(Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System

Page: [101 - 116] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

The renin-angiotensin system (RAS) is classically described as a hormonal system in which angiotensin II (Ang II) is one of the main active peptides. The action of circulating Ang II on its cognate Ang II type-1 receptor (AT1R) in circumventricular organs has important roles in regulating the autonomic nervous system, blood pressure (BP) and body fluid homeostasis, and has more recently been implicated in cardiovascular metabolism. The presence of a local or tissue RAS in various tissues, including the central nervous system (CNS), is well established. However, because the level of renin, the rate-limiting enzyme in the systemic RAS, is very low in the brain, how endogenous angiotensin peptides are generated in the CNS—the focus of this review—has been the subject of considerable debate. Notable in this context is the identification of the (pro)renin receptor (PRR) as a key component of the brain RAS in the production of Ang II in the CNS. In this review, we highlight cellular and anatomical locations of the PRR in the CNS. We also summarize studies using gain- and loss-of function approaches to elucidate the functional importance of brain PRR-mediated Ang II formation and brain RAS activation, as well as PRR-mediated Ang II-independent signaling pathways, in regulating BP. We further discuss recent developments in PRR involvement in cardiovascular and metabolic diseases and present perspectives for future directions.

Keywords: (Pro)renin receptor, brain, central nervous system, blood pressure, hypertension, RAS.

Graphical Abstract

[1]
Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86(3): 747-803.
[http://dx.doi.org/10.1152/physrev.00036.2005] [PMID: 16816138]
[2]
Ibrahim MM. RAS inhibition in hypertension. J Hum Hypertens 2006; 20(2): 101-8.
[http://dx.doi.org/10.1038/sj.jhh.1001960] [PMID: 16397519]
[3]
Mann SJ. Neurogenic essential hypertension revisited: The case for increased clinical and research attention. Am J Hypertens 2003; 16(10): 881-8.
[http://dx.doi.org/10.1016/S0895-7061(03)00978-6] [PMID: 14553971]
[4]
Hall JE. Control of sodium excretion by angiotensin II: Intrarenal mechanisms and blood pressure regulation. Am J Physiol 1986; 250(6 Pt 2): R960-72.
[PMID: 3521337]
[5]
Crowley SD, Zhang J, Herrera M, Griffiths R, Ruiz P, Coffman TM. Role of AT receptor-mediated salt retention in angiotensin II-dependent hypertension. Am J Physiol Renal Physiol 2011; 301(5): F1124-30.
[http://dx.doi.org/10.1152/ajprenal.00305.2011] [PMID: 21849491]
[6]
Zhou Y, Chen Y, Dirksen WP, Morris M, Periasamy M. AT1b receptor predominantly mediates contractions in major mouse blood vessels. Circ Res 2003; 93(11): 1089-94.
[http://dx.doi.org/10.1161/01.RES.0000101912.01071.FF] [PMID: 14563714]
[7]
Mulrow PJ, Ganong WF. Stimulation of aldosterone secretion by angiotensisn. II. A preliminary report. Yale J Biol Med 1961; 33(5): 386-95.
[PMID: 13726756]
[8]
Tanabe A, Naruse M, Arai K, et al. Angiotensin II stimulates both aldosterone secretion and DNA synthesis via type 1 but not type 2 receptors in bovine adrenocortical cells. J Endocrinol Invest 1998; 21(10): 668-72.
[http://dx.doi.org/10.1007/BF03350796] [PMID: 9854682]
[9]
Naruse M, Tanabe A, Sato A, et al. Aldosterone breakthrough during angiotensin II receptor antagonist therapy in stroke-prone spontaneously hypertensive rats. Hypertension (Dallas, Tex : 1979) 2002; 40(1): 28-33.
[http://dx.doi.org/10.1161/01.HYP.0000022606.52221.2F]
[10]
Tsuda K. Renin-Angiotensin system and sympathetic neurotransmitter release in the central nervous system of hypertension. Int J Hypertens 2012; 2012: 474870.
[http://dx.doi.org/10.1155/2012/474870] [PMID: 23227311]
[11]
Fisher JP, Paton JF. The sympathetic nervous system and blood pressure in humans: Implications for hypertension. J Hum Hypertens 2012; 26(8): 463-75.
[http://dx.doi.org/10.1038/jhh.2011.66] [PMID: 21734720]
[12]
Ferrario CM. Neurogenic actions of angiotensin II. Hypertension (Dallas, Tex : 1979) 1983; 5(6 Pt 3): V73-9.
[http://dx.doi.org/10.1161/01.HYP.5.6_Pt_3.V73]
[13]
Zimmerman CA, Lin YC, Leib DE, et al. Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature 2016; 537(7622): 680-4.
[http://dx.doi.org/10.1038/nature18950] [PMID: 27487211]
[14]
Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 2010; 50: 439-65.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105610] [PMID: 20055710]
[15]
Santos RAS, Sampaio WO, Alzamora AC, et al. The ACE2/angiotensin-(1-7)/mas axis of the renin-angiotensin system: focus on angiotensin-(1-7). Physiol Rev 2018; 98(1): 505-53.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[16]
Xu Q, Jensen DD, Peng H, Feng Y. The critical role of the central nervous system (pro)renin receptor in regulating systemic blood pressure. Pharmacol Ther 2016; 164: 126-34.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.006] [PMID: 27113409]
[17]
Miyata S. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front Neurosci 2015; 9: 390.
[http://dx.doi.org/10.3389/fnins.2015.00390] [PMID: 26578857]
[18]
Hendel MD, Collister JP. Contribution of the subfornical organ to angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol 2005; 288(2): H680-5.
[http://dx.doi.org/10.1152/ajpheart.00823.2004] [PMID: 15458953]
[19]
Biancardi VC, Stern JE. Compromised blood-brain barrier permeability: Novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J Physiol 2016; 594(6): 1591-600.
