Cryptotanshinone Induces Necroptosis Through Ca2+ Release and ROS Production in vitro and in vivo

Article ID: e270122200580 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Necroptosis is a type of programmed necrosis mediated by receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3), which is morphologically characterized by enlarged organelles, ruptured plasma membrane, and subsequent loss of intracellular contents. Cryptotanshinone (CPT), a diterpene quinone compound extracted from the root of Salvia miltiorrhiza Bunge, has been reported to have significant anticancer activities. However, the detailed mechanism of CPT has not been clearly illustrated.

Objective: The present study aimed to explore the cell death type and mechanisms of CPT-induced in non-small cell lung cancer (NSCLC) cells.

Methods: The cytotoxicity of CPT on A549 cells was assessed by MTS assay. Ca2+ release and reactive oxygen species (ROS) generation were detected by flow cytometry. The changes in mitochondrial membrane potential (MMP) were observed through JC-1 staining. The expressions of p- RIP1, p-RIP3, p-MLKL, and MAPKs pathway proteins were analyzed by western blotting analysis. The efficacy of CPT in vivo was evaluated by the Lewis lung carcinoma (LLC) xenograft mice model. Blood samples were collected for hematology analysis. ELISA investigated the effects of CPT on tumor necrosis factor α (TNF-α). Hematoxylin and eosin staining (HE) determined the tumor tissues. Proteins' expression of tumor tissues was quantified by western blotting.

Results: CPT inhibited the cell viability of A549 cells in a time- and concentration-dependent manner, which was reversed by Necrostatin-1 (Nec-1). In addition, CPT treatment increased the expression of p-RIP1, p-RIP3, p-MLKL, the release of Ca2+, ROS generation, and the MAPKs pathway activated in A549 cells. Moreover, animal experiment results showed that intraperitoneal injection of CPT (15 mg/kg and 30 mg/kg) significantly inhibited tumor growth in C57BL/6 mice without affecting the bodyweight and injuring the organs.

Conclusion: Our findings suggested that CPT-induced necroptosis via RIP1/RIP3/MLKL signaling pathway both in vitro and in vivo, indicating that CPT may be a promising agent in the treatment of NSCLC.

Keywords: Cryptotanshinone, NSCLC, necroptosis, RIP1/RIP3/MLKL, Ca2+, ROS, MAPKs.

Graphical Abstract

[1]
Jin, L.; Wu, Z.; Wang, Y.; Zhao, X. Cryptotanshinone attenuates the stemness of non-small cell lung cancer cells via promoting TAZ translocation from nuclear to cytoplasm. Chin. Med., 2020, 15(1), 66.
[http://dx.doi.org/10.1186/s13020-020-00348-4] [PMID: 32612672]
[2]
Gao, H.; Sun, W.; Zhao, W.; Hao, W.; Leung, C-H.; Lu, J.; Chen, X. Total tanshinones-induced apoptosis and autophagy via reactive oxygen species in lung cancer 95D cells. Am. J. Chin. Med., 2015, 43(6), 1265-1279.
[http://dx.doi.org/10.1142/S0192415X1550072X] [PMID: 26394653]
[3]
Sachdeva, M.; Sachdeva, N.; Pal, M.; Gupta, N.; Khan, I.A.; Majumdar, M.; Tiwari, A. CRISPR/Cas9: Molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer. Cancer Gene Ther., 2015, 22(11), 509-517.
[http://dx.doi.org/10.1038/cgt.2015.54] [PMID: 26494554]
[4]
Koinis, F.; Kotsakis, A.; Georgoulias, V. Small cell lung cancer (SCLC): No treatment advances in recent years. Transl. Lung Cancer Res., 2016, 5(1), 39-50.
[PMID: 26958492]
[5]
Zhang, Y.; Chen, X.; Gueydan, C.; Han, J. Plasma membrane changes during programmed cell deaths. Cell Res., 2018, 28(1), 9-21.
