/BF03215529]
[59]
Sathishkumar, M.; Sneha, K.; Yun, Y.S. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour. Technol., 2010, 101(20), 7958-7965.
[http://dx.doi.org/10.1016/j.biortech.2010.05.051] [PMID: 20541399]
[60]
Elemike, E.E.; Fayemi, O.E.; Ekennia, A.C.; Onwudiwe, D.C.; Ebenso, E.E. Silver nanoparticles mediated by costus afer leaf extract: synthesis, antibacterial, antioxidant and electrochemical properties. Molecules, 2017, 22(5), 701.
[http://dx.doi.org/10.3390/molecules22050701] [PMID: 28468278]
[61]
Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys., 2002, 116(15), 6755-6759.
[http://dx.doi.org/10.1063/1.1462610]
[62]
Korbekandi, H.; Iravani, S.; Abbasi, S. Production of nanoparticles using organisms. Crit. Rev. Biotechnol., 2009, 29(4), 279-306.
[http://dx.doi.org/10.3109/07388550903062462] [PMID: 19929319]
[63]
Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol., 2001, 19(1), 15-20.
[http://dx.doi.org/10.1016/S0167-7799(00)01514-6] [PMID: 11146098]
[64]
Dwivedi, A.D.; Gopal, K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A Physicochem. Eng. Asp., 2010, 369(1-3), 27-33.
[http://dx.doi.org/10.1016/j.colsurfa.2010.07.020]
[65]
Veerasamy, R.; Xin, T.Z.; Gunasagaran, S.; Xiang, T.F.; Yang, E.F.; Jeyakumar, N.; Dhanaraj, S.A. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc., 2011, 15(2), 113-120.
[http://dx.doi.org/10.1016/j.jscs.2010.06.004]
[66]
Iravani, S; Zolfaghari, B Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed. Res. Inter., 2013, 2013.
[67]
Andreescu, D.; Eastman, C.; Balantrapu, K.; Goia, D.V. A simple route for manufacturing highly dispersed silver nanoparticles. J. Mater. Res., 2007, 22(9), 2488-2496.
[http://dx.doi.org/10.1557/jmr.2007.0308]
[68]
Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng., 2009, 32(1), 79-84.
[http://dx.doi.org/10.1007/s00449-008-0224-6] [PMID: 18438688]
[69]
Shervani, Z.; Yamamoto, Y. Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites. Carbohydr. Res., 2011, 346(5), 651-658.
[http://dx.doi.org/10.1016/j.carres.2011.01.020] [PMID: 21349499]
[70]
Jain, S.; Mehata, M.S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep., 2017, 7(1), 15867.
[http://dx.doi.org/10.1038/s41598-017-15724-8] [PMID: 29158537]
[71]
Saware, K.; Venkataraman, A. Biosynthesis and characterization of stable silver nanoparticles using Ficus religiosa leaf extract: a mechanism perspective. J. Cluster Sci., 2014, 25(4), 1157-1171.
[http://dx.doi.org/10.1007/s10876-014-0697-1]
[72]
Verma, A.; Mehata, M.S. Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J. Rad. Res. Appl. Sci., 2016, 9(1), 109-115.
[http://dx.doi.org/10.1016/j.jrras.2015.11.001]
[73]
Khalil, M.M.; Ismail, E.H.; El-Baghdady, K.Z.; Mohamed, D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem., 2014, 7(6), 1131-1139.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.007]
[74]
Aswathy Aromal, S.; Philip, D. Green synthesis of gold nanoparticles using trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 97, 1-5.
[http://dx.doi.org/10.1016/j.saa.2012.05.083] [PMID: 22743607]
[75]
Sathishkumar, M.; Sneha, K.; Won, S.W.; Cho, C.W.; Kim, S.; Yun, Y.S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces, 2009, 73(2), 332-338.
[http://dx.doi.org/10.1016/j.colsurfb.2009.06.005] [PMID: 19576733]
[76]
Dubey, S.P.; Lahtinen, M.; Särkkä, H.; Sillanpää, M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf. B Biointerfaces, 2010, 80(1), 26-33.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.024] [PMID: 20620889]
[77]
Park, Y.; Hong, Y.N.; Weyers, A.; Kim, Y.S.; Linhardt, R.J. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol., 2011, 5(3), 69-78.
[http://dx.doi.org/10.1049/iet-nbt.2010.0033]
[78]
Doughari, J.H. Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents. In: Phytochemicals-A global perspective of their role in nutrition and health. Venketeshwaer Rao, Ed.; 2012.
