Drug Deliery for Micro-/Nanorobots: Progress and Challenges

Page: [690 - 699] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Due to micro-/nanorobots having several propulsion mechanisms, drug delivery through micro/nanorobots is moving to the forefront of nanomedical research. However, low biocompatibility and low imaging efficiency have become major obstacles in the further development of micro- /nanorobots. This article firstly introduces the application of micro-/nanorobots in the field of nanomedicine in recent years, expresses the importance of micro-/nanorobots in terms of nanomedicine, and then summarizes and compares several propulsion mechanisms. The improvement and optimization of the preparation methodologies and structures in terms of micro-/nanorobots are also reviewed. The imaging effect and biocompatibility of micro-/nanorobots have been improved to the extent that it is suitable for clinical medicine while ensuring the efficiency of drug delivery. Then, the advantages of different propulsion mechanisms, imaging effects, and biocompatibility are compared. The aim of the review is to enable people of various knowledge backgrounds to learn directly and choose suitable modified methods based on realistic situations. Finally, future development trends and further prospects of micro-/nanorobots are discussed.

Keywords: Micro-/nanorobot, micro-/nanoswimmer, DNA origami, micro-/ nanomotor, micro-/nanoparticle, nanomedicine.

Graphical Abstract

[1]
Wang, Y.; Zhang, K.; Qin, X.; Li, T.; Qiu, J.; Yin, T.; Huang, J.; McGinty, S.; Pontrelli, G.; Ren, J.; Wang, Q.; Wu, W.; Wang, G. Biomimetic nanotherapies: red blood cell-based core-shell structured nanocomplexes for atherosclerosis management. Adv. Sci. (Weinh.), 2019, 6(12), 1900172.
[http://dx.doi.org/10.1002/advs.201900172] [PMID: 31380165]
[2]
Kim, T.; Nam, K.; Kim, Y.M.; Yang, K.; Roh, Y.H. DNA-assisted smart nanocarriers: progress, challenges, and opportunities. ACS Nano, 2021, 15(2), 1942-1951.
[http://dx.doi.org/10.1021/acsnano.0c08905] [PMID: 33492127]
[3]
Lu, W.; Yao, J.; Zhu, X.; Qi, Y. Nanomedicines: Redefining traditional medicine. Biomed. Pharmacother., 2021, 134, 111103.
[http://dx.doi.org/10.1016/j.biopha.2020.111103] [PMID: 33338747]
[4]
Dong, J.; Zhou, Y.; Pan, J.; Zhou, C.; Wang, Q. Assembling gold nanobipyramids into chiral plasmonic nanostructures with DNA origami. Chem. Commun. (Camb.), 2021, 57(50), 6201-6204.
[http://dx.doi.org/10.1039/D1CC01925B] [PMID: 34059870]
[5]
Zhao, S.; Tian, R.; Wu, J.; Liu, S.; Wang, Y.; Wen, M.; Shang, Y.; Liu, Q.; Li, Y.; Guo, Y.; Wang, Z.; Wang, T.; Zhao, Y.; Zhao, H.; Cao, H.; Su, Y.; Sun, J.; Jiang, Q.; Ding, B. A DNA origami-based aptamer nanoarray for potent and reversible anticoagulation in hemodialysis. Nat. Commun., 2021, 12(1), 358.
[http://dx.doi.org/10.1038/s41467-020-20638-7] [PMID: 33441565]
[6]
Tasciotti, E. Smart cancer therapy with DNA origami. Nat. Biotechnol., 2018, 36(3), 234-235.
[http://dx.doi.org/10.1038/nbt.4095] [PMID: 29509744]
[7]
Jiang, Q.; Liu, S.; Liu, J.; Wang, Z.G.; Ding, B. Rationally designed DNA-origami nanomaterials for drug delivery in vivo. Adv. Mater., 2019, 31(45), e1804785.
[http://dx.doi.org/10.1002/adma.201804785] [PMID: 30285296]
[8]
Marina, F.M.; Miguel, A. Ramos-Docampo; Ondrej, H.; Verónica, S.; Brigitte, S. Recent advances in nanoand micromotors. Adv. Funct. Mater., 2020, 30, 1908283.
