Design, Synthesis and Evaluation of Novel (E)-N'-((1-(4-chlorobenzyl)-1H-indol-3- yl)methylene)-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides as Antitumor Agents

Page: [2586 - 2598] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Herein, we have designed and synthesized a series of the novel (E)-N'-((1-(4-chlorobenzyl)- 1H-indol-3-yl)methylene)-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides (5) as potent small molecules activating procaspase- 3. The compounds were designed by the amalgamation of structural features of PAC-1 (the first procaspase-3 activator) and oncrasin-1, one potential anticancer agent.

Methods: The target acetohydrazides (5a-m) were prepared via the Niementowski condensation of anthranilic acid (1a) or 5-substituted-2-aminobenzoic acid (1b-m) and formamide. The compound libraries were evaluated for their cytotoxicity, caspase-3 activation, cell cycle analysis, and apoptosis. In addition, computational chemistry is also performed.

Results: A biological evaluation revealed that all thirteen compounds designed and synthesized showed strong cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer) with eight compounds (5a, 5c-i, 5k), which were clearly more potent than both PAC-1 and oncrasin-1. In this series, four compounds, including 5c, 5e, 5f, and 5h, were the most potent members with approximately 4- to 5-fold stronger than the reference compounds PAC-1 and oncrasin-1 in terms of IC50. In comparison to 5-FU, these compounds were even 18- to 29-fold more potent in terms of cytotoxicity in three human cell lines tested. In the caspase activation assay, the caspase activity was activated to 285% by compound 5e compared to PAC-1, the first procaspase activating compound, which was used as a control. Our docking simulation revealed that compound 5e was a potent allosteric inhibitor of procaspase-3 through chelation of inhibitory zinc ion. Physicochemical and ADMET calculations for 5e provided useful information of its suitable absorption profile and some toxicological effects that need further optimization to be developed as a promising anticancer agent.

Conclusion: Compound 5e has emerged as a potential hit for further design and development of caspases activators and anticancer agents.

Keywords: Acetohydrazides, quinazolin-4(3H)-one, cytotoxicity, synthesis, caspase activation, docking simulation.