[http://dx.doi.org/10.1113/JP271584] [PMID: 26580484]
[20]
Ganten D, Minnich JL, Granger P, et al. Angiotensin-forming enzyme in brain tissue. Science 1971; 173(3991): 64-5.
[http://dx.doi.org/10.1126/science.173.3991.64] [PMID: 4325865]
[21]
Schelling P, Hutchinson JS, Ganten U, Sponer G, Ganten D. Impermeability of the blood-cerebrospinal fluid barrier for angiotensin II in rats. Clin Sci Mol Med Suppl 1976; 3: 399s-402s.
[http://dx.doi.org/10.1042/cs051399s] [PMID: 1071653]
[22]
Nakagawa P, Sigmund CD. How is the brain renin-angiotensin system regulated? Hypertension 2017; 70(1): 10-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.08550]
[23]
Karamyan VT, Speth RC. Enzymatic pathways of the brain renin-angiotensin system: Unsolved problems and continuing challenges. Regul Pept 2007; 143(1-3): 15-27.
[http://dx.doi.org/10.1016/j.regpep.2007.03.006] [PMID: 17493693]
[24]
Li W, Peng H, Mehaffey EP, et al. Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension 2014; 63(2): 316-23.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02041] [PMID: 24246383]
[25]
Li W, Sullivan MN, Zhang S, et al. Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension 2015; 65(2): 352-61.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04458] [PMID: 25421983]
[26]
Pires PW, Dams CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol 2013; 304(12): H1598-614.
[http://dx.doi.org/10.1152/ajpheart.00490.2012] [PMID: 23585139]
[27]
Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension 2014; 63(3): 572-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01743] [PMID: 24343120]
[28]
Dzau VJ, Ingelfinger J, Pratt RE, Ellison KE. Identification of renin and angiotensinogen messenger RNA sequences in mouse and rat brains. Hypertension 1986; 8(6): 544-8.
[http://dx.doi.org/10.1161/01.HYP.8.6.544] [PMID: 3519452]
[29]
Lavoie JL, Cassell MD, Gross KW, Sigmund CD. Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model. Hypertension 2004; 43(5): 1116-9.
[http://dx.doi.org/10.1161/01.HYP.0000125143.73301.94]
[30]
Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science 1988; 242(4884): 1444-6.
[http://dx.doi.org/10.1126/science.3201232] [PMID: 3201232]
[31]
Thomas WG, Sernia C. Immunocytochemical localization of angiotensinogen in the rat brain. Neuroscience 1988; 25(1): 319-41.
[http://dx.doi.org/10.1016/0306-4522(88)90029-2] [PMID: 3393283]
[32]
Ohkubo H, Nakayama K, Tanaka T, Nakanishi S. Tissue distribution of rat angiotensinogen mRNA and structural analysis of its heterogeneity. J Biol Chem 1986; 261(1): 319-23.
[http://dx.doi.org/10.1016/S0021-9258(17)42472-0] [PMID: 3753601]
[33]
Hirose S, Naruse M, Ohtsuki K, Inagami T. Totally inactive renin zymogen and different forms of active renin in hog brain tissues. J Biol Chem 1981; 256(11): 5572-6.
[http://dx.doi.org/10.1016/S0021-9258(19)69240-9] [PMID: 7016855]
[34]
Chai SY, Mendelsohn FA, Paxinos G. Angiotensin converting enzyme in rat brain visualized by quantitative in vitro autoradiography. Neuroscience 1987; 20(2): 615-27.
[http://dx.doi.org/10.1016/0306-4522(87)90114-X] [PMID: 3035425]
[35]
Rogerson FM, Schlawe I, Paxinos G, Chai SY, McKinley MJ, Mendelsohn FA. Localization of angiotensin converting enzyme by in vitro autoradiography in the rabbit brain. J Chem Neuroanat 1995; 8(4): 227-43.
[http://dx.doi.org/10.1016/0891-0618(95)00049-D] [PMID: 7669270]
[36]
Strittmatter SM, Lo MM, Javitch JA, Snyder SH. Autoradiographic visualization of angiotensin-converting enzyme in rat brain with [3H]captopril: Localization to a striatonigral pathway. Proc Natl Acad Sci USA 1984; 81(5): 1599-603.
[http://dx.doi.org/10.1073/pnas.81.5.1599] [PMID: 6324207]
[37]
Song K, Allen AM, Paxinos G, Mendelsohn FA. Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol 1992; 316(4): 467-84.
[http://dx.doi.org/10.1002/cne.903160407] [PMID: 1577995]
[38]
Tsutsumi K, Saavedra JM. Quantitative autoradiography reveals different angiotensin II receptor subtypes in selected rat brain nuclei. J Neurochem 1991; 56(1): 348-51.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb02602.x] [PMID: 1987323]
[39]
Tsutsumi K, Saavedra JM. Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol 1991; 261(1 Pt 2): R209-16.
[PMID: 1858948]
[40]
Johren O, Inagami T, Saavedra JM. AT1A, AT1B, and AT2 angiotensin II receptor subtype gene expression in rat brain. Neuroreport 1995; 6(18): 2549-52.
[http://dx.doi.org/10.1097/00001756-199512150-00024] [PMID: 8741760]
[41]
Zhuo J, Moeller I, Jenkins T, et al. Mapping tissue angiotensin-converting enzyme and angiotensin AT1, AT2 and AT4 receptors. J Hypertens 1998; 16(12 Pt 2): 2027-37.
[http://dx.doi.org/10.1097/00004872-199816121-00026] [PMID: 9886893]
[42]
Allen AM, Zhuo J, Mendelsohn FA. Localization and function of angiotensin AT1 receptors. Am J Hypertens 2000; 13(1 Pt 2): 31S-8S.
