A Novel Uric Acid Biosensor Based on Regular Prussian Blue Nanocrystal/ Upright Graphene Oxide Array Nanocomposites

Page: [809 - 817] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Uric acid (UA) is an important metabolic intermediate of the human body. Abnormally high levels of UA will cause diseases. However, UA monitoring with commercial products relies on invasive blood collection, which not only causes pain in patients but also risks bacterial infections and skin irritation. In recent years, new models of noninvasive detection through body surface penetration have raised higher expectations for the sensitivity of uric acid detection, and rapid, accurate and highly sensitive UA sensors will become powerful tools for the diagnosis of UA-related diseases.

Objective: This study aimed to identify the differences in catalytic efficiency between regular PB from spray crystallization (RPB) and irregular PB from electrodeposition (EDPB), which is used for fabricate a high sensitive uric acid sensor.

Methods: Regular Prussian blue nanocrystals (RPB) were grown on graphene oxide flakes (GO), on the surface of a custom screen-printed carbon electrode (SPCE), using a spray method assisted by a constant magnetic field (CMF). After immobilizing uricase, the uric acid biosensor Uricase/RPB/CMF-GO/SPCE was obtained.

Results: The detection range of the sensor response to UA was 0.005~2.525 mM, and the detection limit was as low as 3.6 μM. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results showed that compared to amorphous electrodeposited Prussian blue (EDPB), RPB more favorably accelerated electron transport.

Conclusion: This novel uric acid biosensor exhibits high sensitivity over a wide concentration range, strong anti-interference ability, and good stability and reproducibility. Thus, it has good application prospects for determining uric acid in physiological samples.

Keywords: Uric acid, uricase, electrochemical biosensor, regular Prussian blue nanocrystal, graphene oxide, high sensitivity.