[http://dx.doi.org/10.1038/cr.2017.133] [PMID: 29076500]
[6]
Chen, G.; Cheng, X.; Zhao, M.; Lin, S.; Lu, J.; Kang, J.; Yu, X. RIP1-dependent Bid cleavage mediates TNFα-induced but Caspase-3-independent cell death in L929 fibroblastoma cells. Apoptosis, 2015, 20(1), 92-109.
[http://dx.doi.org/10.1007/s10495-014-1058-0] [PMID: 25398540]
[7]
Zhang, Y.; Su, S.S.; Zhao, S.; Yang, Z.; Zhong, C-Q.; Chen, X.; Cai, Q.; Yang, Z-H.; Huang, D.; Wu, RJ.Nc RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat. Commun., 2017, 8(1), 1-14.
[PMID: 28232747]
[8]
Zhan, C.; Huang, M.; Yang, X.; Hou, J. MLKL: Functions beyond serving as the executioner of necroptosis. Theranostics, 2021, 11(10), 4759-4769.
[http://dx.doi.org/10.7150/thno.54072] [PMID: 33754026]
[9]
Chen, J.; Kos, R.; Garssen, J.; Redegeld, F. Molecular insights into the mechanism of necroptosis: The necrosome as a potential therapeutic target. Cells, 2019, 8(12), 1486-1506.
[http://dx.doi.org/10.3390/cells8121486] [PMID: 31766571]
[10]
Bailey, L.J.; Alahari, S.; Tagliaferro, A.; Post, M.; Caniggia, I. Augmented trophoblast cell death in preeclampsia can proceed via ceramide-mediated necroptosis. Cell Death Dis, 2017, 8(2), e2590.
[http://dx.doi.org/10.1038/cddis.2016.483] [PMID: 28151467]
[11]
Wang, H.; Zhai, N.; Chen, Y.; Xu, H.; Huang, K. Cadmium induces Ca2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells. J. Inorg. Biochem., 2017, 172(1), 16-22.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.04.005] [PMID: 28419922]
[12]
Ros, U.; Peña-Blanco, A.; Hänggi, K.; Kunzendorf, U.; Krautwald, S.; Wong, W.W-L.; García-Sáez, A.J. Necroptosis execution is mediated by plasma membrane nanopores independent of calcium. Cell Rep., 2017, 19(1), 175-187.
[http://dx.doi.org/10.1016/j.celrep.2017.03.024] [PMID: 28380356]
[13]
Binot, C.; Sadoc, J-F.; Chouard, C-H.J.H. Oncogenesis, lipids rafts and liquid crystals: A nanoscopic supplementary field for applied researches and a new hope of advances in cancer. Heliyon, 2018, 4(7), e00687.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00687] [PMID: 30035237]
[14]
Zhdanov, A.V.; Ward, M.W.; Taylor, C.T.; Souslova, E.A.; Chudakov, D.M.; Prehn, J.H.M.; Papkovsky, D.B. Extracellular calcium depletion transiently elevates oxygen consumption in neurosecretory PC12 cells through activation of mitochondrial Na+/Ca2+ exchange. Biochim. Biophys. Acta, 2010, 1797(9), 1627-1637.
[http://dx.doi.org/10.1016/j.bbabio.2010.06.006] [PMID: 20550942]
[15]
Lock, J.T.; Smith, I.F.; Parker, I. Spatial-temporal patterning of Ca2+ signals by the subcellular distribution of IP3 and IP3 receptors. Semin. Cell Dev. Biol., 2019, 94(1), 3-10.
[http://dx.doi.org/10.1016/j.semcdb.2019.01.012] [PMID: 30703557]
[16]
Liu, L.; Liu, Y.; Cheng, X.; Qiao, X.J.B.T.E.R. The alleviative effects of quercetin on Cadmium-induced necroptosis via inhibition ROS/iNOS/NF-κB pathway in the Chicken brain. Biol. Trace Element Res., 2021, 199(4), 1584-1594.