[http://dx.doi.org/10.1016/S0895-7061(99)00249-6] [PMID: 10678286]
[43]
de Kloet AD, Wang L, Pitra S, et al. A unique “Angiotensin-Sensitive” neuronal population coordinates neuroendocrine, cardiovascular, and behavioral responses to stress. J Neurosci 2017; 37(13): 3478-90.
[http://dx.doi.org/10.1523/JNEUROSCI.3674-16.2017] [PMID: 28219987]
[44]
de Kloet AD, Wang L, Ludin JA, et al. Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system. Brain Struct Funct 2016; 221(2): 891-912.
[http://dx.doi.org/10.1007/s00429-014-0943-1] [PMID: 25427952]
[45]
Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C. Distribution of angiotensin II type-2 receptor (AT2) mRNA expression in the adult rat brain. J Comp Neurol 1996; 373(3): 322-39.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19960923)373:3<322::AID-CNE2>3.0.CO;2-4] [PMID: 8889931]
[46]
Bunnemann B, Iwai N, Metzger R, Fuxe K, Inagami T, Ganten D. The distribution of angiotensin II AT1 receptor subtype mRNA in the rat brain. Neurosci Lett 1992; 142(2): 155-8.
[http://dx.doi.org/10.1016/0304-3940(92)90362-B] [PMID: 1280791]
[47]
Sumners C, Alleyne A, Rodríguez V, et al. Brain angiotensin type-1 and type-2 receptors: Cellular locations under normal and hypertensive conditions. Hypertens Res 2019; 43: 281-95.
[http://dx.doi.org/10.1038/s41440-019-0374-8]
[48]
Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: Properties and future directions. J Neurochem 2008; 107(6): 1482-94.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05723.x] [PMID: 19014390]
[49]
Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000; 87(5): E1-9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[50]
Feng Y, Yue X, Xia H, et al. Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin II-mediated pressor and drinking responses and is associated with angiotensin II type 1 receptor downregulation. Circ Res 2008; 102(6): 729-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.169110] [PMID: 18258853]
[51]
Feng Y, Xia H, Cai Y, et al. Brain-selective overexpression of human Angiotensin-converting enzyme type 2 attenuates neurogenic hypertension. Circ Res 2010; 106(2): 373-82.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.208645] [PMID: 19926873]
[52]
Becker LK, Etelvino GM, Walther T, Santos RA, Campagnole-Santos MJ. Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain. Am J Physiol Heart Circ Physiol 2007; 293: H1416-24.
[http://dx.doi.org/10.1152/ajpheart.00141.2007]
[53]
Santos RAS, Simoes e Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003; 100(14): 8258-63.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[54]
Santos RA. Angiotensin-(1-7). Hypertension 2014; 63(6): 1138-47.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01274] [PMID: 24664288]
[55]
Rabelo LA, Alenina N, Bader M. ACE2-angiotensin-(1-7)-Mas axis and oxidative stress in cardiovascular disease. Hypertension Res 2011; 34(2): 154-60.
[56]
Samani NJ, Swales JD, Brammar WJ. Expression of the renin gene in extra-renal tissues of the rat. Biochem J 1988; 253(3): 907-10.
[http://dx.doi.org/10.1042/bj2530907] [PMID: 3052427]
[57]
Iwai N, Inagami T. Quantitative analysis of renin gene expression in extrarenal tissues by polymerase chain reaction method. J Hypertens 1992; 10(8): 717-24.
[http://dx.doi.org/10.1097/00004872-199208000-00004] [PMID: 1325502]
[58]
Lavoie JL, Cassell MD, Gross KW, Sigmund CD. Localization of renin expressing cells in the brain, by use of a REN-eGFP transgenic model. Physiol Genomics 2004; 16(2): 240-6.
[http://dx.doi.org/10.1152/physiolgenomics.00131.2003] [PMID: 14625376]
[59]
Allen AM, O’Callaghan EL, Hazelwood L, et al. Distribution of cells expressing human renin-promoter activity in the brain of a transgenic mouse. Brain Res 2008; 1243: 78-85.
[http://dx.doi.org/10.1016/j.brainres.2008.09.046] [PMID: 18840419]
[60]
Jones CA, Hurley MI, Black TA, et al. Expression of a renin/GFP transgene in mouse embryonic, extra-embryonic, and adult tissues. Physiol Genomics 2000; 4(1): 75-81.
[http://dx.doi.org/10.1152/physiolgenomics.2000.4.1.75] [PMID: 11074016]
[61]
Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: Fact, hypothesis, or fantasy. Physiology 2008; 23: 187-93.
[http://dx.doi.org/10.1152/physiol.00002.2008] [PMID: 18697992]
[62]
Sinn PL, Sigmund CD. Identification of three human renin mRNA isoforms from alternative tissue-specific transcriptional initiation. Physiol Genomics 2000; 3(1): 25-31.
[http://dx.doi.org/10.1152/physiolgenomics.2000.3.1.25] [PMID: 11015597]
[63]
Lee-Kirsch MA, Gaudet F, Cardoso MC, Lindpaintner K. Distinct renin isoforms generated by tissue-specific transcription initiation and alternative splicing. Circ Res 1999; 84(2): 240-6.
[http://dx.doi.org/10.1161/01.RES.84.2.240] [PMID: 9933256]
[64]
Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the brain: The renin angiotensin system. Int J Mol Sci 2018; 19(3): 876.
[http://dx.doi.org/10.3390/ijms19030876] [PMID: 29543776]
[65]
Lenz T, Sealey JE, Maack T, et al. Half-life, hemodynamic, renal, and hormonal effects of prorenin in cynomolgus monkeys. Am J Physiol 1991; 260(4 Pt 2): R804-10.
[PMID: 2012251]
[66]
Lavoie JL, Liu X, Bianco RA, Beltz TG, Johnson AK, Sigmund CD. Evidence supporting a functional role for intracellular renin in the brain. Hypertension 2006; 47(3): 461-6.