[79]
Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qiu, L.; Zhang, L.; Zhang, Q. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem., 2007, 9(8), 852-858.
[http://dx.doi.org/10.1039/b615357g]
[80]
Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S.R.; Mandale, A.B.; Rao, M.; Sastry, M. Pepsin- gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir, 2001, 17(5), 1674-1679.
[http://dx.doi.org/10.1021/la001164w]
[81]
Shameli, K.; Bin Ahmad, M.; Jaffar Al-Mulla, E.A.; Ibrahim, N.A.; Shabanzadeh, P.; Rustaiyan, A.; Abdollahi, Y.; Bagheri, S.; Abdolmohammadi, S.; Usman, M.S.; Zidan, M. Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules, 2012, 17(7), 8506-8517.
[http://dx.doi.org/10.3390/molecules17078506] [PMID: 22801364]
[82]
Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma, A.R.; Singh, R.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanopart. Res., 2011, 13(7), 2981-2988.
[http://dx.doi.org/10.1007/s11051-010-0193-y]
[83]
Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem., 2011, 13(4), 900-904.
[http://dx.doi.org/10.1039/c0gc00772b]
[84]
Kasthuri, J.; Kathiravan, K.; Rajendiran, N. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J. Nanopart. Res., 2009, 11(5), 1075-1085.
[http://dx.doi.org/10.1007/s11051-008-9494-9]
[85]
Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; Hong, J. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007, 18(10), 105104.
[http://dx.doi.org/10.1088/0957-4484/18/10/105104]
[86]
Kasthuri, J.; Veerapandian, S.; Rajendiran, N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B Biointerfaces, 2009, 68(1), 55-60.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.021] [PMID: 18977643]
[87]
Singh, J.; Kaur, G.; Kaur, P.; Bajaj, R.; Rawat, M. A review on green synthesis and characterization of silver nanoparticles and their applications: a green nanoworld. World J. Pharm. Pharm. Sci., 2016, 7, 730-762.
[88]
Borodina, V.G.; Mirgorod, Y. Mechanism of interaction between HAuCl4 and rutin. Kinet. Catal., 2014, 55(6), 683-687.
[89]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. (Engl. Ed.), 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[90]
Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J.L. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chem., 2006, 97(4), 679-688.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.042]
[91]
Kumar, TV; Murthy, JS; Rao, MN; Bhargava, Y Evaluation of silver nanoparticles synthetic potential of Couroupita guianensis Aubl., flower buds extract and their synergistic antibacterial activity. 3 Biotech, 2016, 6(1), 92.
[92]
Mirgorod, IuA.; Borodina, V.G.; Borshch, N.A. [Investigation of interaction between silver ions and rutin in water by physical methods]. Biofizika, 2013, 58(6), 947-952.
[PMID: 25486752]
[93]
Singh, A.K.; Talat, M.; Singh, D.P.; Srivastava, O.N. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J. Nanopart. Res., 2010, 12(5), 1667-1675.
[http://dx.doi.org/10.1007/s11051-009-9835-3]
[94]
Dipankar, C.; Murugan, S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B Biointerfaces, 2012, 98, 112-119.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.006] [PMID: 22705935]
[95]
Prasad, R.; Swamy, V.S. Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J. Nanoparticles, 2013, 2013, 431218.
[http://dx.doi.org/10.1155/2013/431218]
[96]
Kumar, S.; Saini, J.; Kashyap, D.; Batra, B.; Grewal, A.; Malik, D.K.; Kumar, R. Green synthesis of plant-mediated silver nanoparticles using Mangifera indica and Syzygium cumini leaf extract. Int. J. Pharm. Sci. Res., 2013, 4(8), 3189.
[97]
Kumar, S.H.; Prasad, C.; Venkateswarlu, S.; Venkateswarlu, P.; Jyothi, N.V. Green synthesis of silver nanoparticles using aqueous solution of Syzygium cumini flowering extract and its antimicrobial activity. Indian J. Adv. Chem. Sci., 2015, 3(4), 299.
[98]
Kharat, S.N.; Mendhulkar, V.D. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater. Sci. Eng. C, 2016, 62, 719-724.
[http://dx.doi.org/10.1016/j.msec.2016.02.024] [PMID: 26952477]
[99]
Kiran Kumar, H.A.; Mandal, B.K.; Mohan Kumar, K.; Maddinedi, Sb.; Sai Kumar, T.; Madhiyazhagan, P.; Ghosh, A.R. Antimicrobial and antioxidant activities of mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 130, 13-18.