[17]
Jia, Y.; Wang, F.; Guo, Q.; Li, M.; Wang, L.; Zhang, Z.; Jiang, S.; Jin, H.; Chen, A.; Tan, S.; Zhang, F.; Shao, J.; Zheng, S. Curcumol induces RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells. Redox Biol., 2018, 19, 375-387.
[http://dx.doi.org/10.1016/j.redox.2018.09.007] [PMID: 30237126]
[18]
Huang, W.; Xie, W.; Gong, J.; Wang, W.; Cai, S.; Huang, Q.; Chen, Z.; Liu, Y.; Communications, B.R. Heat stress induces RIP1/RIP3-dependent necroptosis through the MAPK, NF-κB, and c-Jun signaling pathways in pulmonary vascular endothelial cells. Biochem. Biophys. Res. Commun., 2020, 528(1), 206-212.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.150] [PMID: 32471717]
[19]
Wu, Y.T.; Tan, H.L.; Huang, Q.; Sun, X.J.; Zhu, X.; Shen, H.M. zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFα mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ., 2011, 18(1), 26-37.
[http://dx.doi.org/10.1038/cdd.2010.72] [PMID: 20539307]
[20]
Xie, X.; Zhao, Y.; Ma, C.Y.; Xu, X.M.; Zhang, Y.Q.; Wang, C.G.; Jin, J.; Shen, X.; Gao, J.L.; Li, N.; Sun, Z.J.; Dong, D.L. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br. J. Pharmacol., 2015, 172(15), 3929-3943.
[http://dx.doi.org/10.1111/bph.13184] [PMID: 25953698]
[21]
Zhang, J.; Wen, G.; Sun, L.; Yuan, W.; Wang, R.; Zeng, Q.; Zhang, G.; Yu, B. Cryptotanshinone inhibits cellular proliferation of human lung cancer cells through downregulation ofIGF-1R/PI3K/Akt signaling pathway. Oncol. Rep., 2018, 40(5), 2926-2934.
[http://dx.doi.org/10.3892/or.2018.6638] [PMID: 30106122]
[22]
Li, X-X.; Zheng, X.; Liu, Z.; Xu, Q.; Tang, H.; Feng, J.; Yang, S.; Vong, C.T.; Gao, H.; Wang, Y. Cryptotanshinone from Salvia miltiorrhiza Bunge (Danshen) inhibited inflammatory responses via TLR4/MyD88 signaling pathway. Chin. Med., 2020, 15(1), 20.
[http://dx.doi.org/10.1186/s13020-020-00303-3] [PMID: 32158495]
[23]
Jiang, G.; Liu, J.; Ren, B.; Zhang, L.; Owusu, L.; Liu, L.; Zhang, J.; Tang, Y.; Li, W. Anti-tumor and chemosensitization effects of Cryptotanshinone extracted from Salvia miltiorrhiza Bge. on ovarian cancer cells in vitro. J. Ethnopharmacol., 2017, 205(1), 33-40.
[http://dx.doi.org/10.1016/j.jep.2017.04.026] [PMID: 28456578]
[24]
Hao, W.; Zhang, X.; Zhao, W.; Zhu, H.; Liu, Z-Y.; Lu, J.; Chen, X. Cryptotanshinone induces pro-death autophagy through JNK signaling mediated by reactive oxygen species generation in lung cancer cells. Anticancer. Agents Med. Chem., 2016, 16(5), 593-600.
[http://dx.doi.org/10.2174/1871520615666150907093036] [PMID: 26343144]
[25]
Kim, S-A.; Kang, O-H.; Kwon, D-Y. Cryptotanshinone induces cell cycle arrest and apoptosis of NSCLC cells through the PI3K/Akt/GSK-3β pathway. Int. J. Mol. Sci., 2018, 19(9), 2739-2751.
