Cytokines Involved in COVID-19 Patients with Diabetes: A Systematic Review

Article ID: e180122200321 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Hyperglycemic condition and compromised immune system may contribute to the progression of COVID-19 infection and increase the disease severity, relatively requiring a longer recovery period among diabetic patients.

Objective: A systematic review was conducted to examine cytokine levels, the prevalence of risk factors, and other comorbidities in COVID-19 patients with and without diabetes mellitus during the early COVID-19 outbreak.

Methods: A systematic literature search was conducted in PubMed central, PMC Europe databases, and Web of Science, evaluating the articles published between Dec 1st, 2019, and June 15th, 2020. This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Results: The systematic search generated 14,960 articles and ended up with 9 articles, of which 8 articles involved data on the comparison of cytokines in diabetic and non-diabetic subjects with COVID-19, while 4 of them involved data on cytokines in the diabetes patients compared either by the severity of diseases or the rate of survival. Among the studied cytokines, interleukin-6, interleukin- 8, and tumor necrosis factor-α may cause the worst prognosis or fatality among diabetic patients. Increased cytokine levels indicate higher mortality and are linked to risk factors and comorbidities, such as hypertension and cardiovascular disease. Management of diabetes by insulin treatment may reduce the rate of mortality among diabetic patients but may be contraindicated in diabetic patients with COVID-19 who had at least one previous comorbidity, especially hypertension and CVD.

Conclusion: The pathophysiological mechanisms linked to cytokine storm in diabetic patients may lead to the design of treatment strategies in the future, thus improving early diagnosis of the disease and mitigating cytokine storm-associated morbidity and mortality.

Keywords: COVID-19, severe acute respiratory syndrome coronavirus 2, diabetes, cytokines, risk factors, comorbidities.