[http://dx.doi.org/10.1016/j.saa.2014.03.024] [PMID: 24759779]
[100]
Yang, N.; Li, W.H. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind. Crops Prod., 2013, 48, 81-88.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.001]
[101]
Gopinath, V. MubarakAli, D.; Priyadarshini, S.; Priyadharsshini, N.M.; Thajuddin, N.; Velusamy, P. Biosynthesis of silver nanoparticles from tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf. B Biointerfaces, 2012, 96, 69-74.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.023] [PMID: 22521683]
[102]
Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B. Biosynthesis of silver nano-flakes by Crossandra infundibuliformis leaf extract. Mater. Lett., 2012, 67(1), 64-66.
[http://dx.doi.org/10.1016/j.matlet.2011.09.023]
[103]
Rajakumar, G.; Abdul Rahuman, A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop., 2011, 118(3), 196-203.
[http://dx.doi.org/10.1016/j.actatropica.2011.03.003] [PMID: 21419749]
[104]
Javan Bakht Dalir, S.; Djahaniani, H.; Nabati, F.; Hekmati, M. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon, 2020, 6(3), e03624.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03624] [PMID: 32215333]
[105]
Sriram, T.; Pandidurai, V. Synthesis of silver nanoparticles from leaf extract of Psidium guajava and its antibacterial activity against pathogens. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(3), 146-152.
[106]
Kumar, M.; Dandapat, S.; Ranjan, R.; Kumar, A.; Sinha, M.P. Plant mediated synthesis of silver nanoparticles using Punica granatum aqueous leaf extract. J. Microbiol. Exp., 2018, 6(4), 175-178.
[http://dx.doi.org/10.15406/jmen.2018.06.00211]
[107]
Vijayaraj, R.; Kumar, K.N.; Mani, P.; Senthil, J.; Kumar, G.D.; Jayaseelan, T. Green synthesis of silver nanoparticles from ethanolic seed extract of Acranythes aspera (Linn.) and its anti-inflammatory activities. Int J Pharm Ther., 2016, 7, 42-48.
[108]
Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem., 2010, 45(7), 1065-1071.
[http://dx.doi.org/10.1016/j.procbio.2010.03.024]
[109]
Geethalakshmi, R.; Sarada, D.V. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties. Int. J. Nanomedicine, 2012, 7, 5375-5384.
[http://dx.doi.org/10.2147/IJN.S36516] [PMID: 23091381]
[110]
Ahmad, N.; Sharma, S.; Singh, V.N.; Shamsi, S.F.; Fatma, A.; Mehta, B.R. Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol. Res. Int., 2011, 2011, 454090.
[http://dx.doi.org/10.4061/2011/454090]
[111]
Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; De, S.P.; Misra, A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp., 2009, 339(1-3), 134-139.
[http://dx.doi.org/10.1016/j.colsurfa.2009.02.008]
[112]
Nabikhan, A.; Kandasamy, K.; Raj, A.; Alikunhi, N.M. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf. B Biointerfaces, 2010, 79(2), 488-493.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.018] [PMID: 20627485]
[113]
Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(3), 594-598.
[http://dx.doi.org/10.1016/j.saa.2011.03.040] [PMID: 21536485]
[114]
Nayak, D; Ashe, S; Rauta, PR; Nayak, B Biosynthesis, characterisation and antimicrobial activity of silver nanoparticles using Hibiscus rosa-sinensis petals extracts. IET nanobiotechnology, 2015, 9(5), 288-93.
[http://dx.doi.org/10.1049/iet-nbt.2014.0047]
[115]
Ramteke, C.; Chakrabarti, T.; Sarangi, B.K.; Pandey, R.A. Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J. Chem., 2013, 2013, 278925.
[116]
Lagashetty, A.N. Green synthesis and characterization of silver nanoparticles using piper betel leaf extract. Bull. Adv. Sci. Res., 2015, 1(5), 136-138.
[117]
Elumalai, D.; Kaleena, P.K.; Ashok, K.; Suresh, A.; Hemavathi, M. Green synthesis of silver nanoparticle using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Eng. Agric. Environ. Food, 2016, 9(1), 1-8.
[http://dx.doi.org/10.1016/j.eaef.2015.08.002]
[118]
Mukunthan, K.S.; Balaji, S. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int. J. Green Nanotechnol., 2012, 4(2), 71-79.
[http://dx.doi.org/10.1080/19430892.2012.676900]
[119]
Velmurugan, P.; Anbalagan, K.; Manosathyadevan, M.; Lee, K.J.; Cho, M.; Lee, S.M.; Park, J.H.; Oh, S.G.; Bang, K.S.; Oh, B.T. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst. Eng., 2014, 37(10), 1935-1943.