[http://dx.doi.org/10.3390/ijms19092739]
[26]
Kayagaki, N.; Warming, S.; Lamkanfi, M.; Vande Walle, L.; Louie, S.; Dong, J.; Newton, K.; Qu, Y.; Liu, J.; Heldens, S.; Zhang, J.; Lee, W.P.; Roose-Girma, M.; Dixit, V.M. Non-canonical inflammasome activation targets caspase-11. Nature, 2011, 479(7371), 117-121.
[http://dx.doi.org/10.1038/nature10558] [PMID: 22002608]
[27]
Sun, W.; Wu, X.; Gao, H.; Yu, J.; Zhao, W.; Lu, J-J.; Wang, J.; Du, G.; Chen, X. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells. Free Radic. Biol. Med., 2017, 108(1), 433-444.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.010] [PMID: 28414098]
[28]
Xu, Y.; Ma, H.B.; Fang, Y.L.; Zhang, Z.R.; Shao, J.; Hong, M.; Huang, C.J.; Liu, J.; Chen, R.Q. Cisplatin-induced necroptosis in TNFα dependent and independent pathways. Cell. Signal., 2017, 31(1), 112-123.
[http://dx.doi.org/10.1016/j.cellsig.2017.01.004] [PMID: 28065786]
[29]
Lin, H-Y.; Han, H-W.; Wang, Y-S.; He, D-L.; Sun, W-X.; Feng, L.; Wen, Z-L.; Yang, M-K.; Lu, G-H.; Wang, X-M.; Qi, J.L.; Yang, Y.H. Shikonin and 4-hydroxytamoxifen synergistically inhibit the proliferation of breast cancer cells through activating apoptosis signaling pathway in vitro and in vivo. Chin. Med., 2020, 15(1), 23.
[http://dx.doi.org/10.1186/s13020-020-00305-1] [PMID: 32175001]
[30]
Zhirong, Z.; Qiaojian, Z.; Chunjing, X.; Shengchen, W.; Jiahe, L.; Zhaoyi, L.; Shu, L. Methionine selenium antagonizes LPS-induced necroptosis in the chicken liver via the miR-155/TRAF3/MAPK axis. J. Cell. Physiol., 2021, 236(5), 4024-4035.
[http://dx.doi.org/10.1002/jcp.30145] [PMID: 33151563]
[31]
Weinlich, R.; Oberst, A.; Beere, H.M.; Green, D.R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol., 2017, 18(2), 127-136.
[http://dx.doi.org/10.1038/nrm.2016.149] [PMID: 27999438]
[32]
Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.; Goyal, A.K. Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv., 2016, 23(3), 727-738.
[http://dx.doi.org/10.3109/10717544.2014.935530] [PMID: 25013959]
[33]
Gaiser, M.R.; Bongiorno, M.; Brownell, I. PD-L1 inhibition with avelumab for metastatic Merkel cell carcinoma. Expert Rev. Clin. Pharmacol., 2018, 11(4), 345-359.
[http://dx.doi.org/10.1080/17512433.2018.1445966] [PMID: 29478343]
[34]
Qiu, T; Zhou, L; Wang, T; Xu, J; Wang, J; Chen, W; Zhou, X; Huang, Z; Zhu, W; Shu, Y miR-503 regulates the resistance of non-small cell lung cancer cells to cisplatin by targeting Bcl-2. Inter. J. Mol. Med., 2013, 32(3), 593-598.
[35]
Wagner, T.D.; Yang, G.Y. The role of chemotherapy and radiation in the treatment of locally advanced non-small cell lung cancer (NSCLC). Curr. Drug Targets, 2010, 11(1), 67-73.
[http://dx.doi.org/10.2174/138945010790030956] [PMID: 19839925]
[36]
Kuwano, M.; Sonoda, K.; Murakami, Y.; Watari, K.; Ono, M. Overcoming drug resistance to receptor tyrosine kinase inhibitors: Learning from lung cancer. Pharmacol. Ther., 2016, 161(1), 97-110.