[http://dx.doi.org/10.1161/01.HYP.0000203308.52919.dc] [PMID: 16446393]
[67]
Shinohara K, Liu X, Morgan DA, et al. Selective deletion of the brain-specific isoform of renin causes neurogenic hypertension. Hypertension 2016; 68(6): 1385-92.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08242] [PMID: 27754863]
[68]
Xu D, Borges GR, Davis DR, et al. Neuron- or glial-specific ablation of secreted renin does not affect renal renin, baseline arterial pressure, or metabolism. Physiol Genomics 2011; 43(6): 286-94.
[http://dx.doi.org/10.1152/physiolgenomics.00208.2010] [PMID: 21189370]
[69]
Shinohara K, Nakagawa P, Gomez J, et al. Selective deletion of renin-b in the brain alters drinking and metabolism. Hypertension 2017; 70(5): 990-7.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09923] [PMID: 28874461]
[70]
Souza LAC, Worker CJ, Li W, et al. (Pro)renin receptor knockdown in the paraventricular nucleus of the hypothalamus attenuates hypertension development and AT1 receptor-mediated calcium events. Am J Physiol Heart Circ Physiol 2019; 316(6): H1389-405.
[http://dx.doi.org/10.1152/ajpheart.00780.2018] [PMID: 30925093]
[71]
Worker CJ, Li W, Feng CY, et al. The neuronal (pro)renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2020; 318(5): E765-78.
[http://dx.doi.org/10.1152/ajpendo.00406.2019] [PMID: 32228320]
[72]
Xu J, Sriramula S, Xia H, et al. Clinical relevance and role of neuronal at1 receptors in adam17-mediated ace2 shedding in neurogenic hypertension. Circ Res 2017; 121(1): 43-55.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310509] [PMID: 28512108]
[73]
Nakagawa P, Gomez J, Grobe JL, Sigmund CD. The renin-angiotensin system in the central nervous system and its role in blood pressure regulation. Curr Hypertens Rep 2020; 22(1): 7.
[http://dx.doi.org/10.1007/s11906-019-1011-2] [PMID: 31925571]
[74]
Huber MJ, Basu R, Cecchettini C, Cuadra AE, Chen QH, Shan Z. Activation of the (pro)renin receptor in the paraventricular nucleus increases sympathetic outflow in anesthetized rats. Am J Physiol Heart Circ Physiol 2015; 309(5): H880-7.
[http://dx.doi.org/10.1152/ajpheart.00095.2015] [PMID: 26116710]
[75]
Peng H, Jensen DD, Li W, et al. Overexpression of the neuronal human (pro)renin receptor mediates angiotensin II-independent blood pressure regulation in the central nervous system. Am J Physiol Heart Circ Physiol 2018; 314(3): H580-92.
[PMID: 29350998]
[76]
Pitra S, Worker CJ, Feng Y, Stern JE. Exacerbated effects of prorenin on hypothalamic magnocellular neuronal activity and vasopressin plasma levels during salt-sensitive hypertension. Am J Physiol Heart Circ Physiol 2019; 317(3): H496-504.
[http://dx.doi.org/10.1152/ajpheart.00063.2019] [PMID: 31274353]
[77]
Grobe JL, Rahmouni K, Liu X, Sigmund CD. Metabolic rate regulation by the renin-angiotensin system: Brain vs. body. Pflugers Arch 2013; 465(1): 167-75.
[http://dx.doi.org/10.1007/s00424-012-1096-9] [PMID: 22491893]
[78]
Genain CP, Van Loon GR, Kotchen TA. Distribution of renin activity and angiotensinogen in rat brain. Effects of dietary sodium chloride intake on brain renin. J Clin Invest 1985; 76(5): 1939-45.
[http://dx.doi.org/10.1172/JCI112191] [PMID: 3902894]
[79]
Ichihara A, Yatabe MS. The (pro)renin receptor in health and disease. Nat Rev Nephrol 2019; 15(11): 693-712.
[http://dx.doi.org/10.1038/s41581-019-0160-5] [PMID: 31164719]
[80]
van Thiel BS, Góes Martini A, Te Riet L, et al. Brain renin-angiotensin system: does it exist? Hypertension (Dallas, Tex: 1979) 2017; 69(6): 1136-44.
[81]
Batenburg WW, Lu X, Leijten F, Maschke U, Müller DN, Danser AH. Renin- and prorenin-induced effects in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor: Does (pro)renin-(pro)renin receptor interaction actually occur? Hypertension 2011; 58(6): 1111-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.180737] [PMID: 22025376]
[82]
Sevá Pessôa B, van der Lubbe N, Verdonk K, Roks AJ, Hoorn EJ, Danser AH. Key developments in renin-angiotensin-aldosterone system inhibition. Nat Rev Nephrol 2013; 9(1): 26-36.
[http://dx.doi.org/10.1038/nrneph.2012.249] [PMID: 23165302]
[83]
Danser AHJ. The role of the (Pro)renin receptor in hypertensive disease. Am J Hypertens 2015; 28(10): 1187-96.
[http://dx.doi.org/10.1093/ajh/hpv045] [PMID: 25890829]
[84]
Sigmund CD, Diz DI, Chappell MC. No brain renin-angiotensin system. Hypertension 2017; 69(6): 1007-10.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09167] [PMID: 28396531]
[85]
Hirose S, Yokosawa H, Inagami T. Immunochemical identification of renin in rat brain and distinction from acid proteases. Nature 1978; 274(5669): 392-3.
[http://dx.doi.org/10.1038/274392a0] [PMID: 27724]
[86]
Hermann K, Raizada MK, Sumners C, Phillips MI. Presence of renin in primary neuronal and glial cells from rat brain. Brain Res 1987; 437(2): 205-13.