[9]
Gao, C.Y.; Lin, Z.H.; Wang, D.L.; Wu, Z.G.; Xie, H.; He, Q. Red blood cell-mimicking micromotor for active photodynamic cancer therapy. American Chemical Society, 2019, 11(26), 23392-23400.
[10]
Chen, Z.J.; Xia, T.; Zhang, Z.L.; Xie, S.Z.; Wang, T.; Li, X.H. Enzyme-powered Janus nanomotors launched from intratumoral depots to address drug delivery barriers. Chem. Eng. J., 2019, 375, 122109.
[http://dx.doi.org/10.1016/j.cej.2019.122109]
[11]
Ana, C. Hortelão; Tania, Patiño.; Ariadna, Perez-Jiménez.; Àngel, Blanco.; Samuel, Sánchez. Enzyme-powered nanobots enhance anticancer drug delivery. Adv. Funct. Mater., 2018, 28(25), 1705086.
[http://dx.doi.org/10.1002/adfm.201705086]
[12]
Zhang, J.; Chen, Z.; Kankala, R.K.; Wang, S.B.; Chen, A.Z. Self-propelling micro-/nano-motors: Mechanisms, applications, and challenges in drug delivery. Int. J. Pharm., 2021, 596, 120275.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120275] [PMID: 33508344]
[13]
Srivastava, S.K.; Clergeaud, G.; Andresen, T.L.; Boisen, A. Micromotors for drug delivery in vivo: The road ahead. Adv. Drug Deliv. Rev., 2019, 138, 41-55.
[http://dx.doi.org/10.1016/j.addr.2018.09.005] [PMID: 30236447]
[14]
Jeon, S.; Kim, S.; Ha, S.; Lee, S.; Kim, E.; Kim, S.Y.; Park, S.H.; Jeon, J.H.; Kim, S.W.; Moon, C.; Nelson, B.J.; Kim, J.Y.; Yu, S.W.; Choi, H. Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot., 2019, 4(30), eaav4317.
[http://dx.doi.org/10.1126/scirobotics.aav4317] [PMID: 33137727]
[15]
Luo, M.; Feng, Y.; Wang, T.; Guan, J. Micro-/Nanorobots at work in active drug delivery. Adv. Funct. Mater., 2018, 28(25), 1706100.
[http://dx.doi.org/10.1002/adfm.201706100]
[16]
Agrahari, V.; Agrahari, V.; Chou, M.L.; Chew, C.H.; Noll, J.; Burnouf, T. Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: Promising development opportunities and translational challenges. Biomaterials, 2020, 260, 120163.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120163] [PMID: 32882512]
[17]
Balakrishnan, S. Bottom-UP assembly of nanorobots: extending synthetic biology to complex material design. Frontiers in Nanotechnology, 2019, 5
[18]
Ceylan, H.; Yasa, I.C.; Yasa, O.; Tabak, A.F.; Giltinan, J.; Sitti, M., III -Printed biode gradable microswimmer for theranostic cargo delivery and release. ACS Nano, 2019, 13(3), 3353-3362.
[http://dx.doi.org/10.1021/acsnano.8b09233] [PMID: 30742410]
[19]
Alapan, Y.; Yasa, O.; Yigit, B.; Yasa, I.C.; Erkoc, P.; Sitti, M. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Robot algorithms for localization of multiple emission, 2019, 2, 205-230.
[20]
Zhao, Z.; Ukidve, A.; Gao, Y.; Kim, J.; Mitragotri, S. Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci. Adv., 2019, 5(11), eaax9250.
[http://dx.doi.org/10.1126/sciadv.aax9250] [PMID: 31763454]
[21]
Hannon, G.; Lysaght, J.; Liptrott, N.J.; Prina-Mello, A. Immunotoxicity considerations for next generation cancer nanomedicines. Adv. Sci. (Weinh.), 2019, 6(19), 1900133.