Graphical Abstract

[1]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A.; Arshia, M.; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as im-portant me-dicinal scaffolds: A comparative patent review (2011-2016). Expert Opin. Ther. Pat., 2018, 28(4), 281-297.
[http://dx.doi.org/10.1080/13543776.2018.1432596] [PMID: 29368977]
[2]
Asif, M. Chemical characteristics, synthetic methods, and biologi-cal potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 395637.
[http://dx.doi.org/10.1155/2014/395637] [PMID: 25692041]
[3]
Srivastava, S.; Srivastava, S. Biological activity of Quinazoline: A review. Int. J. Pharm. Sci. Res., 2015, 6, 1206-1213.
[4]
Huong, T-T-L.; Dung, D-T-M.; Huan, N-V.; Cuong, L-V.; Hai, P-T.; Huong, L-T-T.; Kim, J.; Kim, Y-G.; Han, S-B.; Nam, N-H. Novel N-hydroxybenzamides incorporating 2-oxoindoline with un-expected potent histone deacetylase inhibitory effects and anti-tumor cytotoxici-ty. Bioorg. Chem., 2017, 71, 160-169.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.002] [PMID: 28196602]
[5]
Hieu, D.T.; Anh, D.T.; Hai, P-T.; Huong, L-T-T.; Park, E.J.; Choi, J.E.; Kang, J.S.; Dung, P.T.P.; Han, S-B.; Nam, N-H. Quinazoline-based hydroxamic acids: Design, synthesis, and evaluation of his-tone deacetylase inhibitory effects and cytotoxicity. Chem. Biodivers., 2018, 15(6), e1800027.
[http://dx.doi.org/10.1002/cbdv.201800027] [PMID: 29667768]
[6]
Hieu, D.T.; Anh, D.T.; Hai, P-T.; Thuan, N.T.; Huong, L-T-T.; Park, E.J.; Young Ji, A.; Soon Kang, J.; Phuong Dung, P.T.; Han, S-B.; Nam, N-H. Quinazolin-4(3H)-one-based hydroxamic acids: Design, synthesis and evaluation of histone deacetylase inhibitory effects and cytotoxicity. Chem. Biodivers., 2019, 16(4), e1800502.
[http://dx.doi.org/10.1002/cbdv.201800502] [PMID: 30653817]
[7]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[8]
Storey, S. Targeting apoptosis: Selected anticancer strategies. Nat. Rev. Drug Discov., 2008, 7(12), 971-972.
[http://dx.doi.org/10.1038/nrd2662] [PMID: 19043447]
[9]
Nam, N.H.; Parang, K. Current targets for anticancer drug discov-ery. Curr. Drug Targets, 2003, 4(2), 159-179.
[http://dx.doi.org/10.2174/1389450033346966] [PMID: 12558068]
[10]
Putt, K.S.; Chen, G.W.; Pearson, J.M.; Sandhorst, J.S.; Hoagland, M.S.; Kwon, J-T.; Hwang, S-K.; Jin, H.; Churchwell, M.I.; Cho, M-H.; Doerge, D.R.; Helferich, W.G.; Hergenrother, P.J. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol., 2006, 2(10), 543-550.
[http://dx.doi.org/10.1038/nchembio814] [PMID: 16936720]
[11]
Krepela, E.; Procházka, J.; Liul, X.; Fiala, P.; Kinkor, Z. Increased expression of Apaf-1 and procaspase-3 and the functionality of in-trinsic apoptosis apparatus in non-small cell lung carcinoma. Biol. Chem., 2004, 385(2), 153-168.
[http://dx.doi.org/10.1515/BC.2004.034] [PMID: 15101558]
[12]
Fink, D.; Schlagbauer-Wadl, H.; Selzer, E.; Lucas, T.; Wolff, K.; Pehamberger, H.; Eichler, H.G.; Jansen, B. Elevated procaspase levels in human melanoma. Melanoma Res., 2001, 11(4), 385-393.
[http://dx.doi.org/10.1097/00008390-200108000-00009] [PMID: 11479427]
[13]
O’Donovan, N.; Crown, J.; Stunell, H.; Hill, A.D.K.; McDermott, E.; O’Higgins, N.; Duffy, M.J. Caspase 3 in breast cancer. Clin. Cancer Res., 2003, 9(2), 738-742.
[PMID: 12576443]
[14]
Persad, R.; Liu, C.; Wu, T-T.; Houlihan, P.S.; Hamilton, S.R.; Diehl, A.M.; Rashid, A. Overexpression of caspase-3 in hepatocel-lular carcinomas. Mod. Pathol., 2004, 17(7), 861-867.
[http://dx.doi.org/10.1038/modpathol.3800146] [PMID: 15098015]
[15]
Izban, K.F.; Wrone-Smith, T.; Hsi, E.D.; Schnitzer, B.; Quevedo, M.E.; Alkan, S. Characterization of the interleukin-1β-converting en-zyme/ced-3-family protease, caspase-3/CPP32, in Hodgkin’s disease: Lack of caspase-3 expression in nodular lymphocyte pre-dominance Hodgkin’s disease. Am. J. Pathol., 1999, 154(5), 1439-1447.
[http://dx.doi.org/10.1016/S0002-9440(10)65398-9] [PMID: 10329597]
[16]
Nakagawara, A.; Nakamura, Y.; Ikeda, H.; Hiwasa, T.; Kuida, K.; Su, M.S-S.; Zhao, H.; Cnaan, A.; Sakiyama, S. High levels of ex-pression and nuclear localization of interleukin-1 β converting en-zyme (ICE) and CPP32 in favorable human neuroblastomas. Cancer Res., 1997, 57(20), 4578-4584.
[PMID: 9377572]
[17]