[http://dx.doi.org/10.1016/0006-8993(87)91637-4] [PMID: 3325128]
[87]
Sakai K, Agassandian K, Morimoto S, et al. Local production of angiotensin II in the subfornical organ causes elevated drinking. J Clin Invest 2007; 117(4): 1088-95.
[http://dx.doi.org/10.1172/JCI31242] [PMID: 17404622]
[88]
Schinke M, Baltatu O, Böhm M, et al. Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc Natl Acad Sci USA 1999; 96(7): 3975-80.
[http://dx.doi.org/10.1073/pnas.96.7.3975] [PMID: 10097148]
[89]
Baltatu O, Silva JA Jr, Ganten D, Bader M. The brain renin-angiotensin system modulates angiotensin II-induced hypertension and cardiac hypertrophy. Hypertension 2000; 35(1 Pt 2): 409-12.
[http://dx.doi.org/10.1161/01.HYP.35.1.409] [PMID: 10642333]
[90]
Itaya Y, Suzuki H, Matsukawa S, Kondo K, Saruta T. Central renin-angiotensin system and the pathogenesis of DOCA-salt hypertension in rats. Am J Physiol 1986; 251(2 Pt 2): H261-8.
[PMID: 3526927]
[91]
Park CG, Leenen FH. Effects of centrally administered losartan on deoxycorticosterone-salt hypertension rats. J Korean Med Sci 2001; 16(5): 553-7.
[http://dx.doi.org/10.3346/jkms.2001.16.5.553] [PMID: 11641522]
[92]
Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 2002; 109(11): 1417-27.
[http://dx.doi.org/10.1172/JCI0214276] [PMID: 12045255]
[93]
Zhang Y, Gao X, Michael Garavito R. Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein. Biochem Biophys Res Commun 2011; 407(4): 674-9.
[http://dx.doi.org/10.1016/j.bbrc.2011.03.074] [PMID: 21420935]
[94]
Suzuki-Nakagawa C, Nishimura M, Tsukamoto T, et al. Participation of the extracellular domain in (pro)renin receptor dimerization. Biochem Biophys Res Commun 2014; 444(4): 461-6.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.073] [PMID: 24472541]
[95]
Schefe JH, Menk M, Reinemund J, et al. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res 2006; 99(12): 1355-66.
[http://dx.doi.org/10.1161/01.RES.0000251700.00994.0d] [PMID: 17082479]
[96]
Li W, Peng H, Cao T, et al. Brain-targeted (pro)renin receptor knockdown attenuates angiotensin II-dependent hypertension. Hypertension 2012; 59(6): 1188-94.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.190108] [PMID: 22526255]
[97]
Shan Z, Cuadra AE, Sumners C, Raizada MK. Characterization of a functional (pro)renin receptor in rat brain neurons. Exp Physiol 2008; 93(5): 701-8.
[http://dx.doi.org/10.1113/expphysiol.2008.041988] [PMID: 18326551]
[98]
Nguyen G, Muller DN. The biology of the (pro)renin receptor. J Am Soc Nephrol 2010; 21(1): 18-23.
[http://dx.doi.org/10.1681/ASN.2009030300] [PMID: 19917780]
[99]
Burcklé C, Bader M. Prorenin and its ancient receptor. Hypertension 2006; 48(4): 549-51.
[http://dx.doi.org/10.1161/01.HYP.0000241132.48495.df] [PMID: 16940209]
[100]
Yang T. Unraveling the Physiology of (Pro)Renin Receptor in the Distal Nephron. Hypertension 2017; 69(4): 564-74.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08318] [PMID: 28242715]
[101]
Nurun NA, Uddin NM, Nakagawa T, et al. Role of “handle” region of prorenin prosegment in the non-proteolytic activation of prorenin by binding to membrane anchored (pro)renin receptor. Front Biosci 2007; 12: 4810-7.
[http://dx.doi.org/10.2741/2429] [PMID: 17569611]
[102]
Peng H, Li W, Seth DM, Nair AR, Francis J, Feng Y. (Pro)renin receptor mediates both angiotensin II-dependent and -independent oxidative stress in neuronal cells. PLoS One 2013; 8(3): e58339.
[http://dx.doi.org/10.1371/journal.pone.0058339] [PMID: 23516464]
[103]
Ramser J, Abidi FE, Burckle CA, et al. A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet 2005; 14(8): 1019-27.
[http://dx.doi.org/10.1093/hmg/ddi094] [PMID: 15746149]
[104]
Feng Y. ANG II-independent prorenin/(pro)renin receptor signaling pathways in the central nervous system. Am J Physiol Heart Circ Physiol 2015; 309(5): H731-3.
[http://dx.doi.org/10.1152/ajpheart.00526.2015] [PMID: 26209058]
[105]
Saris JJ, ’t Hoen PA, Garrelds IM, et al. Prorenin induces intracellular signaling in cardiomyocytes independently of angiotensin II. Hypertension 2006; 48(4): 564-71.
[http://dx.doi.org/10.1161/01.HYP.0000240064.19301.1b] [PMID: 16940215]
[106]
Kaneshiro Y, Ichihara A, Sakoda M, et al. Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. J Am Soc Nephrol 2007; 18(6): 1789-95.
[http://dx.doi.org/10.1681/ASN.2006091062] [PMID: 17494887]
[107]
Zubcevic J, Jun JY, Lamont G, et al. Nucleus of the solitary tract (pro)renin receptor-mediated antihypertensive effect involves nuclear factor-κB-cytokine signaling in the spontaneously hypertensive rat. Hypertension 2013; 61(3): 622-7.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.199836] [PMID: 23319541]
[108]
Shi P, Grobe JL, Desland FA, et al. Direct pro-inflammatory effects of prorenin on microglia. PLoS One 2014; 9(10): e92937.