[http://dx.doi.org/10.1002/advs.201900133] [PMID: 31592123]
[22]
Ma, D.; Shi, M.; Li, X.; Zhang, J.; Fan, Y.; Sun, K.; Jiang, T.; Peng, C.; Shi, X. Redox-sensitive clustered ultrasmall iron oxide nanoparticles for switchable T-2/T- 1-weighted magnetic resonance imaging applications. Bioconjug. Chem., 2020, 31(2), 352-359.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00659] [PMID: 31693856]
[23]
Li, X.; Li, H.; Zhang, C.; Pich, A.; Xing, L.; Shi, X. Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy. Bioact. Mater., 2021, 6(10), 3473-3484.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.021] [PMID: 33869898]
[24]
Li, X.; Sun, H.T.; Li, H.L.; Hu, C.L.; Luo, Y.; Shi, X.Y. Multi-responsive biodegradable cationic nanogels for highly efficient treatment of tumors. Advanced Functional Materials, 2021, 26, 2100227.
[25]
Li, X.; Ouyang, Z.; Li, H.; Hu, C.; Saha, P.; Xing, L.; Shi, X.; Pich, A. Dendrimer-decorated nanogels: Efficient nanocarriers for biodistribution in vivo and chemotherapy of ovarian carcinoma. Bioact. Mater., 2021, 6(10), 3244-3253.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.031] [PMID: 33778202]
[26]
Park, B.W.; Zhuang, J.; Yasa, O.; Sitti, M. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano, 2017, 11(9), 8910-8923.
[http://dx.doi.org/10.1021/acsnano.7b03207] [PMID: 28873304]
[27]
Alapan, Y.; Yasa, O.; Schauer, O.; Giltinan, J.; Tabak, A.F.; Sourjik, V.; Sitti, M. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot., 2018, 3(17), eaar4423.
[http://dx.doi.org/10.1126/scirobotics.aar4423] [PMID: 33141741]
[28]
Kroupa, T.; Hermanová, S.; Mayorga-Martinez, C.C.; Novotný, F.; Sofer, Z.; Pumera, M. Micromotors as “motherships”: a concept for the transport, delivery, and enzymatic release of molecular cargo via nanoparticles. Langmuir, 2019, 35(32), 10618-10624.
[http://dx.doi.org/10.1021/acs.langmuir.9b01192] [PMID: 31322356]
[29]
Li, X.; Lu, S.; Xiong, Z.; Hu, Y.; Ma, D.; Lou, W.; Peng, C.; Shen, M.; Shi, X. Light-addressable nanoclusters of ultrasmall iron oxide nanoparticles for enhanced and dynamic magnetic resonance imaging of arthritis. Adv. Sci. (Weinh.), 2019, 6(19), 1901800.
[http://dx.doi.org/10.1002/advs.201901800] [PMID: 31592427]
[30]
Singh, A.V.; Hosseinidoust, Z.; Park, B.W.; Yasa, O.; Sitti, M. Microemulsion-Based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano, 2017, 11(10), 9759-9769.
[http://dx.doi.org/10.1021/acsnano.7b02082] [PMID: 28858477]
[31]
Szumeda, T.; Drelinkiewicz, A.; Kosydar, R. Synthesis of carbon-supported bimetallic palladium–iridium catalysts by microemulsion: characterization and electrocatalytic properties. J. Mater. Sci., 2020, 56(1), 1-23.
[32]
Cao, X.; Zhu, Q.; Wang, Q.L.; Adu-Frimpong, M.; Wei, C.M.; Weng, W.; Bao, R.; Wang, Y.P.; Yu, J.N.; Xu, X.M. Improvement of oral bioavailability and anti-tumor effect of zingerone self-microemulsion drug delivery system. J. Pharm. Sci., 2021, 110(7), 2718-2727.
[http://dx.doi.org/10.1016/j.xphs.2021.01.037] [PMID: 33610568]
[33]
Zhang, D.; Ye, D.; Jing, P.; Tan, X.; Qiu, L.; Li, T.; Shen, L.; Sun, Y.; Hou, H.; Zhang, Y.; Tian, Q. Design, optimization and evaluation of co-surfactant free microemulsion-based hydrogel with low surfactant for enhanced transdermal delivery of lidocaine. Int. J. Pharm., 2020, 586, 119415.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119415] [PMID: 32599129]
[34]
Hamed, R.; Al-Adhami, Y.; Abu-Huwaij, R. Concentration of a microemulsion influences the mechanical properties of ibuprofen in situ microgels. Int. J. Pharm., 2019, 570, 118684.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118684] [PMID: 31505215]
[35]
Priyanka, S. Audrey, Nsamela; Sasha, Cai; Lesher-Pérez; Juliane, Simmchen microfluidics for microswimmers: engineering novel swimmers and constructing swimming lanes on the microscale, a tutorial review. Small, 2021, 17(26), 20007403.