[http://dx.doi.org/10.1007/s00449-014-1169-6] [PMID: 24668029]
[120]
Dinesh, S.; Karthikeyan, S.; Arumugam, P. Biosynthesis of silver nanoparticles from Glycyrrhiza glabra root extract. Arch. Appl. Sci. Res., 2012, 4(1), 178-187.
[121]
Im, A.R.; Han, L.; Kim, E.R.; Kim, J.; Kim, Y.S.; Park, Y. Enhanced antibacterial activities of leonuri herba extracts containing silver nanoparticles. Phytother. Res., 2012, 26(8), 1249-1255.
[http://dx.doi.org/10.1002/ptr.3683] [PMID: 22170803]
[122]
Omprakash, V.; Sharada, S. Green synthesis and characterization of silver nanoparticles and evaluation of their antibacterial activity using elettaria cardamom seeds. J. Nanomed. Nanotechnol., 2015, 6(2)
[123]
Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Kale, S.; Pardesi, K.; Cameotra, S.S.; Bellare, J.; Dhavale, D.D.; Jabgunde, A.; Chopade, B.A. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomedicine, 2012, 7, 483-496.
[PMID: 22334779]
[124]
Geethalakshmi, R.; Sarada, D.V. Synthesis of plant-mediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti microbial activities. Int. J. Eng. Sci. Technol., 2010, 2(5), 970-975.
[125]
Kumar, K.R.; Nattuthurai, N.; Gopinath, P.; Mariappan, T. Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Parasitol. Res., 2015, 114(2), 411-417.
[http://dx.doi.org/10.1007/s00436-014-4198-9] [PMID: 25373452]
[126]
Patil, C.D.; Patil, S.V.; Borase, H.P.; Salunke, B.K.; Salunkhe, R.B. Larvicidal activity of silver nanoparticles synthesized using plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol. Res., 2012, 110(5), 1815-1822.
[http://dx.doi.org/10.1007/s00436-011-2704-x] [PMID: 22089086]
[127]
Vivek, R.; Thangam, R.; Muthuchelian, K.; Gunasekaran, P.; Kaveri, K.; Kannan, S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem., 2012, 47(12), 2405-2410.
[http://dx.doi.org/10.1016/j.procbio.2012.09.025]
[128]
Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci., 2013, 3(3), 217-223.
[http://dx.doi.org/10.1007/s13204-012-0121-9]
[129]
Sumitha, S.; Vasanthi, S.; Shalini, S.; Chinni, S.V.; Gopinath, S.C.B.; Anbu, P.; Bahari, M.B.; Harish, R.; Kathiresan, S.; Ravichandran, V. Phyto-mediated photo catalysed green synthesis of silver nanoparticles using Durio zibethinus seed extract: antimicrobial and cytotoxic activity and photocatalytic applications. Molecules, 2018, 23(12), 3311.
[http://dx.doi.org/10.3390/molecules23123311] [PMID: 30551671]
[130]
Kumar, R.; Roopan, S.M.; Prabhakarn, A.; Khanna, V.G.; Chakroborty, S. Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 90, 173-176.
[http://dx.doi.org/10.1016/j.saa.2012.01.029] [PMID: 22336049]
[132]
Gröning, R.; Breitkreutz, J.; Baroth, V.; Müller, R.S. Nanoparticles in plant extracts--factors which influence the formation of nanoparticles in black tea infusions. Pharmazie, 2001, 56(10), 790-792.
[PMID: 11683125]
[133]
Begum, N.A.; Mondal, S.; Basu, S.; Laskar, R.A.; Mandal, D. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surf. B Biointerfaces, 2009, 71(1), 113-118.
[http://dx.doi.org/10.1016/j.colsurfb.2009.01.012] [PMID: 19250808]
[134]
Kesharwani, J.; Yoon, K.Y.; Hwang, J.; Rai, M. Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis. J. Bionanosci., 2009, 3(1), 39-44.
[http://dx.doi.org/10.1166/jbns.2009.1008]
[135]
Huang, J.; Zhan, G.; Zheng, B.; Sun, D.; Lu, F.; Lin, Y.; Chen, H.; Zheng, Z.; Zheng, Y.; Li, Q. Biogenic silver nanoparticles by cacumen platycladi extract: synthesis, formation mechanism, and antibacterial activity. Ind. Eng. Chem. Res., 2011, 50(15), 9095-9106.