[http://dx.doi.org/10.1371/journal.pone.0092937] [PMID: 25302502]
[109]
Cruciat CM, Ohkawara B, Acebron SP, et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 2010; 327(5964): 459-63.
[http://dx.doi.org/10.1126/science.1179802] [PMID: 20093472]
[110]
Ludwig J, Kerscher S, Brandt U, et al. Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem 1998; 273(18): 10939-47.
[http://dx.doi.org/10.1074/jbc.273.18.10939] [PMID: 9556572]
[111]
Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G. Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension 2009; 53(6): 1077-82.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.127258] [PMID: 19380613]
[112]
Kinouchi K, Ichihara A, Sano M, et al. The (pro)renin receptor/ATP6AP2 is essential for vacuolar H+-ATPase assembly in murine cardiomyocytes. Circ Res 2010; 107(1): 30-4.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.224667] [PMID: 20570919]
[113]
Morimoto S, Ando T, Niiyama M, et al. Serum soluble (pro)renin receptor levels in patients with essential hypertension. Hypertension Res 2014; 37(7): 642-8.
[114]
Gatineau E, Cohn DM, Poglitsch M, Loria AS, Gong M, Yiannikouris F. Losartan prevents the elevation of blood pressure in adipose-PRR deficient female mice while elevated circulating sPRR activates the renin-angiotensin system. Am J Physiol Heart Circ Physiol 2019; 316(3): H506-15.
[http://dx.doi.org/10.1152/ajpheart.00473.2018] [PMID: 30550352]
[115]
Gatineau E, Gong MC, Yiannikouris F. Soluble prorenin receptor increases blood pressure in high fat-fed male mice. Hypertension 2019; 74(4): 1014-20.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.12906] [PMID: 31378099]
[116]
Mikami Y, Takai Y, Narita T, et al. Associations between the levels of soluble (pro)renin receptor in maternal and umbilical cord blood and hypertensive disorder of pregnancy. Placenta 2017; 57: 129-36.
[http://dx.doi.org/10.1016/j.placenta.2017.06.342] [PMID: 28864001]
[117]
Obradovic D, Loncar G, Radenovic S, et al. Soluble (pro)renin receptor in elderly chronic heart failure patients. Front Biosci 2020; 25: 1839-53.
[http://dx.doi.org/10.2741/4880] [PMID: 32472760]
[118]
Gong L, Zhang S, Li L, et al. Elevated plasma soluble (pro)renin receptor levels are associated with left ventricular remodeling and renal function in chronic heart failure patients with reduced ejection fraction. Peptides 2019; 111: 152-7.
[http://dx.doi.org/10.1016/j.peptides.2018.04.010] [PMID: 29660382]
[119]
Wang F, Luo R, Zou CJ, et al. Soluble (pro)renin receptor treats metabolic syndrome in mice with diet-induced obesity via interaction with PPARγ. JCI Insight 2020; 5(7): 128061.
[http://dx.doi.org/10.1172/jci.insight.128061] [PMID: 32271168]
[120]
Zhu Q, Yang T. Enzymatic sources and physio-pathological functions of soluble (pro)renin receptor. Curr Opin Nephrol Hypertens 2018; 27(2): 77-82.
[http://dx.doi.org/10.1097/MNH.0000000000000396] [PMID: 29346132]
[121]
Riediger F, Quack I, Qadri F, et al. Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol 2011; 22(12): 2193-202.
[http://dx.doi.org/10.1681/ASN.2011020200] [PMID: 22034640]
[122]
Kurauchi-Mito A, Ichihara A, Bokuda K, et al. Significant roles of the (pro)renin receptor in integrity of vascular smooth muscle cells. Hypertension research : Official journal of the Japanese Society of Hypertension 2014; 37(9): 830-5.
[123]
Achard V, Boullu-Ciocca S, Desbriere R, Nguyen G, Grino M. Renin receptor expression in human adipose tissue. Am J Physiol Regul Integr Comp Physiol 2007; 292(1): R274-82.
[http://dx.doi.org/10.1152/ajpregu.00439.2005] [PMID: 17197644]
[124]
Dai FF, Bhattacharjee A, Liu Y, et al. A novel GLP1 receptor interacting protein ATP6ap2 regulates insulin secretion in pancreatic beta cells. J Biol Chem 2015; 290(41): 25045-61.
[http://dx.doi.org/10.1074/jbc.M115.648592] [PMID: 26272612]
[125]
Ramkumar N, Kohan DE. The (pro)renin receptor: An emerging player in hypertension and metabolic syndrome. Kidney Int 2019; 95(5): 1041-52.
[http://dx.doi.org/10.1016/j.kint.2018.10.042] [PMID: 30819554]
[126]
Huang J, Siragy HM. Regulation of (pro)renin receptor expression by glucose-induced mitogen-activated protein kinase, nuclear factor-kappaB, and activator protein-1 signaling pathways. Endocrinology 2010; 151(7): 3317-25.
[http://dx.doi.org/10.1210/en.2009-1368] [PMID: 20444941]
[127]
Rong R, Ito O, Mori N, et al. Expression of (pro)renin receptor and its upregulation by high salt intake in the rat nephron. Peptides 2015; 63: 156-62.
[http://dx.doi.org/10.1016/j.peptides.2014.12.007] [PMID: 25555681]
[128]
Yamakoshi S, Ito O, Rong R, et al. High salt intake-increased (pro)renin receptor expression is exaggerated in the kidney of dahl salt-sensitive rats. Hypertension 2020; 75(6): 1447-54.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13905] [PMID: 32336231]
[129]
Wang F, Lu X, Peng K, et al. COX-2 mediates angiotensin II-induced (pro)renin receptor expression in the rat renal medulla. Am J Physiol Renal Physiol 2014; 307(1): F25-32.