[http://dx.doi.org/10.1016/j.pharmthera.2016.03.002] [PMID: 27000770]
[37]
Chen, W.; Lu, Y.; Chen, G.; Huang, S. Molecular evidence of cryptotanshinone for treatment and prevention of human cancer. Anticancer. Agents Med. Chem., 2013, 13(7), 979-987.
[http://dx.doi.org/10.2174/18715206113139990115] [PMID: 23272908]
[38]
Yang, D.; Liang, Y.; Zhao, S.; Ding, Y.; Zhuang, Q.; Shi, Q.; Ai, T.; Wu, S-Q.; Han, J. ZBP1 mediates interferon-induced necroptosis. Cell. Mol. Immunol., 2020, 17(4), 356-368.
[http://dx.doi.org/10.1038/s41423-019-0237-x] [PMID: 31076724]
[39]
Liu, X.; Zhang, Y.; Gao, H.; Hou, Y.; Lu, J.J.; Feng, Y.; Xu, Q.; Liu, B.; Chen, X. Induction of an MLKL mediated non-canonical necroptosis through reactive oxygen species by tanshinol A in lung cancer cells. Biochem. Pharmacol., 2020, 171(1), 113684.
[http://dx.doi.org/10.1016/j.bcp.2019.113684] [PMID: 31678492]
[40]
Tan, H-Y.; Wang, N.; Chan, Y-T.; Zhang, C.; Guo, W.; Chen, F.; Zhong, Z.; Li, S.; Feng, Y. ID1 overexpression increases gefitinib sensitivity in non-small cell lung cancer by activating RIP3/MLKL-dependent necroptosis. Cancer Lett., 2020, 475(1), 109-118.
[http://dx.doi.org/10.1016/j.canlet.2020.01.025] [PMID: 32004572]
[41]
Kim, H-J.; Hwang, K-E.; Park, D-S.; Oh, S-H.; Jun, H.Y.; Yoon, K-H.; Jeong, E-T.; Kim, H-R. Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J. Transl. Med., 2017, 15(1), 1-12.
[http://dx.doi.org/10.1186/s12967-017-1223-7] [PMID: 28049494]
[42]
Gong, Y-N.; Guy, C.; Olauson, H.; Becker, J.U.; Yang, M.; Fitzgerald, P.; Linkermann, A.; Green, D.R. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell, 2017, 169(2), 286-300.e16.
[http://dx.doi.org/10.1016/j.cell.2017.03.020] [PMID: 28388412]
[43]
Amarante-Mendes, G.P.; Adjemian, S.; Branco, L.M.; Zanetti, L.C.; Weinlich, R.; Bortoluci, K.R. Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol., 2018, 9(1), 2379-2398.
[http://dx.doi.org/10.3389/fimmu.2018.02379] [PMID: 30459758]
[44]
Chen, X.; Chen, R.; Xu, Y.; Xia, C. PLCγ1 inhibition combined with inhibition of apoptosis and necroptosis increases cartilage matrix synthesis in IL-1β-treated rat chondrocytes. FEBS Open Bio., 2021, 11(2), 435-445.
[http://dx.doi.org/10.1002/2211-5463.13064] [PMID: 33326693]
[45]
Greenlee, J.D.; Subramanian, T.; Liu, K.; King, M.R.J.C.R. Rafting down the metastatic cascade: The role of lipid rafts in cancer metastasis, cell death, and clinical outcomes. Cancer Res., 2021, 81(1), 5-17.
[PMID: 32999001]
[46]
Kang, R.; Li, R.; Dai, P.; Li, Z.; Li, Y.; Li, C. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environ. Pollut., 2019, 251(1), 689-698.