Svingen, P.A.; Loegering, D.; Rodriquez, J.; Meng, X.W.; Mesner, P.W., Jr; Holbeck, S.; Monks, A.; Krajewski, S.; Scudiero, D.A.; Sausville, E.A.; Reed, J.C.; Lazebnik, Y.A.; Kaufmann, S.H. Com-ponents of the cell death machine and drug sensitivity of the Na-tional Cancer Institute Cell Line Panel. Clin. Cancer Res., 2004, 10(20), 6807-6820.
[http://dx.doi.org/10.1158/1078-0432.CCR-0778-02] [PMID: 15501957]
[18]
Roth, H.S.; Hergenrother, P.J. Derivatives of procaspase-activating compound 1 (PAC-1) and their anticancer activities. Curr. Med. Chem., 2016, 23(3), 201-241.
[http://dx.doi.org/10.2174/0929867323666151127201829] [PMID: 26630918]
[19]
Peng, X.; Tang, X.; Qin, W.; Dou, W.; Guo, Y.; Zheng, J.; Liu, W.; Wang, D. Aroylhydrazone derivative as fluorescent sensor for highly selective recognition of Zn2+ ions: Syntheses, characteriza-tion, crystal structures and spectroscopic properties. Dalton Trans., 2011, 40(19), 5271-5277.
[http://dx.doi.org/10.1039/c0dt01590c] [PMID: 21468436]
[20]
Huan, L.C.; Phuong, C.V.; Truc, L.C.; Thanh, V.N.; Pham-The, H.; Huong, L-T-T.; Thuan, N.T.; Park, E.J.; Ji, A.Y.; Kang, J.S.; Han, S-B.; Tran, P-T.; Nam, N-H. (E)-N′-Arylidene-2-(4-oxoquinazolin-4(3H)-yl) acetohydrazides: Synthesis and evaluation of antitumor cytotoxici-ty and caspase activation activity. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 465-478.
[http://dx.doi.org/10.1080/14756366.2018.1555536] [PMID: 30734614]
[21]
Huan, L.C. Truc, L.C.; Phuong, C.V.; Hai, P-T.; Huong, L-T-T.; Linh, N.T.P.; Thuan, N.T.; Park, E.J.; Choi, Y.J.; Kang, J.S.; Han, S-B.; Nam, N-H.; Tran, P-T. N′-[(E)-Arylidene]-2-(2,3-dihydro-3-oxo-4H-1,4-benzoxazin-4-yl)-acetohydrazides: Synthesis and Evaluation of Caspase Activation Activity and Cytotoxicity. Chem. Biodivers., 2018, 15(10), e1800322.
[http://dx.doi.org/10.1002/cbdv.201800322] [PMID: 30054973]
[22]
Guo, W.; Wu, S.; Wang, L.; Wei, X.; Liu, X.; Wang, J.; Lu, Z.; Hollingshead, M.; Fang, B. Antitumor activity of a novel oncrasin analogue is mediated by JNK activation and STAT3 inhibition. PLoS One, 2011, 6(12), e28487.
[http://dx.doi.org/10.1371/journal.pone.0028487] [PMID: 22174819]
[23]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New color-imetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[24]
Dung, T.M.; Dung, P.T.; Oanh, D.T.; Hai, P.T.; Huong, T.T.; Loi, V.D.; Hahn, H.; Han, B.W.; Kim, J.; Han, S.B.; Nam, N.H. Novel 3-substituted-2-oxoindoline-based N-hydroxypropenamides as his-tone deacetylase inhibitors and antitumor agents. Med. Chem., 2015, 11(8), 725-735.
[http://dx.doi.org/10.2174/1573406411666150702130633] [PMID: 26133355]
[25]
Hieu, D.T.; Anh, D.T.; Tuan, N.M.; Hai, P-T.; Huong, L-T-T.; Kim, J.; Kang, J.S.; Vu, T.K.; Dung, P.T.P.; Han, S-B.; Nam, N-H.; Hoa, N-D. Design, synthesis and evaluation of novel N-hydroxybenzamides/N-hydroxypropenamides incorporating quinazolin-4(3H)-ones as histone deacetylase inhibitors and anti-tumor agents. Bioorg. Chem., 2018, 76, 258-267.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.007] [PMID: 29223029]
[26]
Kim, Y.; You, Y-J.; Nam, N-H.; Ahn, B-Z. Prodrugs of 4# - demethyl-4-deoxypodophyllotoxin: Synthesis and evaluation of the antitumor activity. Bioorg. Med. Chem. Lett., 2002, 12(23), 3435-3438.
[http://dx.doi.org/10.1016/S0960-894X(02)00758-8] [PMID: 12419378]
[27]
Wu, L.; Smythe, A.M.; Stinson, S.F.; Mullendore, L.A.; Monks, A.; Scudiero, D.A.; Paull, K.D.; Koutsoukos, A.D.; Rubinstein, L.V.; Boyd, M.R.; Shoemaker, R.H. Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anti-cancer drug screening. Cancer Res., 1992, 52(11), 3029-3034.
[PMID: 1350507]
[28]
Molecular Operating Environment (MOE); Chemical computing group ULC: 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7 , 2009.
[29]
Velázquez-Delgado, E.M.; Hardy, J.A. Zinc-mediated allosteric inhibition of caspase-6. J. Biol. Chem., 2012, 287(43), 36000-36011.
[http://dx.doi.org/10.1074/jbc.M112.397752] [PMID: 22891250]
[30]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Green-blatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualiza-tion system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[31]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[32]