[1]
WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-sopening-remarks-at-the-media-briefing-on-COVID-19-11-march-2020/ Accessed date: 07 June 2020.
[2]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[3]
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[4]
Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020; 75(7): 1730-41.
[http://dx.doi.org/10.1111/all.14238] [PMID: 32077115]
[5]
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109(5): 531-8.
[http://dx.doi.org/10.1007/s00392-020-01626-9] [PMID: 32161990]
[6]
CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019-United States, February 12-March 28, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(13): 382-6.
[http://dx.doi.org/10.15585/mmwr.mm6913e2] [PMID: 32240123]
[7]
Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight 2019; 2(20): 131774.
[http://dx.doi.org/10.1172/jci.insight.131774]
[8]
Johnson BS, Laloraya M. A cytokine super cyclone in COVID-19 patients with risk factors: The therapeutic potential of BCG immunization. Cytokine Growth Factor Rev 2020; 6101(20): 30116-7.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.014]
[9]
Yan Y, Yang Y, Wang F, et al. Clinical characteristics and outcomes of patients with severe COVID-19 with diabetes. BMJ Open Diabetes Res Care 2020; 8(1): e001343.
[http://dx.doi.org/10.1136/bmjdrc-2020-001343] [PMID: 32345579]
[10]
Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev 2020; e3319: e3319.
[http://dx.doi.org/10.1002/dmrr.3319] [PMID: 32233013]
[11]
Chen Y, Yang D, Cheng B, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care 2020; 43(7): 1399-407.
[http://dx.doi.org/10.2337/dc20-0660] [PMID: 32409498]
[12]
Alzaid F, Julla JB, Diedisheim M, et al. Monocyte class switch and hyperinflammation characterize severe COVID-19 in type 2 diabetes. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.06.02.20119909]
[13]
Sardu C, D’Onofrio N, Balestrieri ML, et al. Outcomes in patients with hyperglycemia affected by COVID-19: Can we do more on glycemic control? Diabetes Care 2020; 43(7): 1408-15.
[http://dx.doi.org/10.2337/dc20-0723] [PMID: 32430456]
[14]
Zhu L, She ZG, Cheng X, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab 2020; 31(6): 1068-1077.e3.
[http://dx.doi.org/10.1016/j.cmet.2020.04.021] [PMID: 32369736]
[15]
Zhang Y, Li H, Zhang J, et al. The clinical characteristics and outcomes of patients with diabetes and secondary hyperglycaemia with coronavirus disease 2019: A single-centre, retrospective, observational study in Wuhan. Diabetes Obes Metab 2020; 22(8): 1443-54.
[http://dx.doi.org/10.1111/dom.14086] [PMID: 32406594]
[16]
Wang Z, Du Z, Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res Clin Pract 2020; 164: 108214.
[http://dx.doi.org/10.1016/j.diabres.2020.108214] [PMID: 32416121]
[17]
Wang F, Yang Y, Dong K, et al. Clinical characteristics of 28 patients with diabetes and COVID-19 in Wuhan, China. Endocr Pract 2020; 26(6): 668-74.
[http://dx.doi.org/10.4158/EP-2020-0108] [PMID: 32357072]
[18]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529-39.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[19]
Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 2020; 55(5): 105954.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105954] [PMID: 32234467]
[20]
Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract 2020; 162: 108142.
[http://dx.doi.org/10.1016/j.diabres.2020.108142] [PMID: 32278764]
[21]
Ferlita S, Yegiazaryan A, Noori N, et al. Type 2 diabetes mellitus and altered immune system leading to susceptibility to pathogens, especially Mycobacterium tuberculosis. J Clin Med 2019; 8(12): 2219.
[http://dx.doi.org/10.3390/jcm8122219]
[22]
Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab 2020; 318(5): E736-41.
[http://dx.doi.org/10.1152/ajpendo.00124.2020] [PMID: 32228322]
[23]
Wang A, Zhao W, Xu Z, Gu J. Timely blood glucose management for the outbreak of 2019 novel coronavirus disease (COVID-19) is urgently needed. Diabetes Res Clin Pract 2020; 162: 108118.
[http://dx.doi.org/10.1016/j.diabres.2020.108118] [PMID: 32179126]
[24]
Zhou J, Tan J. Diabetes patients with COVID-19 need better blood glucose management in Wuhan, China. Metabolism 2020; 107: 154216.
[http://dx.doi.org/10.1016/j.metabol.2020.154216] [PMID: 32220612]
[25]
Iqbal A, Prince LR, Novodvorsky P, et al. Effect of hypoglycemia on inflammatory responses and the response to low-dose endotoxemia in humans. J Clin Endocrinol Metab 2019; 104(4): 1187-99.
[http://dx.doi.org/10.1210/jc.2018-01168] [PMID: 30252067]
[26]
Kumar A, Arora A, Sharma P, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab Syndr 2020; 14(4): 535-45.
[http://dx.doi.org/10.1016/j.dsx.2020.04.044] [PMID: 32408118]
[27]
Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1Iα/Glycolysis-dependent axis. Cell Metab 2020; 32(3): 437-446.e5.
[http://dx.doi.org/10.1016/j.cmet.2020.07.007] [PMID: 32697943]
[28]
Erener S. Diabetes, infection risk and COVID-19. Mol Metab 2020; 39: 101044.
[http://dx.doi.org/10.1016/j.molmet.2020.101044] [PMID: 32585364]
[29]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[30]
Chu H, Chan JF, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis 2020; 410.
[http://dx.doi.org/10.1093/cid/ciaa410]
[31]
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020; 11: 827.
[http://dx.doi.org/10.3389/fimmu.2020.00827]
[32]
Dong L, Tian J, He S, et al. Possible vertical transmission of SARS-CoV-2 from an infected mnlm-citation to her newborn. JAMA 2020; 323(18): 1846-8.
[http://dx.doi.org/10.1001/jama.2020.4621] [PMID: 32215581]
[33]
Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 2020; 92(7): 814-8.