[36]
Maximilian, R.B. Fabio, Grillo; Nicholas, D.; Spencer; Lucio, Isa Microswimmers from toposelective nanoparticle attachment. Adv. Funct. Mater., 2021, 2109175.
[37]
Musa, N.; Wong, T.W. Design of polysaccharidic nano-in-micro soft agglomerates as primary oral drug delivery vehicle for colon-specific targeting. Carbohydr. Polym., 2020, 247, 116673.
[http://dx.doi.org/10.1016/j.carbpol.2020.116673] [PMID: 32829801]
[38]
Higo, M.; Ono, K.; Yamaguchi, K.; Mitsushio, M.; Yoshidome, T.; Nakatake, S. Reaction monitoring of gold oxides prepared by an oxygen-dc glow discharge from gold films in various aqueous solutions by a surface plasmon resonance-based optical waveguide sensing system and X-ray photoelectron spectroscopy. Anal. Sci., 2020, 36(9), 1081-1089.
[http://dx.doi.org/10.2116/analsci.20P064] [PMID: 32336729]
[39]
Clément, B.; Cédric, V.; Gerald, G. Frédéric, Vidal Fabrication of bicontinuous double networks as thermal and pH stimuli responsive drug carriers for on-demand release. Mater. Sci. Eng. C, 2020, 109, 110495.
[http://dx.doi.org/10.1016/j.msec.2019.110495]
[40]
Guo, J.K.; Hong, S.H.; Yoon, H.J.; Babakhanova, G.; Lavrentovich, O.D.; Song, J.K. Laser-induced nanodroplet injection and reconfigurable double emulsions with designed inner structures. Adv. Sci. (Weinh.), 2019, 6(17), 1900785.
[http://dx.doi.org/10.1002/advs.201900785] [PMID: 31508284]
[41]
Bastos-Arrieta, J.; Revilla-Guarinos, A.; Uspal, W.E.; Simmchen, J. Bacterial biohybrid microswimmers. Front. Robot. AI, 2018, 5(97), 97.
[http://dx.doi.org/10.3389/frobt.2018.00097] [PMID: 33500976]
[42]
Singh, A.V.; Kishore, V.; Santomauro, G.; Yasa, O.; Bill, J.; Sitti, M. Mechanical coupling of puller and pusher active microswimmers influences motility. Langmuir, 2020, 36(19), 5435-5443.
[http://dx.doi.org/10.1021/acs.langmuir.9b03665] [PMID: 32343587]
[43]
Hunter, E.E.; Brink, E.W.; Steager, E.B.; Kumar, V. Toward soft micro-bio robots for cellular and chemical delivery. IEEE Robot. Autom. Lett., 2018, 3(3), 1592-1599.
[http://dx.doi.org/10.1109/LRA.2018.2800118]
[44]
Bozuyuk, U.; Yasa, O.; Yasa, I.C.; Ceylan, H.; Kizilel, S.; Sitti, M. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano, 2018, 12(9), 9617-9625.
[http://dx.doi.org/10.1021/acsnano.8b05997] [PMID: 30203963]
[45]
Sridhar, V.; Park, B.W.; Sitti, M. Light-driven janus hollow mesoporous TiO2–Au microswimmers. Adv. Funct. Mater., 2018, 28(25), 1704902.
[http://dx.doi.org/10.1002/adfm.201704902]
[46]
Pourrahimi, A.M.; Villa, K.; Palenzuela, C.L.M.; Ying, Y.; Sofer, Z.; Pumera, M. Catalytic and light-driven ZnO/Pt janus nano/micromotors: switching of motion mechanism via interface roughness and defect tailoring at the nanoscale. Adv. Funct. Mater., 2019, 29(22), 1808678.
[http://dx.doi.org/10.1002/adfm.201808678]
[47]
Ora, A.; Järvihaavisto, E.; Zhang, H.; Auvinen, H.; Santos, H.A.; Kostiainen, M.A.; Linko, V. Cellular delivery of enzyme-loaded DNA origami. Chem. Commun. (Camb.), 2016, 52(98), 14161-14164.