[http://dx.doi.org/10.1016/j.envpol.2019.05.026] [PMID: 31108302]
[47]
Fan, J.; Ren, D.; Wang, J.; Liu, X.; Zhang, H.; Wu, M.; Yang, G. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo. Cell Death Dis., 2020, 11(2), 126.
[http://dx.doi.org/10.1038/s41419-020-2317-3] [PMID: 32071301]
[48]
Song, S.; Lee, J-Y.; Ermolenko, L.; Mazumder, A.; Ji, S.; Ryu, H.; Kim, H.; Kim, D-W.; Lee, J.W.; Dicato, M.; Christov, C.; Schnekenburger, M.; Cerella, C.; Gérard, D.; Orlikova-Boyer, B.; Al- Mourabit, A.; Diederich, M. Tetrahydrobenzimidazole TMQ0153 triggers apoptosis, autophagy and necroptosis crosstalk in chronic myeloid leukemia. Cell Death Dis., 2020, 11(2), 109.
[http://dx.doi.org/10.1038/s41419-020-2304-8] [PMID: 32034134]
[49]
Verma, V.K.; Malik, S.; Mutneja, E.; Sahu, A.K.; Rupashi, K.; Dinda, A.K.; Arya, D.S.; Bhatia, J. Mechanism involved in fortification by berberine in CDDP-induced nephrotoxicity. Curr. Mol. Pharmacol., 2020, 13(4), 342-352.
[http://dx.doi.org/10.2174/1874467213666200220142202] [PMID: 32077836]
[50]
Iorga, A.; Dara, L.; Kaplowitz, N. Drug-induced liver injury: Cascade of events leading to cell death, apoptosis or necrosis. Int. J. Mol. Sci., 2017, 18(5), 1018-1043.
[http://dx.doi.org/10.3390/ijms18051018] [PMID: 28486401]
[51]
Missiroli, S.; Genovese, I.; Perrone, M.; Vezzani, B.; Vitto, V.A.M.; Giorgi, C. The role of mitochondria in inflammation: From cancer to neurodegenerative disorders. J. Clin. Med., 2020, 9(3), 740-765.
[http://dx.doi.org/10.3390/jcm9030740] [PMID: 32182899]
[52]
Hsu, S-K.; Chang, W-T.; Lin, I.L.; Chen, Y-F.; Padalwar, N.B.; Cheng, K-C.; Teng, Y-N.; Wang, C-H.; Chiu, C-C.J.C. The role of necroptosis in ROS-mediated cancer therapies and its promising applications. Cancers (Basel), 2020, 12(8), 2185-2206.
[http://dx.doi.org/10.3390/cancers12082185] [PMID: 32764483]
[53]
Ou, L.; Lin, S.; Song, B.; Liu, J.; Lai, R.; Shao, L. The mechanisms of graphene-based materials-induced programmed cell death: A review of apoptosis, autophagy, and programmed necrosis. Int. J. Nanomedicine, 2017, 12(1), 6633-6646.
[http://dx.doi.org/10.2147/IJN.S140526] [PMID: 28924347]
[54]
Naserian, M.; Ramazani, E.; Iranshahi, M.; Tayarani-Najaran, Z. The role of SAPK/JNK pathway in the synergistic effects of metformin and dacarbazine on apoptosis in Raji and Ramos lymphoma cells. Curr. Mol. Pharmacol., 2018, 11(4), 336-342.
[http://dx.doi.org/10.2174/1874467211666180830150546] [PMID: 30173657]
[55]
Kong, K.; Guo, M.; Liu, Y.; Zheng, J. Progress in animal models of pancreatic ductal adenocarcinoma. J. Cancer, 2020, 11(6), 1555-1567.
[http://dx.doi.org/10.7150/jca.37529] [PMID: 32047562]
[56]
Denayer, T.; Stöhr, T. Van R. M. Animal models in translational medicine: Validation and prediction. New Horiz. Transl. Med., 2014, 2(1), 5-11.