[http://dx.doi.org/10.1002/jmv.25801] [PMID: 32253759]
[34]
Ma J, Xia P, Zhou Y, et al. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clin Immunol 2020; 214: 108408.
[http://dx.doi.org/10.1016/j.clim.2020.108408] [PMID: 32247038]
[35]
Pedersen SF, Ho YC. SARS-CoV-2: A storm is raging. J Clin Invest 2020; 130(5): 2202-5.
[http://dx.doi.org/10.1172/JCI137647] [PMID: 32217834]
[36]
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46(5): 846-8.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[37]
Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: A single center’s observational study. World J Pediatr 2020; 16(3): 251-9.
[http://dx.doi.org/10.1007/s12519-020-00354-4] [PMID: 32193831]
[38]
Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis 2020; 71(15): 769-77.
[http://dx.doi.org/10.1093/cid/ciaa272] [PMID: 32176772]
[39]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[40]
Tanaka T, Narazaki M, Kishimoto T. Immunnlm-citationapeutic implications of IL-6 blockade for cytokine storm. Immunnlm-citationapy 2016; 8(8): 959-70.
[http://dx.doi.org/10.2217/imt-2016-0020] [PMID: 27381687]
[41]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[42]
Ng WH, Tipih T, Makoah NA, et al. Comorbidities in SARS-CoV-2 patients: A systematic review and meta-analysis. MBio 2021; 12(1): e03647-20.
[http://dx.doi.org/10.1128/mBio.03647-20] [PMID: 33563817]
[43]
Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int J Prev Med 2014; 5(8): 927-46.
[PMID: 25489440]
[44]
Williams JW, Huang LH, Randolph GJ. Cytokine circuits in cardiovascular disease. Immunity 2019; 50(4): 941-54.
[http://dx.doi.org/10.1016/j.immuni.2019.03.007]
[45]
Mehra VC, Ramgolam VS, Bender JR. Cytokines and cardiovascular disease. J Leukoc Biol 2005; 78(4): 805-18.
[http://dx.doi.org/10.1189/jlb.0405182] [PMID: 16006537]
[46]
Kofler S, Nickel T, Weis M. Role of cytokines in cardiovascular diseases: A focus on endothelial responses to inflammation. Clin Sci (Lond) 2005; 108(3): 205-13.
[http://dx.doi.org/10.1042/CS20040174] [PMID: 15540988]
[47]
Lindmark E, Diderholm E, Wallentin L, Siegbahn A. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: Effects of an early invasive or noninvasive strategy. JAMA 2001; 286(17): 2107-13.
[http://dx.doi.org/10.1001/jama.286.17.2107] [PMID: 11694151]
[48]
Blankenberg S, Tiret L, Bickel C, et al. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 2002; 106(1): 24-30.
[http://dx.doi.org/10.1161/01.CIR.0000020546.30940.92] [PMID: 12093765]
[49]
Viswanathan V, Puvvula A, Jamthikar AD, et al. Bidirectional link between diabetes mellitus and coronavirus disease 2019 leading to cardiovascular disease: A narrative review. World J Diabetes 2021; 12(3): 215-37.
[http://dx.doi.org/10.4239/wjd.v12.i3.215] [PMID: 33758644]
[50]
Kabashneh S, Ali H, Alkassis S. Multi-Organ failure in a patient with diabetes due to COVID-19 with clear lungs. Cureus 2020; 12(5): e8147.
[http://dx.doi.org/10.7759/cureus.8147] [PMID: 32550066]
[51]
Halim H. Multiple organ dysfunction syndrome associated with hyperglycemia in children requiring intensive care. Paediatr Indones 2015; 55(4): 230-4.
[http://dx.doi.org/10.14238/pi55.4.2015.230-4]
[52]
Jurado A, MartA-n MC, Abad-Molina C, et al. COVID-19: Age, interleukin-6, C-reactive protein, and lymphocytes as key clues from a multicentre retrospective study. Immun Ageing 2020; 17: 22.
[http://dx.doi.org/10.1186/s12979-020-00194-w]
[53]
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan. bioRxiv 2019; 2020.01.26.919985.
[http://dx.doi.org/10.1101/2020.01.26.919985]
[54]
Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci 2017; 18(3): 563.
[http://dx.doi.org/10.3390/ijms18030563]
[55]
Darvishi-Khezri H, Alipour A, Emami Zeydi A, Firouzian A, Mahmudi G, Omrani-Nava M. Is type 2 diabetes mellitus in mechanically ventilated adult trauma patients potentially related to the occurrence of ventilator-associated pneumonia? J Res Med Sci 2016; 21: 19.
[http://dx.doi.org/10.4103/1735-1995.179887]
[56]
Stegenga ME, van der Crabben SN, Blümer RM, et al. Hyperglycemia enhances coagulation and reduces neutrophil degranulation, whereas hyperinsulinemia inhibits fibrinolysis during human endotoxemia. Blood 2008; 112(1): 82-9.
[http://dx.doi.org/10.1182/blood-2007-11-121723] [PMID: 18316629]
[57]
Honiden S, Gong MN. Diabetes, insulin, and development of acute lung injury. Crit Care Med 2009; 37(8): 2455-64.
[http://dx.doi.org/10.1097/CCM.0b013e3181a0fea5] [PMID: 19531947]
[58]
Nakhleh A, Shehadeh N. Glycemic control of type 2 diabetic patients with coronavirus disease during hospitalization: A proposal for early insulin therapy. Am J Physiol Endocrinol Metab 2020; 318(6): E835-7.
[http://dx.doi.org/10.1152/ajpendo.00163.2020] [PMID: 32401039]
[59]
Wu J, Zhang J, Sun X, et al. Influence of diabetes mellitus on the severity and fatality of SARS-CoV-2 (COVID-19) infection. Diabetes Obes Metab 2020; 22(10): 1907-14.
[http://dx.doi.org/10.1111/dom.14105] [PMID: 32496012]
[60]
Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr 2020; 14(3): 211-2.
[http://dx.doi.org/10.1016/j.dsx.2020.03.002] [PMID: 32172175]
[61]
Pal R, Bhadada SK, Misra A. COVID-19 vaccination in patients with diabetes mellitus: Current concepts, uncertainties and challenges. Diabetes Metab Syndr 2021; 15(2): 505-8.
[http://dx.doi.org/10.1016/j.dsx.2021.02.026] [PMID: 33662837]
[62]
Marfella R, D’Onofrio N, Sardu C, et al. Does poor glycaemic control affect the immunogenicity of the COVID-19 vaccination in patients with type 2 diabetes: The CAVEAT study. Diabetes Obes Metab 2022; 24(1): 160-5.
[http://dx.doi.org/10.1111/dom.14547] [PMID: 34494705]