[http://dx.doi.org/10.1021/ie200858y]
[136]
Escárcega-González, C.E.; Garza-Cervantes, J.A.; Vázquez-Rodríguez, A.; Montelongo-Peralta, L.Z.; Treviño-González, M.T.; Díaz Barriga Castro, E.; Saucedo-Salazar, E.M.; Chávez Morales, R.M.; Regalado Soto, D.I.; Treviño González, F.M.; Carrazco Rosales, J.L.; Cruz, R.V.; Morones-Ramírez, J.R. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int. J. Nanomedicine, 2018, 13, 2349-2363.
[http://dx.doi.org/10.2147/IJN.S160605] [PMID: 29713166]
[137]
Otunola, G.A.; Afolayan, A.J.; Ajayi, E.O.; Odeyemi, S.W. Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens. Pharmacogn. Mag., 2017, 13(Suppl. 2), S201-S208.
[http://dx.doi.org/10.4103/pm.pm_430_16] [PMID: 28808381]
[138]
Khandel, P.; Shahi, S.K.; Soni, D.K.; Yadaw, R.K.; Kanwar, L. Alpinia calcarata: potential source for the fabrication of bioactive silver nanoparticles. Nano Converg., 2018, 5(1), 37.
[http://dx.doi.org/10.1186/s40580-018-0167-9] [PMID: 30519797]
[139]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci., 2017, 24(1), 45-50.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.006] [PMID: 28053570]
[140]
Lathamuthiah, B.; Inbakandan, J.; Devi, R. In vivo toxicity studies of biosynthesized silver nanoparticles using Brassica oleraceae in zebra fish model. Int. J. Pharm. Pharm. Sci., 2015, 7, 425-430.
[141]
Sathishkumar, P.; Preethi, J.; Vijayan, R.; Mohd Yusoff, A.R.; Ameen, F.; Suresh, S.; Balagurunathan, R.; Palvannan, T. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. J. Photochem. Photobiol. B, 2016, 163, 69-76.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.08.005] [PMID: 27541567]
[142]
Sheikh, E.; Bhatt, M.B.; Tripathi, M. Bio-based synthesised and characterized monodispersed Curcuma longa silver nanoparticles induces targeted anticancer activity in breast cancer cells. Pharmacogn. Mag., 2018, 14(57), 340.
[http://dx.doi.org/10.4103/pm.pm_71_18]
[143]
Muniyappan, N.; Nagarajan, N.S. Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem., 2014, 49(6), 1054-1061.
[http://dx.doi.org/10.1016/j.procbio.2014.03.015]
[144]
Rashmi, V.; Sanjay, K.R. Green synthesis, characterisation and bioactivity of plant-mediated silver nanoparticles using Decalepis hamiltonii root extract. IET Nanobiotechnol., 2017, 11(3), 247-254.
[http://dx.doi.org/10.1049/iet-nbt.2016.0018] [PMID: 28476981]
[145]
Venkatesan, J.; Kim, S.K.; Shim, M.S. Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials (Basel), 2016, 6(12), 235.
[http://dx.doi.org/10.3390/nano6120235] [PMID: 28335363]
[146]
Satyavani, K.; Gurudeeban, S.; Ramanathan, T.; Balasubramanian, T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) schrad. J. Nanobiotechnology, 2011, 9(1), 43.
[http://dx.doi.org/10.1186/1477-3155-9-43] [PMID: 21943321]
[147]
Mohanta, Y.K.; Panda, S.K.; Jayabalan, R.; Sharma, N.; Bastia, A.K.; Mohanta, T.K. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci., 2017, 4, 14.
[http://dx.doi.org/10.3389/fmolb.2017.00014] [PMID: 28367437]
[148]
Khodashenas, B.; Ghorbani, H.R. Synthesis of silver nanoparticles with different shapes. Arabian J. J. Chem., 2015, 12, 1823-1838.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.014]
[149]
Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; Ali, S. Green nanotechnology: a review on green synthesis of silver nanoparticles - an ecofriendly approach. Int. J. Nanomedicine, 2019, 14, 5087-5107.
[http://dx.doi.org/10.2147/IJN.S200254] [PMID: 31371949]
[150]
Raveendran, P.; Fu, J.; Wallen, S.L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc., 2003, 125(46), 13940-13941.
[http://dx.doi.org/10.1021/ja029267j] [PMID: 14611213]
[151]
Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1272-1291.
[http://dx.doi.org/10.1080/21691401.2016.1241792] [PMID: 27825269]
[152]
Ghorbani, H.R.; Safekordi, A.A.; Attar, H.; Sorkhabadi, S.M. Biological and non-biological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. Q., 2011, 25(3), 317-326.