[http://dx.doi.org/10.1039/C6CC08197E] [PMID: 27869278]
[48]
Abe, K.; Sugiyama, H.; Endo, M. Construction of an optically controllable CRISPR-Cas9 system using a DNA origami nanostructure. Chem. Commun. (Camb.), 2021, 57(45), 5594-5596.
[http://dx.doi.org/10.1039/D1CC00876E] [PMID: 33982688]
[49]
Hong, F.; Zhang, F.; Liu, Y.; Yan, H. Scaffolds for creating higher order structures. Chem. Rev., 2017, 117(20), 12584-12640.
[http://dx.doi.org/10.1021/acs.chemrev.6b00825] [PMID: 28605177]
[50]
Zhang, Q.; Jiang, Q.; Li, N.; Dai, L.; Liu, Q.; Song, L.; Wang, J.; Li, Y.; Tian, J.; Ding, B.; Du, Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano, 2014, 8(7), 6633-6643.
[http://dx.doi.org/10.1021/nn502058j] [PMID: 24963790]
[51]
Proniewicz, E. Tąta, A.; Wójcik, A.; Starowicz, M.; Pacek, J.; Molenda, M. SERS activity and spectroscopic properties of Zn and ZnO nanostructures obtained by electrochemical and green chemistry methods for applications in biology and medicine. Phys. Chem. Chem. Phys., 2020, 22(48), 28100-28114.
[http://dx.doi.org/10.1039/D0CP03517C] [PMID: 33289732]
[52]
Stephanopoulos, N.; Freeman, R.; North, H.A.; Sur, S.; Jeong, S.J.; Tantakitti, F.; Kessler, J.A.; Stupp, S.I. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett., 2015, 15(1), 603-609.
[http://dx.doi.org/10.1021/nl504079q] [PMID: 25546084]
[53]
Ryu, Y.; Hong, C.A.; Song, Y.; Beak, J.; Seo, B.A.; Lee, J.J.; Kim, H.S. Modular protein-DNA hybrid nanostructures as a drug delivery platform. Nanoscale, 2020, 12(8), 4975-4981.
[http://dx.doi.org/10.1039/C9NR08519J] [PMID: 32057052]
[54]
Li, X.; Xing, L.; Hu, Y.; Xiong, Z.; Wang, R.; Xu, X.; Du, L.; Shen, M.; Shi, X. An RGD-modified hollow silica@Au core/shell nanoplatform for tumor combination therapy. Acta Biomater., 2017, 62, 273-283.
[http://dx.doi.org/10.1016/j.actbio.2017.08.024] [PMID: 28823719]
[55]
Ge, Z.; Guo, L.; Wu, G.; Li, J.; Sun, Y.; Hou, Y.; Shi, J.; Song, S.; Wang, L.; Fan, C.; Lu, H.; Li, Q. DNA origami‐enabled engineering of ligand-drug conjugates for targeted drug delivery. Small, 2020, 16(16), e1904857.
[http://dx.doi.org/10.1002/smll.201904857] [PMID: 32191376]
[56]
Tang, M.S.L.; Shiu, S.C.; Godonoga, M.; Cheung, Y.W.; Liang, S.; Dirkzwager, R.M.; Kinghorn, A.B.; Fraser, L.A.; Heddle, J.G.; Tanner, J.A. An aptamer-enabled DNA nanobox for protein sensing. Nanomedicine, 2018, 14(4), 1161-1168.
[http://dx.doi.org/10.1016/j.nano.2018.01.018] [PMID: 29410111]
[57]
Gan, L.; Chao, T.C.; Camacho-Alanis, F.; Ros, A. Six-helix bundle and triangle DNA origami insulator-based dielectrophoresis. Anal. Chem., 2013, 85(23), 11427-11434.
[http://dx.doi.org/10.1021/ac402493u] [PMID: 24156514]
[58]
Peng, F.; Tu, Y.; Men, Y.; van Hest, J.C.; Wilson, D.A. Supramolecular adaptive nanomotors with magnetotaxis behavior. Adv. Mater., 2017, 29(6), 1604996.