Graphical Abstract

[1]
Li, H.; Jiao, S.; Li, M. Determination of uric acid in human urine by eliminating ascorbic acid interference on copper(II)-polydopamine immobilized electrode surface. Electrochim. Acta, 2014, 121, 233-239.
[http://dx.doi.org/10.1016/j.electacta.2013.12.158]
[2]
Chaudhary, K.; Malhotra, K.; Sowers, J.; Aroor, A. Uric Acid - key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med., 2013, 3(3), 208-220.
[http://dx.doi.org/10.1159/000355405] [PMID: 24454316]
[3]
Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol., 2016, 213, 8-14.
[http://dx.doi.org/10.1016/j.ijcard.2015.08.109] [PMID: 26316329]
[4]
Christensen, E.F.; Jacobsen, J.; Anker-Møller, E.; Schultz, P.; Spangsberg, N. Increased urinary loss of uric acid in adults with acute respiratory failure requiring mechanical ventilation. Chest, 1992, 102(2), 556-559.
[http://dx.doi.org/10.1378/chest.102.2.556] [PMID: 1643947]
[5]
Culleton, B.F.; Larson, M.G.; Kannel, W.B.; Levy, D. Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann. Intern. Med., 1999, 131(1), 7-13.
[http://dx.doi.org/10.7326/0003-4819-131-1-199907060-00003] [PMID: 10391820]
[6]
Moriarity, J.T.; Folsom, A.R.; Iribarren, C.; Nieto, F.J.; Rosamond, W.D. Serum uric acid and risk of coronary heart disease: Atherosclerosis Risk in Communities (ARIC) Study. Ann. Epidemiol., 2000, 10(3), 136-143.
[http://dx.doi.org/10.1016/S1047-2797(99)00037-X] [PMID: 10813506]
[7]
Urbach, A.; Schuldiner, M.; Benvenisty, N. Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells, 2004, 22(4), 635-641.
[http://dx.doi.org/10.1634/stemcells.22-4-635] [PMID: 15277709]
[8]
Ambarsari, C.G.; Cahyadi, D.; Sari, L.; Satria, O.; Sahli, F.; Darmadi, T.L.; Kadaristiana, A. Late diagnosis of Lesch-Nyhan disease complicated with end-stage renal disease and tophi burst: a case report. Ren. Fail., 2020, 42(1), 113-121.
[http://dx.doi.org/10.1080/0886022X.2020.1713805] [PMID: 31985336]
[9]
Ali, N.; Perveen, R.; Rahman, S.; Mahmood, S.; Rahman, S.; Islam, S.; Haque, T.; Sumon, A.H.; Kathak, R.R.; Molla, N.H.; Islam, F.; Mohanto, N.C.; Nurunnabi, S.M.; Ahmed, S.; Rahman, M. Prevalence of hyperuricemia and the relationship between serum uric acid and obesity: A study on Bangladeshi adults. PLoS One, 2018, 13(11), e0206850.
[http://dx.doi.org/10.1371/journal.pone.0206850] [PMID: 30383816]
[10]
Maruhashi, T.; Hisatome, I.; Kihara, Y.; Higashi, Y. Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis, 2018, 278, 226-231.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.10.007] [PMID: 30326405]
[11]
Barani, M.; Mukhtar, M.; Rahdar, A.; Sargazi, S.; Pandey, S.; Kang, M. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors (Basel), 2021, 11(2), 55.
[12]
Arshad, R.; Barani, M.; Rahdar, A.; Sargazi, S.; Cucchiarini, M.; Pandey, S.; Kang, M. Multi-functionalized nanomaterials and nanoparticles for diagnosis and treatment of retinoblastoma. Biosensors (Basel), 2021, 11(4), 97.
[http://dx.doi.org/10.3390/bios11040097] [PMID: 33810621]
[13]
Barani, M.; Hosseinikhah, S.M.; Rahdar, A.; Farhoudi, L.; Arshad, R.; Cucchiarini, M.; Pandey, S. Nanotechnology in bladder cancer: Diagnosis and treatment. Cancers (Basel), 2021, 13(9), 2214.
[http://dx.doi.org/10.3390/cancers13092214] [PMID: 34063088]
[14]
Zhang, J.; Zhang, F.; Yang, H.; Huang, X.; Liu, H.; Zhang, J.; Guo, S. Graphene oxide as a matrix for enzyme immobilization. Langmuir, 2010, 26(9), 6083-6085.
[http://dx.doi.org/10.1021/la904014z] [PMID: 20297789]
[15]
Lee, J.; Chae, H-R.; Won, Y.J.; Lee, K.; Lee, C-H.; Lee, H.H.; Kim, I-C.; Lee, J-m. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci., 2013, 448, 223-230.
[http://dx.doi.org/10.1016/j.memsci.2013.08.017]
[16]
Santos, P.L.d.; Katic, V.; Toledo, K.C.F.; Bonacin, J.A. Photochemical one-pot synthesis of reduced graphene oxide/Prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. Sens. Actuators B Chem., 2018, 255, 2437-2447.
[http://dx.doi.org/10.1016/j.snb.2017.09.036]
[17]
Li, X.; Lin, D.; Lu, K.; Chen, X.; Yin, S.; Li, Y.; Zhang, Z.; Tang, M.; Chen, G. Graphene oxide orientated by a magnetic field and application in sensitive detection of chemical oxygen demand. Anal. Chim. Acta, 2020, 1122, 31-38.
[http://dx.doi.org/10.1016/j.aca.2020.05.009] [PMID: 32503741]
[18]
Semenova, D.; Pinto, T.; Koch, M.; Gernaey, K.V.; Junicke, H. Electrochemical tuning of alcohol oxidase and dehydrogenase catalysis via biosensing towards butanol-1 detection in fermentation media. Biosens. Bioelectron., 2020, 170, 112702.
[http://dx.doi.org/10.1016/j.bios.2020.112702] [PMID: 33045667]
[19]
Ricci, F.; Palleschi, G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens. Bioelectron., 2005, 21(3), 389-407.