[http://dx.doi.org/10.1152/ajprenal.00548.2013] [PMID: 24740788]
[130]
Siragy HM, Huang J. Renal (pro)renin receptor upregulation in diabetic rats through enhanced angiotensin AT1 receptor and NADPH oxidase activity. Exp Physiol 2008; 93(5): 709-14.
[http://dx.doi.org/10.1113/expphysiol.2007.040550] [PMID: 18192338]
[131]
Gonzalez AA, Womack JP, Liu L, Seth DM, Prieto MC. Angiotensin II increases the expression of (pro)renin receptor during low-salt conditions. Am J Med Sci 2014; 348(5): 416-22.
[http://dx.doi.org/10.1097/MAJ.0000000000000335] [PMID: 25250989]
[132]
Xu C, Lu A, Lu X, et al. Activation of renal (Pro)renin receptor contributes to high fructose-induced salt sensitivity. Hypertension (Dallas, Tex : 1979) 2017; 69(2): 339-48.
[133]
Contrepas A, Walker J, Koulakoff A, et al. A role of the (pro)renin receptor in neuronal cell differentiation. Am J Physiol Regul Integr Comp Physiol 2009; 297(2): R250-7.
[http://dx.doi.org/10.1152/ajpregu.90832.2008] [PMID: 19474391]
[134]
Shan Z, Shi P, Cuadra AE, et al. Involvement of the brain (pro)renin receptor in cardiovascular homeostasis. Circ Res 2010; 107(7): 934-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226977] [PMID: 20689062]
[135]
Takahashi K, Hiraishi K, Hirose T, et al. Expression of (pro)renin receptor in the human brain and pituitary, and co-localisation with arginine vasopressin and oxytocin in the hypothalamus. J Neuroendocrinol 2010; 22(5): 453-9.
[http://dx.doi.org/10.1111/j.1365-2826.2010.01980.x] [PMID: 20163518]
[136]
Cooper SG, Trivedi DP, Yamamoto R, et al. Increased (pro)renin receptor expression in the subfornical organ of hypertensive humans. Am J Physiol Heart Circ Physiol 2018; 314(4): H796-804.
[http://dx.doi.org/10.1152/ajpheart.00616.2017] [PMID: 29351470]
[137]
Li W, Liu J, Hammond SL, Tjalkens RB, Saifudeen Z, Feng Y. Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein. Am J Physiol Regul Integr Comp Physiol 2015; 309(2): R138-47.
[http://dx.doi.org/10.1152/ajpregu.00319.2014] [PMID: 25994957]
[138]
Hu L, Zhang S, Ooi K, et al. Microglia-derived NLRP3 activation mediates the pressor effect of prorenin in the rostral ventrolateral medulla of stress-induced hypertensive rats. Neurosci Bull 2020; 36(5): 475-92.
[http://dx.doi.org/10.1007/s12264-020-00484-9] [PMID: 32242284]
[139]
Kim H, Kim M, Im SK, Fang S. Mouse Cre-LoxP system: General principles to determine tissue-specific roles of target genes. Lab Anim Res 2018; 34(4): 147-59.
[http://dx.doi.org/10.5625/lar.2018.34.4.147] [PMID: 30671100]
[140]
Trebak F, Li W, Feng Y. Neuronal (pro)renin receptor regulates deoxycorticosterone-induced sodium intake. Physiol Genomics 2018; 50(10): 904-12.
[http://dx.doi.org/10.1152/physiolgenomics.00065.2018] [PMID: 30142028]
[141]
Ichihara A, Hayashi M, Kaneshiro Y, et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J Clin Invest 2004; 114(8): 1128-35.
[http://dx.doi.org/10.1172/JCI21398] [PMID: 15489960]
[142]
Suzuki F, Hayakawa M, Nakagawa T, et al. Human prorenin has “gate and handle” regions for its non-proteolytic activation. J Biol Chem 2003; 278(25): 22217-22.
[http://dx.doi.org/10.1074/jbc.M302579200] [PMID: 12684512]
[143]
Ichihara A, Sakoda M, Kurauchi-Mito A, Kaneshiro Y, Itoh H. Involvement of (pro)renin receptor in the glomerular filtration barrier. J Mol Med (Berl) 2008; 86(6): 629-35.
[http://dx.doi.org/10.1007/s00109-008-0327-1] [PMID: 18335185]
[144]
Wu J, Zhang C, Liu C, et al. Aortic constriction induces hypertension and cardiac hypertrophy via (pro)renin receptor activation and the PLC-β3 signaling pathway. Mol Med Rep 2019; 19(1): 573-80.
[PMID: 30431106]
[145]
Tan P, Blais C, Nguyen TMD, Schiller PW, Gutkowska J, Lavoie JL. Prorenin/renin receptor blockade promotes a healthy fat distribution in obese mice. Obesity (Silver Spring) 2016; 24(9): 1946-54.
[http://dx.doi.org/10.1002/oby.21592] [PMID: 27458124]
[146]
Feldt S, Batenburg WW, Mazak I, et al. Prorenin and renin-induced extracellular signal-regulated kinase 1/2 activation in monocytes is not blocked by aliskiren or the handle-region peptide. Hypertension 2008; 51(3): 682-8.
[147]
Batenburg WW, van den Heuvel M, van Esch JHM, et al. The (pro)renin receptor blocker handle region peptide upregulates endothelium-derived contractile factors in aliskiren-treated diabetic transgenic (mREN2)27 rats. J Hypertens 2013; 31(2): 292-302.
[http://dx.doi.org/10.1097/HJH.0b013e32835c1789] [PMID: 23303354]
[148]
van Esch JHM, van Veghel R, Garrelds IM, et al. Handle region peptide counteracts the beneficial effects of the Renin inhibitor aliskiren in spontaneously hypertensive rats. Hypertension 2011; 57(4): 852-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.169060]
[149]
Krebs C, Weber M, Steinmetz O, et al. Effect of (pro)renin receptor inhibition by a decoy peptide on renal damage in the clipped kidney of Goldblatt rats. Kidney Int 2008; 74(6): 823-4.