Hai, P-T.; Miguel, Á. C.-P.; Nguyen-Hai, N.; Juan, A.C.-G.; Bakh-tiyor, R.; Huong, L.-T.-T.; Gerardo, M. C.-M. In silico assessment of ADME properties: Advances in Caco-2 cell monolayer permea-bility modeling. Curr. Top. Med. Chem., 2018, 18, 2209-2229.
[33]
Cabrera-Pérez, M.Á.; Pham-The, H.; Cervera, M.F.; Hernández-Armengol, R.; Miranda-Pérez de Alejo, C.; Brito-Ferrer, Y. Inte-grating theoretical and experimental permeability estimations for provisional biopharmaceutical classification: Application to the WHO essential medicines. Biopharm. Drug Dispos., 2018, 39(7), 354-368.
[http://dx.doi.org/10.1002/bdd.2152] [PMID: 30021059]
[34]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Exper-imental and computational approaches to estimate solubility and perme-ability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[35]
Silva, M.H. Use of computational toxicology (CompTox) tools to predict in vivo toxicity for risk assessment. Regul. Toxicol. Pharmacol., 2020, 116, 104724.
[http://dx.doi.org/10.1016/j.yrtph.2020.104724] [PMID: 32640296]
[36]
Martin, Y.C. A bioavailability score. J. Med. Chem., 2005, 48(9), 3164-3170.
[http://dx.doi.org/10.1021/jm0492002] [PMID: 15857122]
[37]
Špulák, M.; Novák, Z.; Palát, K.; Kuneš, J.; Pourová, J.; Pour, M. The unambiguous synthesis and NMR assignment of 4-alkoxy and 3-alkylquinazolines. Tetrahedron, 2013, 69, 1705-1711.
[http://dx.doi.org/10.1016/j.tet.2012.12.031]
[38]
Nam, N-H.; Pitts, R.L.; Sun, G.; Sardari, S.; Tiemo, A.; Xie, M.; Yan, B.; Parang, K. Design of tetrapeptide ligands as inhibitors of the Src SH2 domain. Bioorg. Med. Chem., 2004, 12(4), 779-787.
[http://dx.doi.org/10.1016/j.bmc.2003.10.060] [PMID: 14759738]
[39]
Nam, N-H.; Hong, D-H.; You, Y-J.; Kim, Y.; Bang, S-C.; Kim, H-M.; Ahn, B-Z. Synthesis and cytotoxicity of 2,5-dihydroxychalcones and related compounds. Arch. Pharm. Res., 2004, 27(6), 581-588.
[http://dx.doi.org/10.1007/BF02980153] [PMID: 15283456]
[40]
Min, B-S.; Huong, H-T-T.; Kim, J-H.; Jun, H-J.; Na, M-K.; Nam, N-H.; Lee, H-K.; Bae, K.; Kang, S-S. Furo-1,2-naphthoquinones from Crataegus pinnatifida with ICAM-1 expression inhibition ac-tivity. Planta Med., 2004, 70(12), 1166-1169.
[http://dx.doi.org/10.1055/s-2004-835846] [PMID: 15643552]
[41]
Sarkar, A.; Balakrishnan, K.; Chen, J.; Patel, V.; Neelapu, S.S.; McMurray, J.S.; Gandhi, V. Molecular evidence of Zn chelation of the procaspase activating compound B-PAC-1 in B cell lymphoma. Oncotarget, 2016, 7(3), 3461-3476.
[http://dx.doi.org/10.18632/oncotarget.6505] [PMID: 26658105]
[42]
Peterson, Q.P.; Goode, D.R.; West, D.C.; Ramsey, K.N.; Lee, J.J.; Hergenrother, P.J. PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. J. Mol. Biol., 2009, 388(1), 144-158.
[http://dx.doi.org/10.1016/j.jmb.2009.03.003] [PMID: 19281821]
[43]
Hughes, J.D.; Blagg, J.; Price, D.A.; Bailey, S.; Decrescenzo, G.A.; Devraj, R.V.; Ellsworth, E.; Fobian, Y.M.; Gibbs, M.E.; Gilles, R.W.; Greene, N.; Huang, E.; Krieger-Burke, T.; Loesel, J.; Wager, T.; Whiteley, L.; Zhang, Y. Physiochemical drug properties associ-ated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett., 2008, 18(17), 4872-4875.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.071] [PMID: 18691886]
[44]
Castillo-Garit, J.A.; Casanola-Martin, G.M.; Le-Thi-Thu, H.; Pham-The, H.; Barigye, S.J. A simple method to predict blood-brain barrier permeability of drug- like compounds using classifica-tion trees. Med. Chem., 2017, 13(7), 664-669.
[http://dx.doi.org/10.2174/1573406413666170209124302] [PMID: 28185535]
[45]
Turner, A.P.; Alam, C.; Bendayan, R. Chapter 1 Efflux transport-ers in cancer resistance: Molecular and functional characterization of P-glycoprotein.; Sosnik, A. Academic Press; Sosnik, A.; Bendayan, R., Eds., 2020.
[http://dx.doi.org/10.1016/B978-0-12-816434-1.00001-2]
[46]
Vandenberg, J.I.; Perry, M.D.; Perrin, M.J.; Mann, S.A.; Ke, Y.; Hill, A.P. hERG K(+) channels: Structure, function, and clinical signifi-cance. Physiol. Rev., 2012, 92(3), 1393-1478.
[http://dx.doi.org/10.1152/physrev.00036.2011] [PMID: 22988594]
[47]
Larigot, L.; Juricek, L.; Dairou, J.; Coumoul, X. AhR signaling pathways and regulatory functions. Biochim. Open, 2018, 7, 1-9.
[http://dx.doi.org/10.1016/j.biopen.2018.05.001] [PMID: 30003042]