[http://dx.doi.org/10.1002/adma.201604996] [PMID: 27891683]
[59]
Khandelwal, N.K.; Chauhan, N.; Sarkar, P.; Esquivel, B.D.; Coccetti, P.; Singh, A.; Coste, A.T.; Gupta, M.; Sanglard, D.; White, T.C.; Chauvel, M.; d’Enfert, C.; Chattopadhyay, A.; Gaur, N.A.; Mondal, A.K.; Prasad, R. Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. J. Biol. Chem., 2018, 293(2), 412-432.
[http://dx.doi.org/10.1074/jbc.M117.807032] [PMID: 29158264]
[60]
Esteban- Fernández. Á.B.; Angsantikul, P.; Li, J.; Gao, W.; Zhang, L.; Wang, J. Micromotors go in vivo: from test tubes to live animals. Adv. Funct. Mater., 2018, 28, 1705640.
[http://dx.doi.org/10.1002/adfm.201705640]
[61]
Liang, J.; Xin, L.; Hui, L.; Xia, J.D.; Shi, X.Y.; Shen, M.W. Ultrasound-enhanced precision tumor theranostics using cellmembrane-coated and pH-responsive nanoclusters assembled from ultrasmall iron oxide nanoparticles. Nano Today, 2021, 36, 101022.
[http://dx.doi.org/10.1016/j.nantod.2020.101022]
[62]
Lu, S.; Li, X.; Zhang, J.; Peng, C.; Shen, M.; Shi, X. Dendrimer-stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging-guided combination therapy of tumors. Adv. Sci. (Weinh.), 2018, 5(12), 1801612.
[http://dx.doi.org/10.1002/advs.201801612] [PMID: 30581720]
[63]
Peng, C.; Yu, M.; Hsieh, J.T.; Kapur, P.; Zheng, J. Correlating anticancer drug delivery efficiency with vascular permeability of renal clearable versus non-renal clearable nanocarriers. Angew. Chem. Int. Ed. Engl., 2019, 58(35), 12076-12080.
[http://dx.doi.org/10.1002/anie.201905738] [PMID: 31278873]
[64]
Mou, F.; Chen, C.; Zhong, Q.; Yin, Y.; Ma, H.; Guan, J. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces, 2014, 6(12), 9897-9903.
[http://dx.doi.org/10.1021/am502729y] [PMID: 24869766]
[65]
Bente, K.; Codutti, A.; Bachmann, F.; Faivre, D. Biohybrid and bioinspired magnetic microswimmers. Small, 2018, e1704374.
[http://dx.doi.org/10.1002/smll.201704374] [PMID: 29855143]
[66]
Palagi, S.; Fischer, P. Bioinspired microrobots. Nat. Rev. Mater., 2018, 3(6), 113.
[http://dx.doi.org/10.1038/s41578-018-0016-9]
[67]
Lee, H.; Lytton-Jean, A.K.; Chen, Y.; Love, K.T.; Park, A.I.; Karagiannis, E.D.; Sehgal, A.; Querbes, W.; Zurenko, C.S.; Jayaraman, M.; Peng, C.G.; Charisse, K.; Borodovsky, A.; Manoharan, M.; Donahoe, J.S.; Truelove, J.; Nahrendorf, M.; Langer, R.; Anderson, D.G. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol., 2012, 7(6), 389-393.
[http://dx.doi.org/10.1038/nnano.2012.73] [PMID: 22659608]
[68]
Yan, X.; Xu, J.; Zhou, Q.; Jin, D.; Vong, C.I.Q.; Feng, D.H.L.; Ng, L.B.; Zhang, L. Molecular cargo delivery using multicellular magnetic microswimmers. Appl. Mater. Today, 2019, 15, 242-251.
[http://dx.doi.org/10.1016/j.apmt.2019.02.006]
[69]
Tang, J.; Yin, Q.; Qiao, Y.; Wang, T. Shape morphing of hydrogels in alternating magnetic field. ACS Appl. Mater. Interfaces, 2019, 11(23), 21194-21200.
[http://dx.doi.org/10.1021/acsami.9b05742] [PMID: 31117469]
[70]
Amokrane, W.; Belharet, K.; Souissi, M.; Grayeli, A.B.; Ferreira, A. Macro–micromanipulation platform for inner ear drug delivery. Robot. Auton. Syst., 2018, 107, 10-19.
[http://dx.doi.org/10.1016/j.robot.2018.05.002]