[http://dx.doi.org/10.1038/ki.2008.315] [PMID: 18756297]
[150]
Wang F, Lu X, Liu M, Feng Y, Zhou SF, Yang T. Renal medullary (pro)renin receptor contributes to angiotensin II-induced hypertension in rats via activation of the local renin-angiotensin system. BMC Med 2015; 13: 278.
[http://dx.doi.org/10.1186/s12916-015-0514-1] [PMID: 26554902]
[151]
Su J, Liu X, Xu C, et al. NF-κB-dependent upregulation of (pro)renin receptor mediates high-NaCl-induced apoptosis in mouse inner medullary collecting duct cells. Am J Physiol Cell Physiol 2017; 313(6): C612-20.
[http://dx.doi.org/10.1152/ajpcell.00068.2017] [PMID: 29021196]
[152]
Fang H, Deng M, Zhang L, et al. Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. Am J Physiol Renal Physiol 2018; 315(6): F1759-68.
[http://dx.doi.org/10.1152/ajprenal.00071.2018] [PMID: 29846109]
[153]
Lu X, Wang F, Liu M, et al. Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: Involvement of Nox4-derived hydrogen peroxide. Am J Physiol Renal Physiol 2016; 310(11): F1243-50.
[http://dx.doi.org/10.1152/ajprenal.00492.2015] [PMID: 26697985]
[154]
Peng K, Lu X, Wang F, et al. Collecting duct (pro)renin receptor targets ENaC to mediate angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2017; 312(2): F245-53.
[http://dx.doi.org/10.1152/ajprenal.00178.2016] [PMID: 27122543]
[155]
Wang F, Lu X, Peng K, et al. Antidiuretic action of collecting duct (pro)renin receptor downstream of vasopressin and pge2 receptor ep4. J Am Soc Nephrol 2016; 27(10): 3022-34.
[http://dx.doi.org/10.1681/ASN.2015050592] [PMID: 27000064]
[156]
Xu C, Fang H, Zhou L, Lu A, Yang T. High potassium promotes mutual interaction between (pro)renin receptor and the local renin-angiotensin-aldosterone system in rat inner medullary collecting duct cells. Am J Physiol Cell Physiol 2016; 311(4): C686-95.
[http://dx.doi.org/10.1152/ajpcell.00128.2016] [PMID: 27534754]
[157]
Xu C, Lu A, Wang H, et al. (Pro)Renin receptor regulates potassium homeostasis through a local mechanism. Am J Physiol Renal Physiol 2017; 313(3): F641-56.
[http://dx.doi.org/10.1152/ajprenal.00043.2016] [PMID: 27440776]
[158]
Belz GG, Butzer R, Kober S, Mutschler E. Pharmacodynamic studies on the angiotensin II type 1 antagonists irbesartan and candesartan based on angiotensin II dose response in humans. J Cardiovasc Pharmacol 2002; 39(4): 561-8.
[http://dx.doi.org/10.1097/00005344-200204000-00012] [PMID: 11904530]
[159]
Jones MR, Sealey JE, Laragh JH. Effects of angiotensin receptor blockers on ambulatory plasma Renin activity in healthy, normal subjects during unrestricted sodium intake. Am J Hypertens 2007; 20(8): 907-16.
[http://dx.doi.org/10.1016/j.amjhyper.2007.04.009] [PMID: 17679042]
[160]
Maillard MP, Würzner G, Nussberger J, Centeno C, Burnier M, Brunner HR. Comparative angiotensin II receptor blockade in healthy volunteers: The importance of dosing. Clin Pharmacol Ther 2002; 71(1): 68-76.
[http://dx.doi.org/10.1067/mcp.2002.121425] [PMID: 11823759]
[161]
Azizi M, Ménard J, Bissery A, et al. Pharmacologic demonstration of the synergistic effects of a combination of the renin inhibitor aliskiren and the AT1 receptor antagonist valsartan on the angiotensin II-renin feedback interruption. J Am Soc Nephrol 2004; 15(12): 3126-33.
[http://dx.doi.org/10.1097/01.ASN.0000146686.35541.29] [PMID: 15579516]
[162]
Juillerat L, Nussberger J, Ménard J, et al. Determinants of angiotensin II generation during converting enzyme inhibition. Hypertension 1990; 16(5): 564-72.
[http://dx.doi.org/10.1161/01.HYP.16.5.564] [PMID: 2172161]
[163]
Collier JG, Jenkins JS, Keddie J, Khan MU, Robinson BF. Effect of angiotensin-converting enzyme inhibitor on response of plasma renin activity and aldosterone to tilting in man. Br J Clin Pharmacol 1974; 1(4): 313-7.
[http://dx.doi.org/10.1111/j.1365-2125.1974.tb00259.x] [PMID: 22454885]
[164]
Larochelle P, Gutkowska J, Schiffrin E, Kuchel O, Hamet P, Genest J. Effect of enalapril on renin, angiotensin converting enzyme activity, aldosterone and prostaglandins in patients with hypertension. Clin Invest Med 1985; 8(3): 197-201.
[PMID: 2994932]
[165]
Sealey JE, Laragh JH. Aliskiren, the first renin inhibitor for treating hypertension: Reactive renin secretion may limit its effectiveness. Am J Hypertens 2007; 20(5): 587-97.
[http://dx.doi.org/10.1016/j.amjhyper.2007.04.001] [PMID: 17485026]
[166]
Schefe JH, Neumann C, Goebel M, et al. Prorenin engages the (pro)renin receptor like renin and both ligand activities are unopposed by aliskiren. J Hypertens 2008; 26(9): 1787-94.
[http://dx.doi.org/10.1097/HJH.0b013e3283060f2e] [PMID: 18698213]