[http://dx.doi.org/10.1016/j.bios.2004.12.001] [PMID: 16076428]
[20]
Guilbault, G.G.; Lubrano, G.J. An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta, 1973, 64(3), 439-455.
[http://dx.doi.org/10.1016/S0003-2670(01)82476-4] [PMID: 4701057]
[21]
Karyakin, A.A. Advances of Prussian blue and its analogues in (bio)sensors. Curr. Opin. Electrochem., 2017, 5(1), 92-98.
[http://dx.doi.org/10.1016/j.coelec.2017.07.006]
[22]
Jirakunakorn, R.; Khumngern, S.; Choosang, J.; Thavarungkul, P.; Kanatharana, P.; Numnuam, A. Uric acid enzyme biosensor based on a screen-printed electrode coated with Prussian blue and modified with chitosan-graphene composite cryogel. Microchem. J., 2020, 154.
[http://dx.doi.org/10.1016/j.microc.2020.104624]
[23]
Cruz, F.S.d.; Paula, F.S.; Franco, D.L.; Santos, W.T.P.d.; Ferreira, L.F. Electrochemical detection of uric acid using graphite screen-printed electrodes modified with Prussian blue/poly(4-aminosalicylic acid)/ Uricase. J. Electroanal. Chem. (Lausanne), 2017, 806, 172-179.
[http://dx.doi.org/10.1016/j.jelechem.2017.10.070]
[24]
Chen, T-W.; Li, Z-Q.; Wang, K.; Wang, F-B.; Xia, X-H. Exploring the confinement effect of carbon nanotubes on the electrochemical properties of Prussian Blue nanoparticles. Langmuir, 2018, 34(24), 6983-6990.
[http://dx.doi.org/10.1021/acs.langmuir.7b03690] [PMID: 29786444]
[25]
Itaya, K.; Ataka, T.; Toshima, S. Spectroelectrochemistry and electrochemical preparation method of Prussian Blue modified electrodes. J. Am. Chem. Soc., 1982, 104(18), 4767-4772.
[http://dx.doi.org/10.1021/ja00382a006]
[26]
Liu, Y.; Chu, Z.; Jin, W. A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian Blue modified electrode. Electrochem. Commun., 2009, 11(2), 484-487.
[http://dx.doi.org/10.1016/j.elecom.2008.12.029]
[27]
Fiorito, P.A.; Gonçales, V.R.; Ponzio, E.A.; de Torresi, S.I. Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chem. Commun. (Camb.), 2005, (3), 366-368.
[http://dx.doi.org/10.1039/B412583E] [PMID: 15645039]
[28]
Xu, X.; Liang, H.; Ming, F.; Qi, Z.; Xie, Y.; Wang, Z. Prussian Blue analogues derived penroseite (Ni,Co)Se2 nanocages anchored on 3D graphene aerogel for efficient water splitting. ACS Catal., 2017, 7(9), 6394-6399.
[http://dx.doi.org/10.1021/acscatal.7b02079]
[29]
Jain, S.; Verma, S.; Singh, S.P.; Sharma, S.N. An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection. Biosens. Bioelectron., 2019, 127, 135-141.
[http://dx.doi.org/10.1016/j.bios.2018.12.008] [PMID: 30597431]
[30]
Gau, V.; Ma, S-C.; Wang, H.; Tsukuda, J.; Kibler, J.; Haake, D.A. Electrochemical molecular analysis without nucleic acid amplification. Methods, 2005, 37(1), 73-83.
[http://dx.doi.org/10.1016/j.ymeth.2005.05.008] [PMID: 16213156]
[31]
Randviir, E.P. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochim. Acta, 2018, 286, 179-186.
[http://dx.doi.org/10.1016/j.electacta.2018.08.021]
[32]
Wang, J. Electrochemical glucose biosensors. Chem. Rev., 2008, 108(2), 814-825.
[http://dx.doi.org/10.1021/cr068123a] [PMID: 18154363]
[33]
Mardani, T.; Khiabani, M.S.; Mokarram, R.R.; Hamishehkar, H. Immobilization of α-amylase on chitosan-montmorillonite nanocomposite beads. Int. J. Biol. Macromol., 2018, 120(Pt A), 354- 360.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.065] [PMID: 30114424]
[34]
Zhang, M.; Hou, C.; Halder, A.; Ulstrup, J.; Chi, Q. Interlocked graphene-Prussian blue hybrid composites enable multifunctional electrochemical applications. Biosens. Bioelectron., 2017, 89(Pt 1), 570-577.
[http://dx.doi.org/10.1016/j.bios.2016.02.044] [PMID: 26916337]
[35]
Karyakin, A.A.; Karyakina, E.E.; Gorton, L. On the mechanism ofH2 O2 reduction at Prussian Blue modified electrodes. Electrochem. Commun., 1999, 1, 78-82.
[http://dx.doi.org/10.1016/S1388-2481(99)00010-7]
[36]
Mohammad, A.; Yang, Y.; Khan, M.A.; Faustino, P.J. A long-term stability study of Prussian blue: A quality assessment of water content and cesium binding. J. Pharm. Biomed. Anal., 2015, 103, 85-90.
[http://dx.doi.org/10.1016/j.jpba.2014.10.030] [PMID: 25462125]
[37]
Ahn, J.; Kim, S.; Jeon, S-i.; Lee, C.; Lee, J.; Yoon, J. Nafion-coated Prussian blue electrodes to enhance the stability and efficiency of battery desalination system. Desalination, 2021, 500, 114778.
[http://dx.doi.org/10.1016/j.desal.2020.114778]
[38]
Yin, S.; Wang, J.; Li, Y.; Wu, T.; Song, L.; Zhu, Y.; Chen, Y.; Cheng, K.; Zhang, J.; Ma, X.; Donghai, L.; Chen, G. Macroscopically oriented magnetic core-regularized nanomaterials for glucose biosensors assisted by self-sacrificial label. Electroanalysis, 2021, 33(10), 2216-2225.
[http://dx.doi.org/10.1002/elan.202100231]